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Abstract

We analyze the dynamical scaling behavior in a two-dimensional spin model

with competing interactions after a quench to a striped phase. We measure

the growth exponents studying the scaling of the interfaces and the scaling of

the shrinking time of a ball of one phase plunged into the sea of another phase.

Our results confirm the predictions found in previous papers. The correlation

functions measured in the direction parallel and transversal to the stripes are

different as suggested by the existence of different interface energies between

the ground states of the model. Our simulations show anisotropic features for

the correlations both in the case of single-spin-flip and spin-exchange dynam-

ics.

PACS numbers: 05.70.Ln; 05.50.+q; 82.20.Mj

Typeset using REVTEX

1



I. INTRODUCTION

When a system in a disordered phase is rapidly quenched to a temperature below its
ordering temperature it orders kinetically [ 1,2]. In the early stage the fluctuations in the
initial state are amplified and domains of macroscopic size are formed. At late time the
ordering system is usually characterized by a single time-dependent length, the average
domain size R(t), which grows as a power law R ∼ tγ (scaling regime) [ 3]. The growth
exponent depends on the mechanism driving the phase separation. For a system with a
scalar not-conserved order parameter (model A) the growth is curvature driven and γ = 1

2
[

4]. The mechanism in systems with conserved order parameter (model B) is the diffusion of
the order parameter from interfaces of high curvature to regions of low curvature and γ = 1

3

[ 5,6].
This work concerns the ordering in the Ising version of the bidimensional isotropic eight

vertex model after a quench to the striped phase. The reduced hamiltonian of the model is

− βH = J1

∑

<ij>

sisj + J2

∑

<<ij>>

sisj + J3

∑

[i,j,k,l]

sisjsksl, (1)

where si are Ising spins on a bidimensional square lattice and the sums are respectively on
nearest neighbor pairs of spins, next to the nearest neighbor pairs and plaquettes. We have
considered the case of periodic boundary conditions.

The quenching of model (1) to the ferromagnetic phase with J3 = 0 has been studied in
both two and three dimensions [ 7]. When J2 < 0 there are energy barriers for the coarsening
of domains, hence the system does not relax to equilibrium if the temperature is zero. These
energy barriers do not increase with the linear dimension of domains in D = 2, while in
D = 3 the energy barrier is proportional to the linear dimension of domains thus leading to
a very slow dynamics [ 7].

The phase diagram of model (1) when J2 < 0, |J1| < 2|J2| and for J3 small is characterized
by a critical curve separating the paramagnetic phase and the superantiferromagnetic phases
(see e. g. [ 8]). In the SAF case the model has four ground states consisting of alternate plus
and minus rows (columns). The order parameter for SAF phases is the difference between
the magnetization on odd and even rows (columns).

Quenching in the SAF phase, for model (1) in D = 2, has been studied in [ 9], where it
has been shown that also in the striped phase the average size of domains grows as R ∼ tγ

where γ = 1
2

or γ = 1
3

for single-spin-flip or spin-exchange dynamics.
In a previous paper [ 10] we have shown that the correlation functions measured in the

direction parallel and transversal to the stripes are different as suggested by the existence
of different interface energies between the ground states of the model. Furthermore we
furnished an explicit example of how the scaled correlation functions can depend on the
details of the system (see also [ 11]). In this paper we complete the analysis described in [
10].

In the next Section we concentrate on the scaling exponents and we confirm the values
found in [ 9] by studying the scaling of the amount of interfaces and the scaling of the
shrinking time of a “ball” of one phase plunged into a sea of a different phase.

In Section 3 we study the asymptotic correlations in the model. As to the single-spin-flip
dynamics we show that the analysis of the pair correlation functions introduced in [ 9] gives
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results indistinguishable from those obtained considering the longitudinal and transversal
correlation functions as described in [ 10]. As to the spin-exchange dynamics we find an
anisotropic behavior of the scaled correlation functions as well.

Section 4 is devoted to the conclusions.

II. DIFFERENT WAYS TO MEASURE GROWTH EXPONENTS

The growth exponents of domains after a quenching in the SAF phase have been already
measured in [ 9]; it is interesting to measure those exponents studying the scaling properties
of physical quantities different from those considered in [ 9].

In order to describe the main features of domains we remark that the ground state of
the hamiltonian (1) is four-fold degenerate, so the typical configuration of the system in
the scaling regime consists of a patchwork of domains of four types (see Fig. 1a). In the
following we refer to domains having magnetized rows as “horizontal” domains, we call
“vertical” domains those with magnetized columns.

