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How to extract information from simulations of coarsening at finite temperature
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Certain properties of coarsening phenomena such as the fraction of space which remains always in the same
phase are hard to measure in simulations, at nonzero temperature, because one needs to distinguish spin flips
due to thermal fluctuations from those due to the motion of interfaces. By comparing the system where
coarsening takes place with a fully ordered system submitted to the same thermal noise, one can measure in a
simple way the fraction of space which remains in the same phase. Our numerical results indicate a power law
decay(of the fraction of persistent sping the whole low temperature phase very similar to the zero tem-
perature situation.S1063-651X97)01503-1

PACS numbds): 02.50-r, 05.40:+j, 05.20~y

Ising or Potts models evolving according to Glauber dy-becomes much larger than the equilibrium bulk correlation
namics are simple examples of systems exhibiting coarsenength, it is possible to tell which domain is in which phase
ing [1,2]. Apart from the one dimensional case, where coarsand one can then ask what is the fraction of space which
ening takes place only at zero temperatiBe6], very few remains in the same phase up to timeThe goal of the
properties are known analytically and the only possible appresent paper is to give a way of measuring this fraction of
proach(to test approximate methodis based on numerical Space even in the presence of thermal fluctuations.
simulationg 1]. As soon as the temperature is nonzero, some The main idea developed here consists in comparing the
properties have to be defined in a careful way in order to beystem(systemA) where coarsening takes place with an
extracted from simulations. The goal of this paper is to pro-ordered systensystemB) when both systems are submitted
pose a possible method of measuring properties related to the same nois¢l6,17,23. Then, when a spin flips in
coarsening in the presence of thermal fluctuations. systemA, if the same spin flips in systei®, one can con-

In dimension higher than 1, below the ordering temperasider that this is due to thermal fluctuations whereas when a
ture (which is nonzery if one starts with a fully random spin behaves differently in systemsandB, one considers
configuration, Glauber dynamics tends to align neighboringhat this is due to the motion of the domain walls in the
spins and to produce a pattern of ferromagnetic domains withoarsening process.

a typical domain size which grows with time €&. In simu- In practice, in the case of an Ising model at temperature
lations, one can measure the pair correlation between tw®d, the two system# andB of N spins are identical except
spins a distancR apart and checkl] that indeed in the long for their initial condition

time limit (and forR large compared to the bulk correlation ) N

length at equilibriuny it becomes a scaling function of the S0)— +1 with probability 1/2
ratio R/+t. A number of difficulties arise if one tries to mea- (0= _ 1 with probability 1/2
sure more complicated properties such as the distribution of

domain sizes or the number of persistent sp;3F—12,22. and

At zero temperature, one can easily define domains as B ) —

. . . S(0)=+1 2
connected sets of parallel spins and the fraction of persistent

spins as the fraction of spins which never flip up to timé&  ang Glauber dynamics is performed by updating in both sys-

serious difficulty, however, is that at zero temperature, th@ems during each time intervalt=1/N the samerandomly
dynamics can be greatly affected by local blocking configu-chosen spin according to

rations[13-15,9 of the interface(finite barriers of energy

(€

can stop the dynamigs®nd so one may wonder whether the > S
absence of thermal fluctuations allowing one to overcome J- j (1)
these finite energy barriers could not make the zero tempera- SIA(t+At)=sgn 1+tanh T =2z(t)|, (3

ture coarsening a separate problem which behaves in a com- - -

pletely different way than coarsening at nonzero temperature. - .
At nonzero temperature, it is clear that finite energy bar- E S]-B(t)

riers cannot stop the dynamics. However, it becomes difficult B B i

to define domains because it is hard to distinguish between S(t+Ay=sgr 1+tanh T —22(t)_ @

true domains and spin flips only due to thermal fluctuations.

Also at any nonzero temperature, each spin, even if it pointhere in Eqs(3) and (4) the sums ovej run over all the

in the direction of its local field, has always a nonzero prob-neighbors of sité and thesamerandom numbeeg(t), uni-

ability per unit time of flipping and the number of spins formly distributed between 0 and 1, is used.

which do not flip up to tima decreases exponentially with To measure the fraction(t) of persistent spins, one just

time. However, it is clear that when the typical domain sizecalculates
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! : ' - Figure 1 shows rather convincingly thatt) has a power
r®) law decay in the whole low temperature phase. A natural
. question, of course, is that of universality, namely, whether
the exponen® is independent of temperature. From the es-
timates of Eq.(7), # does not seem to change much with
temperature, and so one could attribute its apparent variation
to a lack of accuracy of the estimatéd and to an insuffi-
cient numerical effort. On the other hand, it has been shown
% recently[18] that anisotropy due to the lattice affects coars-
ening even in its long time regime, at least through the an-
= gular dependence of the surface tension of an interface at
' equilibrium. As this angular dependence depends on tem-
Ising * B perature, one can expect that changing the temperature may
, , , change the whole universality class of the coarsening phe-
! 10 100 100 , o0 nomena and this would imply th&tdoes vary with tempera-
FIG. 1. Fractionr(t) of spins remaining identical in systems ture. At present, it seems that numerical simulations, at least
A andB versus time (is the number of Monte Carlo steps per Spin one order of magnitude more than what is presented here,
for the square lattice with nearest neighbor interactions and periodig,quld be necessary to distinguish cleatby measuringp)
boundary conditions. The system sizelis 1000. BelowT., one  petween these two possibilities.
observes a power law decay. The above way of measuring the fraction of persistent
N R spins can be extendeql to fche _case_ofqhﬂate Potts model:
()= iz I 1+SMt)SP(t) for systemA, each spinS; is given initially one out of the
Ni=1 oZi < .

