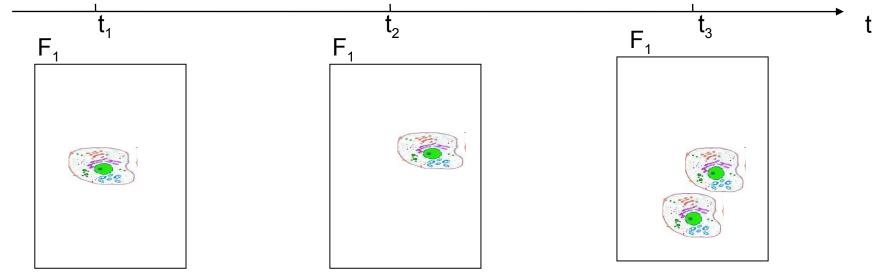
Towards an Ontology of Time Lapse Experiments (Cellular Genealogies). Report on work in progress

Patryk Burek[‡], Heinrich Herre[‡], Ingo Roeder[†], Ingmar Glauche[†], Nico Scherf[†]

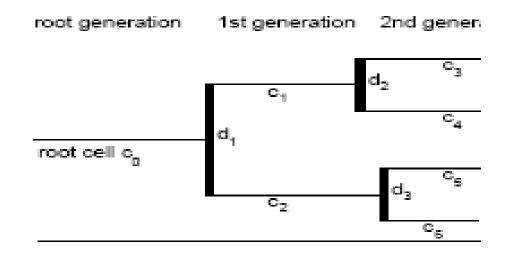

⁺ Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Germany

⁺ Institute for Medical Informatics and Biometry, Dresden University of Technology, Germany

Overview

- 1. Preliminaries: Time Lapse Experiments, Cellular Genealogies
- 2. Goal and Motivation
- 3. Requirements
- 4. Architecture
- 5. General Formal Ontology lite (GFO-lite):
 - Main Ontological Choices
 - Selected Desing Patterns
- 6. Ontology for Cellular Genalogies (CGO)
- 7. Conclusions, Future Research

Time Lapse Experiments and Simulations



- The application of time lapse video microscopy for the analysis of cell cultures facilitates the tracing of cells, comprising all the progeny over extended time periods up to several days.
- This includes the temporal analysis of cell specific parameters like morphology, expression of marker genes.

Cellular Genealogies

Information on cells behavior over time (including divisions) can be comprised into a pedigree-like structure, referred to as *cellular genealogy*, in which the founder cell represents the root and the progeny is arranged in the branches.

Goal and Motivation

Goal:

 To develop stem cell ontology and refined annotation scheme tailored for modeling and annotating results of time lapse experiments (in particular: cellular genealogies).

Motivation:

 There is no common data format for annotating, storing and exchanging data on time-lapse experiments and cellular genealogies.

Requirements

The developed ontology should be:

- Extensible. Time-lapse experiments and the concept of genealogies are relatively young and under dynamic development, thus the ontology and the annotation scheme must be easily extensible
- Not ad hoc.
- Not implementation-biased but nevertheless formal
- Well-structured and founded on the solid conceptual foundations.

Current refactoring efforts of e.g. Gene Ontology or Cell Type Ontology demonstrate that refactoring of the deployed ontologies is a difficult and expensive enterprise. It is cheaper to build ontologies on the solid foundations from the beginning then to refactor deployed ontologies.

Architecture of the provided solution

- 1. Ontology for Cellular Genealogies (CGO):
 - Domain ontology for representing cellular genealogies and annotating results of time-lapse experiments and simulations
- 2. General Formal Ontology lite (GFO lite):
 - Provides a backbone for CGO i.e. main *modeling* constructs and design patterns for their application.
 - Top level independent of any particular domain supports processes, objects, and functions.
 - Independent of any particular encoding formalism applicable in various technical contexts (e.g. OWL, UML).
 - Makes ontological choices *explicit*, not accidental.
 - The lite version of General Formal Ontology which is a top level ontology developed by OntoMed and applied e.g. in health care process modeling

Overview of GFO-lite: relation to time

1. Abstracts - entities not related to time, e.g. :

- Mathematical objects e.g. Set
- Property specifications of qualities which we measure, observe or calculate, e.g. weight, color, speed
- Property Value- volumes used in measurement, observation or calculation e.g. 10kg, green, 40\$.
- *2. Time-extended Entities* entities existing through time, e.g. cup, desk, football match.

$$t_1$$
 t_2 t_2

3. Presential Entities (Presentials) - snapshots of time-extended entities located at time points, e.g. cup at time point t1.