First of all we studied the amount of interfaces (see Fig. 1b) present in the system to
monitor the domain growth towards the equilibrium, that is to estimate the dimension of
the domains. Indeed in two dimensions the total length of interfaces per unit volume scales
as the inverse of the average size of domains (see [ 12] where the scaling of interfaces is used
to measure the growth exponent in the case of ferromagnetic Ising model).

The definition of interfaces between different domains is not straightforward in the case
of the superantiferromagnetic phase. In order to detect if a given site belongs to a domain
or to the interface, we compare the configuration of the system in a neighborhood of the
site with two given patterns in the following way: let us consider a site of the lattice, we
denote it by the pair (i, j), where i and j are respectively the row and column index, and we
denote by s(i, j) the corresponding spin. We consider a positive integer number L, denote
by B(i, j) the (2L+ 1) × (2L+ 1) square block centered at site (i, j) and compute the two
following quantities

dh =
∑L

k,l=−L

(

1 − δ
(

s(i+ k, j + l), (−1)ks(i, j)
))

dv =
∑L

k,l=−L

(

1 − δ
(

s(i+ k, j + l), (−1)ls(i, j)
))

(2)

where δ(· , ·) is Kroneker’s delta. We remark that dh and dv provides, respectively, the
“distance” in B(i, j) between the present configuration and a SAF horizontal or vertical
domain. If dh or dv are less than a fixed integer number M , we say that the site (i, j)
belongs, respectively, to an horizontal or vertical SAF domain; otherwise we say that the
site (i, j) is an interface site. All the results that will be described in this paper have been
obtained with L = 1 and M = 2; we have checked that our results do not depend on the
choice of the parameters L and M .

In Fig. 2 it is depicted the logarithm of the total number A of interface sites for a
512 × 512 lattice system as a function of the logarithm of the time in the case of finite
temperature (β = 1) and parameters J1 = 0.1, J2 = −1 and J3 = 0.1. Black circles and
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black squares (above and below in the picture) are Monte Carlo results obtained averaging
over 50 different histories respectively in the case of single-spin-flip [ 13] and spin-exchange
dynamics [ 14]. We find the scaling law A ∼ t−γ with γ = 1

2
and γ = 1

3
respectively in the

case of single-spin-flip and spin-exchange dynamics, thus confirming the growth exponent
found in [ 9].

The scaling law and the values of the exponent γ have been shown not to depend on
the J’s and on the value of β. In the case of single-spin-flip dynamics the case of zero
temperature [ 15] (β = ∞) has been considered, as well. We also checked that these results
are not affected by finite size effects.

Another way of measuring the exponent γ, in the case of not-conserved dynamics, consists
in studying the shrinking of a L×L square domain (ball) of one phase plunged into the sea
of one of the three other phases. In Fig. 3 it is shown the shrinking of a 41 × 41 square
vertical domain plunged into the sea of the horizontal superantiferromagnetic phase. The
contraction of the ball is achieved via the corner erosion, indeed in this way no energy barrier
must be bypassed. In [ 1] it has been remarked that the shrinking time τ of such a domain

scales as τ ∼ L
1

γ . We found that the time of shrinking scales as τ ∼ L2, see Fig. 4, for large
L and for any choice of the phase of the background, this confirms the growth exponent
γ = 1

2
.

III. ANISOTROPIC BEHAVIOR OF CORRELATION FUNCTIONS

Let us now turn to consider the correlation properties of growing domains in the scaling
regime. In [ 10] we introduced two different types of correlation functions, the longitudinal

and the transverse one; these two functions are denoted respectively by Cℓ(r) and Ct(r) and
they are defined as follows

Cℓ(r, t) = 〈s (i, j) s (i+ ǫ(i, j)r , j + (1 − ǫ(i, j))r) 〉

Ct(r, t) = 〈(−1)rs (i, j) s (i+ (1 − ǫ(i, j))r , j + ǫ(i, j)r) 〉
(3)

where ǫ(i, j) is one (zero) if site (i, j) belongs to a horizontal (vertical) domain and the
average is performed over sites belonging to domains at time t (interface sites are excluded)
and over different stories of the system. We remark that the longitudinal correlation function
measures the correlation properties of domains in the direction where spins are aligned, while
the transverse correlation function measures the correlation properties in the direction where
the spins are alternate.

