In Vivo X-Ray Imaging in Biomechanics and Developmental Biology

Beth Brainerd
University of Massachusetts Amherst

Outline

- 1) X-ray video
- 2) X-ray CT and microCT
- 3) CT in finite element modeling
- 4) rotoscoping
- 5) development

X-ray CT – summary

- skeletons, including fossils
- gas-filled spaces
- injected contrast agents (e.g. circulatory system)
- •in vivo x-ray CT

Developmental Biology

image from L.P. Hernández

confocal microscopy

X-ray imaging in developmental biology

good for imaging skeletal development, circulatory system, gas-spaces

later stages of development than confocal microscopy

requirements: high resolution (10 μ m) ideally *in vivo*

Future uses of x-ray imaging and APS

biomechanics of vertebrate embryos and juveniles may be a good use of APS synchroton imaging