Overview of GFO-lite: Object and Relation

Object:

- An entity typically perceived and distinguished from other entities as existing to some extent independently of its surrounding, e.g. desk
- It is not *of* something, thus it is independent of other entities although can be described by them.

Desk

Relation:

- An entity that connects other entities
- Arbitrary arity
- In contrast to an object, can not exist without its players and in this sense is dependent on them.

stands_on
Cup
Desk

Onto Medicine Euro System imise. UNIVERSITÄT LEIPZIG

Overview of GFO-lite: Situations and Characteristics

Situation:

- Complex Entity compressing other entities.
- Similar to an object in a sense that it can be modeled w/o references to any other entity.
- On the other hand it resembles relation in a sense that it can relate other entities.

Characteristic:

- entity characterizing other entities
- Role is what an entity would play within the context of Relation
- Quality an assignment of a Property Value to an entity.

employed in

Company

employer

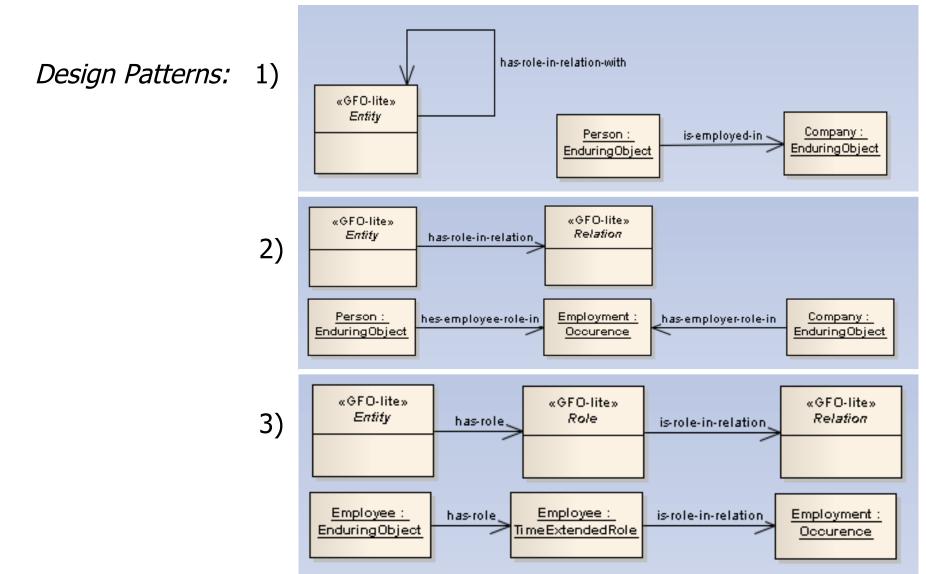
Peroson

employee

imise. UNIVERSITÄT LEIPZIG

Matrix of main GFO-lite categories

Time-extended Entities	Presential Entities	Abstract Entities	Graphical Symbols
Enduring Object	Presential Object	Abstract Object	
Occurence	Presential Relation	Abstract Relation	
Happening	Presential Situation	Abstract Situation	
Time Extended Quality	Presential Quality	Abstract Quality	
Occurence Participant	Presential Role	Abstract Role	— •····
		Property	property
		Property Value	property value
		Function	

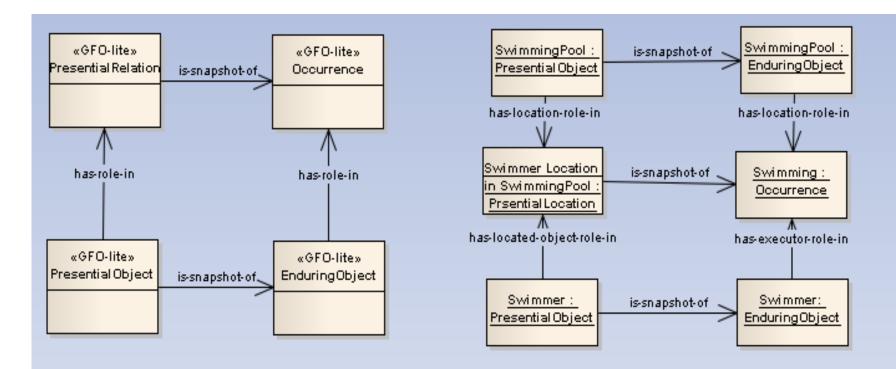

Selected design patterns: Relation

Design Problem: How to model relations?