We found that the correlation functions introduced above have a scaling behavior in the
scaling regime; in the case of single-spin-flip dynamics they depend only on the combination
r/
√
t:

Cℓ(r, t) = fℓ

(

r√
t

)

Ct(r, t) = ft

(

r√
t

)

(4)

Simulations discussed in [ 10] have shown that the scaling functions fℓ and ft are different,
due to the presence of interfaces between the four types of domains having different interface
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energies. The OJK theory [ 16] well describes the pair scaling functions in anisotropic cases
if a free parameter is used to fit the data in the different directions (see [ 10]).

We also note that in this case two typical lengths characterize the ordering system, the
average longitudinal domain size Rℓ and the transverse one Rt; we evaluated them as

R−1
ℓ =

∑

kSℓ(k)
∑

Sℓ(k)
R−1

t =

∑

kSt(k)
∑

St(k)
(5)

where Sℓ(k) and St(k) are the Fourier transforms of Cℓ(r) and Ct(r) respectively. We verified

that Rℓ and Rt are different but they both have the correct scaling Rℓ ∼ t
1

2 and Rt ∼ t
1

2 .
Now we check that the anisotropic behavior of domains growth does not depend on the

peculiar way in which (3) measure the correlations, indeed we show that the analysis of the
pair correlation functions introduced in [ 9] yields similar results.

As in [ 9] let us divide the lattice into four sublattices corresponding to a 2×2 unit cell; a
two-components order parameter Ψ = {ψa}a=1,2 can be expressed in terms of the sublattices
magnetizations m1, m2, m3 and m4, where mν = 1

N

∑

i∈ν si and N is the total number of
sites in the lattice, by defining

ψ1 = m1 +m2 −m3 −m4 ψ2 = m1 −m2 −m3 +m4 . (6)

The four ground states of model (1) correspond to the four following values of the order
parameter Ψ:

(

1

0

) (

−1

0

) (

0

1

) (

0

−1

)

. (7)

We observe that |ψ1| = 1 (|ψ2| = 1) corresponds to a striped phase in the direction parallel
to the x (y) axis.

By decomposing Ψ into its contributions from individual unit cells Ψα, where α is the
cell index, one can consider the correlation between the components of the two-valued order
parameter. Two of such correlations can be put in correspondence with the longitudinal and
transverse correlation functions (3). Indeed, let us consider two cells α and α′ connected
by a vector parallel to the x axis: it is easy to see that the average of the product ψα,1ψα′,1

measures the longitudinal correlations, while the averaged ψα,2ψα′,2 is a measure of the
transverse correlations in the growing system. Conversely, given two cells connected by a
vector parallel to the y axis, ψα,1ψα′,1 and ψα,2ψα′,2 measure respectively the transverse and
the longitudinal correlations. In this framework the natural way to define transverse and
longitudinal correlation functions is the following:

Γℓ(r, t) = 1
2
〈ψα,1ψα+r~x,1〉 + 1

2
〈ψα,2ψα+r~y,2〉

Γt(r, t) = 1
2
〈ψα,1ψα+r~y,1〉 + 1

2
〈ψα,2ψα+r~x,2〉

(8)

where ~x and ~y are the unit vectors in the x and y directions and the average is performed
over all the cells at time t and over different stories of the system.

Although C’s and Γ’s are defined in a slightly different way, we note that from the
physical point of view they are expected to satisfy the following identities

Γℓ(r, t) = Cℓ(2r, t) Γt(r, t) = Ct(2r, t) , (9)
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where the factor 2 in the argument of the C’s is due to the fact that the dynamical variables
Ψα live on a lattice with spacing which is twice the original one.

In Fig. 5 we show the scaling collapse of the correlation functions Γℓ and Γt. Data in Fig.
5 above (below) have been obtained by Monte Carlo simulations performed on a 400 × 400
lattice system with a single-spin-flip dynamics, at zero temperature and parameters J1 = 0.1
(J1 = −0.1), J2 = −1 and J3 = 0. The correlation functions (8), taken at different times,
have been plotted in terms of the scaling variable z = r/

√
t. From the picture it is clear

that the anisotropy is confirmed and that a simmetric behavior with respect to the change
of the sign of J1 is observed.

Solid lines in Fig. 5 represent the best fit of our data obtained with the OJK function

f(z) =
2

π
sin−1[exp(−z2/D)] ; (10)

the optimal choices of the parameter D is Dℓ = 1.35 (1.15) and Dt = 1.15 (1.35) respectively
for the longitudinal and transverse function in the case J1 = 0.1 (−0.1). The validity of the
identities (9) is confirmed by the fact that the best fits of the D’s, in the case of the C’s (see
[ 10]), are close to be four times the best fits of the D’s in the case of the Γ’s functions.