01| )

0.01

2 (5 g possible colors at random whereas for systneach spin

is initially in color 1. Then to implement the heat bath dy-
The effect of the dynamid®) and(4) is to make the spins of namics, one chooses at each time sédp-1/N, a sitei at
A and B become identical in ferromagnetic regions with random among th&l spins of the system and a random num-
positive magnetization. Thereforét) measures the fraction berz(t) uniformly distributed between 0 and 1. One calcu-
of persistent spins in the- phase. For symmetry reasons lates for each system the probabilitie8(«) andPB(«) that
between positive and negative magnetizations, it is clear thaipin S; takes the colow at timet+ At,
for a large enough system, the fraction of persistent spins

should be 2(t). a1 [ 3 1

Figure 1 shows a log-log plot of(t) measured for an P(a)=ex T; 55,-‘\(0'& ;1 ex f; 55,-“0%7 ’
Ising model on a square lattice of 100Q000 spins at sev- ) )
eral temperatureffor a single sample Below T, r(t) de-

cays as power law . 1 [ q 1 1
r(t)~t7‘9, (6) P (a):ex ?2 58}3(t),a -;1 ex T? 55}3(0'), - y

9
with an exponen® close to its zero temperature value. From ©
Fig. 1, one can estimate where the sums ovgrrun over all the neighbors of the site

0.22 for T=0 i and one updates the two systems according to

9~1{ 0.22 for T=T,/3 @) SH(t+AD)=ap, (10

0.29 for T=2T./3. SIB(t+At)=aB, (11)
Right atTc, the decay is much faster than in the low tem-\ynere the colorsy, and ag are determined by
perature phase and the fraction of persistent J@iaslefined
by Eg. (5)] becomes very small so quickly that it is hard to ap~1 oA
analyze the type of decay. AB approached from below Z PA(y)<z(t)< Z PA(y), (12
(case T=5T./6), one observes a crossover between the r=1 r=1
power law characteristic of the low temperature phase and ag-1 g
the r§p|d decay af. Abov_e T., when two systems are 2 PB(y)<z(t)< 2 PB(y). (13
submitted to the same noise, they become identical very y=1 y=1

quickly [16] and thereforer(t) does not decay to zero as ) ) _ o
t— . This result looks somewhat strange if one thinks of theOne then measures the fractioft) of spins which remain in
persistent spins as spins which keep the same magnetizatiéie Phasex=1 up to timet as

up to timet. On the other hand, if one thinks of the persistent LN
tspms as _bgmg the spins which remain in t_he same phase up r(t)=— [ H 5sA<t'),sB<t'>]- (14)

o timet, it is clear that abov@ ., there is a single phagthe Ni=1 i i

disordered phaseand so it is not hard to accept that the

fraction of space remaining in the same phase remains noms in the Ising case, the effect of the dynami8s—(13) is to
zero in the long time limit. make the spins oA and B become identical in regions of

Os<t'st
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; : : : moved. At finite temperature, Fig. 2 shows, however, that
r(t) r(t) defined by Eq(14) does decay as a power law with an
Potts ¢=7 exponent which seems to vary with temperat(fer q=7,

one can estimated=0.40 at T=T./3 and #=0.55 at
T=2T./3). As in the Ising case, more numerical work would
be needed to confirm that the variationéfvith temperature

is real(and due to the variation of the angular dependence of
the surface tension with temperatuds]).

In this paper we have seen that, by using the same thermal
noise on the configuration where coarsening takes place and
on a fully ordered configuration, one can measure the frac-
tion of spins which remain in the same phase up to ttme

T,

0.01 [

el X

E i Very much like at zero temperature, this fractioft) has a
‘ . . power law decay in the low temperature phase. Our estimates
oot 10 100 1000 10000 indicate some variation of the exponehwith temperature,
FIG. 2. The same as Fig. 1 for tle=7 Potts model. but better numerical simulations would be needed to confirm

this variation.

phase 1. Therefore(t) measures the fraction of persistent The approach used in this paper allows one to define do-
spins in phase 1 and for symmetry reasons betweerythe mains at finite temperature. It could therefore be used to
possible phases, the fraction of spins which remain in theneasure statistical properties of domains such as the distri-
same phase up to tinteshould be given byr(t). bution of the sizes of domains. One could also try to extend

At zero temperature, the dynamics of systBnis trivial this approach to measure directly other properties of coars-
as all the spins of syste® remain in color 1 forever and the ening at finite temperature, like the characteristic length of
definition (14) reduces clearly to the fraction of spins of the domains: by comparing the system where coarsening
color 1 which never flip. As in the Ising case, at any nonzerdakes placgsystemA) with a fully ordered systentsystem
temperature, the fraction of spins which never flip wouldB) submitted to the same noise, one could measure the ex-
decay exponentially but with definitioi14) one finds a cess of energy in systed and measure that way how the
power law decay as shown in Fig. 2 for a system ofperimeter of the domains decays with time.
1000x 1000 on a square lattice fay=7. At zero tempera- An important case which seems at the moment out of
ture, the decay is very slow because of blocking effects dugeach with the present approach is tifre « Potts model at
to finite energy barrier§13—-15,9. These blocking effects finite temperature which is of interest in particular in the
are a real problem in zero temperature simulations of thetudy of soap froth and for which the value éfis still
Potts model and so far the only way to overcome them is t@ontroversial[9,19—21. With the definition(14) one could
take a different lattice(triangula) or to include further measure the fraction of space remaining in phase 1 up to
neighbor interactions without knowing whether all the unde-time t but this fraction would be vanishingly small in the
sirable effects due to finite energy barriers have been rdimit g—o.
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