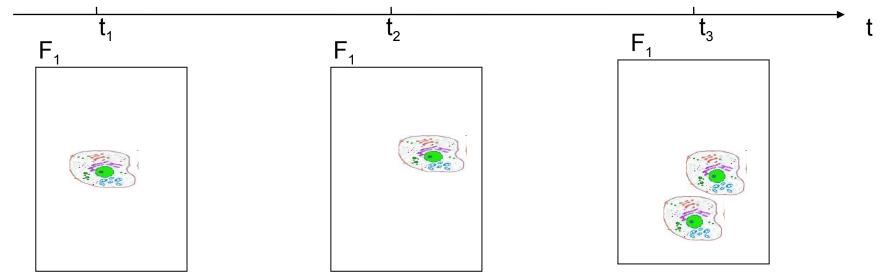
Competency Question:

- How many players are involved in relation?
- Does a relation have its own characteristics?
- Do entities involved in relation play distinct roles in that relation?
- Do roles of the entities involved in a relation group some of their characteristics as e.g. role driver groups such characteristics as driving experience, driving license?
- In case of binary relations, is it only one-directional link between two entities or is it bi-directional link?
- Is the ontology under development considered to be developed further?

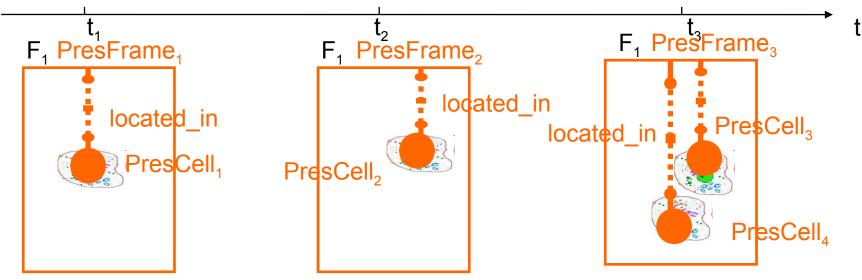
Selected design patterns: Relation



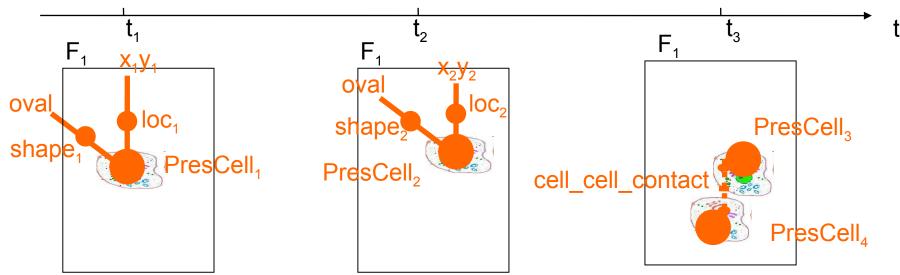
Selected design patterns: Reified Presential


Design Problem: How to model interplay between enduring objects,

processes / occurrences and their temporal snapshots.

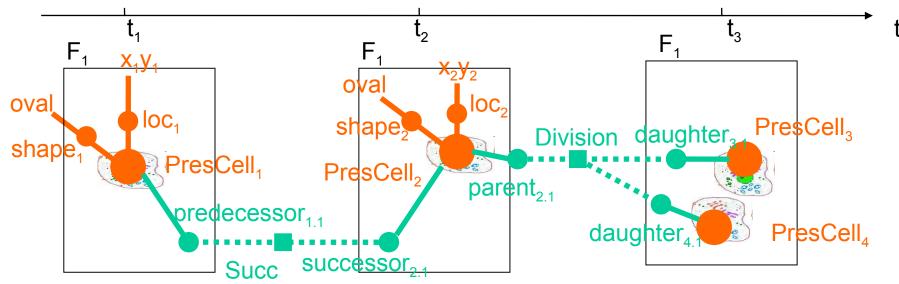

Design Pattern:

Modeling with GFO-lite: Main concepts of CGO


Modeling with GFO-lite: Main concepts of CGO

Each frame is Presential Situation

Each observed cell is Presential Object located_in Frame

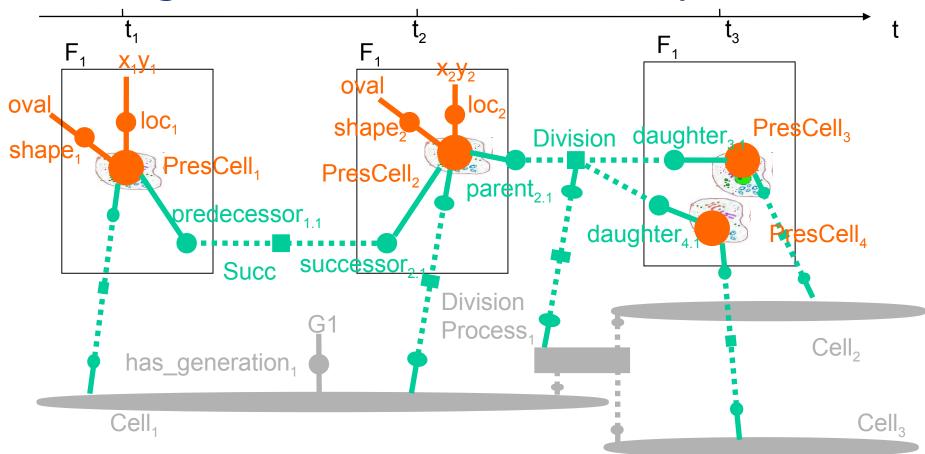

Modeling with GFO-lite: Main concepts of GTO

Presential Cell may have Presential Qualities assigned to it e.g. *location, shape.*

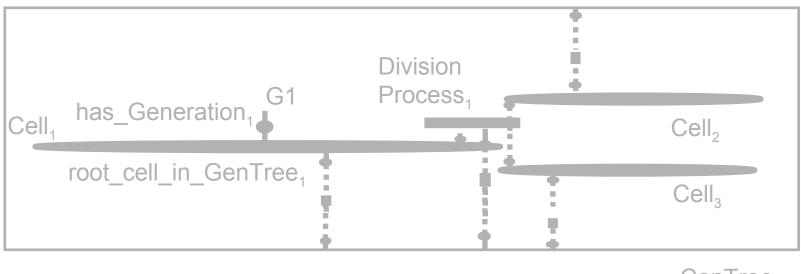

Presential Cells may be related by a Presential Relation e.g. *cell_cell_contact*, in which each cell has role *contacting_cell*.

Modeling with GFO-lite: Main concepts of GTO

Presential Cells belonging to different Presential Frames can be related by abstract relations of *Succession* or *Division* in which they play respectively the roles of *predecessor* and *successor*, *parent* and *daughter*.


Modeling with GFO-lite: Main concepts of GTO

Cell is an Object (time-extended) constructed from Presential Cells related by Succession Relation.


Each Cell may have Qualities assigned e.g. *has_generation*.

Modeling with GFO-lite: Main concepts of GTO

Division Process is a Occurrence (Process) which is a counterpart of the presential Division Relation.

Modeling with GFO-lite: Main concepts of GTO

CenTree₁

Cellular Genealogy is a time-extended Situation (Happening) compound of one Cell playing a role of a *root_cell* in the tree and all successors and daughters of the root cell.

Conclusions

The developed framework consist of two ontologies

- 1. GTO domain ontology:
 - Enables describing results of time lapse experiments and simulations.
 - Handles both presential perspective on frames and cells as well as processual perspective on cellular genealogies
- 2. GFO-lite core ontology:
 - Provides top level categories and design patterns
 - Intended to reduce time and cost of ontology construction.
 - Cross domain can be adopted in the development of other domain ontologies
 - Provides extension mechanisms, e.g. characteristics can be added to any type of entities, n-ary relations, n>=1

Future Research, Related Work

Nearest future research:

- Evaluation and extension of GFO-lite & GCO (e.g. adding the experiment context such as scientists involved, lab,..)
- Integration with existing experiment ontologies and other bioontologies (e.g. Cell Type Ontology, Cell Behavior)

Related work:

- Top level ontologies: DOLCE, Sowa's, SUMO, BFO
- Design patterns: software engineering and system modeling, W3C

Thank you!