Finally we discuss the simulations we have performed with spin-exchange dynamics. We
used heat bath spin-exchange between nearest neighbor pairs of spins [ 14]. In Fig. 6 the
collapse of correlation functions (3) is shown: Monte Carlo data have been plotted in terms

of the scaling variable z = r/t
1

3 . Simulations have been performed on a 800× 800 lattice, at
inverse temperature β = 1 and parameters J1 = 0.4, J2 = −1 and J3 = 0. We see that the
anisotropic behavior is observed in the case of the spin-exchange dynamics as well. Again
we found that the longitudinal and the transverse correlation functions are exchanged when
J1 → −J1.

IV. CONCLUSIONS

In this paper we have further analyzed the dynamical scaling behavior in a two-
dimensional spin model with competing interactions which had been already investigated in
[ 9,10]. We measured the growth exponents studying physical magnitudes not considered in
previous papers: the scaling of the interfaces and the scaling of the shrinking time of a ball
of one phase plunged in the sea of another phase. Our results confirm the predictions found
in [ 9,10].

The anisotropic behavior of the correlations has been further investigated by measuring
the pair correlation functions introduced in [ 9] and their physical equivalence with the
correlation functions used in [ 10] has been pointed out. Our simulations show anisotropic
features for the correlations in growing system and the simmetric behavior with respect to
the change of the sign of the nearest neighbors coupling. Finally, we have shown that the
anisotropy is observed also in the case of spin exchange dynamics.
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Figure Captions

Fig 1: (a) Typical configuration of model (1) in the scaling regime. Black (white) squares
represent plus (minus) spins. The picture has been obtained in a 100×100 square lattice, at
zero temperature, after 150 MCS (Monte Carlo Steps per site). (b) The same configuration
as in Fig. 1a is depicted. Black squares represent the interface sites and grey (white) squares
represent plus (minus) spins belonging to domains (see the definitions in the text).

Fig 2: The logarithm of the number A of interface sites is plotted versus the logarithm of
the time t (number of iterations) in a 512 × 512 square lattice. Black circles (above) and
black squares (below) are Monte Carlo results obtained averaging over 50 different histories
respectively in the case of single-spin-flip and spin-exchange dynamics. In both cases the
inverse temperature is β = 1 and the parameters of the model have been chosen as follows:
J1 = 0.1, J2 = −1 and J3 = 0.1. The slope of the solid line is −1

2
above and −1

3
below.

Fig. 3: The shrinking of a 41×41 vertical domain plunged into the horizontal SAF phase is
shown. Our simulation has been performed on a 100×100 square lattice, at zero temperature
and with parameters J1 = 0.1, J2 = −1 and J3 = 0. Black (white) squares represent plus
(minus) spins; from the left to the right and from the top to the bottom configurations are
shown at times t = 0, 50, 100, 150, 200, 225.

Fig 4: The logarithm of the collapse time τ of a square vertical domain plunged into the
horizontal SAF phase is plotted versus the logarithm of the length L of its side. Black
squares are Monte Carlo data obtained by averaging over 10 different trials in the zero
temperature case with parameters J1 = 0.1, J2 = −1 and J3 = 0. The slope of the solid line
is 2. Similar results have been obtained when different background phases were considered.

Fig 5: Scaling collapse of the correlation functions Γℓ(r, t) and Γt(r, t) achieved by plotting
them versus r/t0.5. Results are given for β = ∞, J2 = −1, J3 = 0, J1 = 0.1 above
and J1 = −0.1 below; we averaged over 50 different histories on a 400 × 400 system. Black
(empty) circles, squares and triangles correspond respectively to the transverse (longitudinal)
correlation functions measured at times 300, 400 and 500. Solid lines are the best OJK fits.

Fig 6: Scaling collapse of the correlation functions Cℓ(r, t) and Ct(r, t) achieved by plotting
them versus the scaling variable r/t1/3. Results are given for β = 1, J1 = 0.4, J2 = −1 and
J3 = 0; we averaged Monte Carlo data over 50 different stories on a 800× 800 system. Both
the longitudinal and transverse correlation functions are shown at times 68000 (◦), 70000
( ) and 72000 (△).
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FIGURES

Fig. 1a - Cirillo, Gonnella, Stramaglia
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Fig. 1b - Cirillo, Gonnella, Stramaglia
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Fig. 3 - Cirillo, Gonnella, Stramaglia
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