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Complex systems and biology

Complex Systems - cannot be described in
reductionist terms

e numerous interacting components
* nonlinear interactions
« adaptive, self-organized behavior

Biological systems

« functionally diverse elements,
* nonlinear interactions that form a network,
« have a function that needs to be performed.



Example: signal transduction networks

E. coli

receptors

motor

flagella




Example: gene regulatory networks
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Understanding biological systems

Systems-level understanding of biology is a two-step process:

1. Discovering the components and their functions : genome
sequences, protein structure.

2. Mapping the network of interactions between components.

Maijor lines of research:
« Knowledge discovery - extract patterns from huge quantities

of experimental data

« Model-based analysis — formulate models based on
experimental knowledge, provide predictions to be tested in
Vivo.



Modeling biological systems

Input: components.

Hypotheses: network of interactions; kinetics.

Validation: capture known behavior.

Output: predictions and insights into the function of the system.

My study: The segment polarity genes of the fruit fly.

Input: segment polarity genes

Hypotheses: boolean interactions

Validation: reproduces all known gene expression patterns.
Insight: topology is a main source of robustness.

R. Albert, H. G. Othmer, Journal of Theoretical Biology, to appear.



Segmentation of the fruit fly

Drosophila melanogaster

Syncytial blastoderm, 1h End of gastrulation, 7h



Segmentation is governed
by a cascade of genes
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he role of the segment polarity genes

The segment polarity genes are initiated by the pair-rule genes
Several segment polarity genes are expressed (active) in
stripes that are repeated in every fourth cell.

These genes interact via a complex regulatory network.

The expression pattern of the segment polarity genes is
maintained for 3 hours.

The parasegment borders appear between the cells
expressing the two most important segment polarity genes,
engrailed and wingless.



Segment polarity genes

Genes Proteins

‘wingless (wg) — Wingless protein (WG) - secreted

*hedgehog (hh) — Hedgehog protein (HH) - secreted

~engrailed (en) — Engrailed protein (EN) - transcription factor

*patched (ptc) - Patched protein (PTC) - receptor

*smoothened (smo) —— Smoothened protein (SMO) - receptor

*sloppy paired (slp) — > Sloppy paired protein (SLP) - transcription factor

scubitus interruptus (ci) —— Cubitus interruptus protein (ClI)
Cubitus activator (CIA) - transcription factor
Cubitus repressor (CIR) - transcription factor

Gene products form a network that maintains a gene expression pattern
Initiated in an earlier stage.



Evolution of gene expression patterns
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Wild type, stable gene patterns

-en is expressed in the anterior part of the
parasegment.

‘g is expressed in the posterior part of the
parasegment.

A : 4 ? o | * parasegmental grooves form between the g and
/ \ en stripes.
wg en * two pic stripes in each parasegment.

* C/ pattern is complementary to that of en.

en
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Previous work assumes that gene regulation is
similar to biochemical reactions

von Dassow et al., Nature 406, 188 (2000)

Transcription and translation processes follow dose-response
curves.

d[prot] _ T [mRNA]" | prot]
48 unknown parameters. dt "™ K’ +[mRNA

T
Systematic search shows that 1 in 46 parameter combinations lead
to wild type final patterns.

The parameter combinations leading to wild type steady states are
distributed homogenously in the biologically relevant parameter
space.



We propose a model without any kinetic
parameters and a single timescale

Transcripts and proteins are either ON (1) or OFF(0).

The expression of a node at timestep t is given by a logical rule of the
expression of its effectors at time ¢-17.

Transcription depends on transcription factors; repressors are dominant.
o | = @ | —
t+1 t+1

Translation depends on the presence of the transcript.

G y—r{ oen

t t+1

Transcripts and proteins decay in one step if not produced.



Updating rules
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Rules for post-translational processes

PH; = PTC; and (HH; , or HH;

i+1

SMO; =not PTC; or HH; , or HH;

i+1

instantaneous

t+&
SMO!
A

CIA™ = CI' and (SMO! or hh'or hh;:l)
CIR!"' = CI| and not SMO! and not hh;_and not hh;

i+1



wg, PTC and SLP are more stable than
other proteins

wg!"' = (CIA; and SLP; and not CIR!) or
[wg; and (CIA; or SLP') and not CIR;]

Either of the activators can counter mRNA decay.

PTC!"' = ptc! or (PTC; and not HH , and not HH

i+1

Free PTC does not decay .

SLPit+l — SLPlt

SLP is a source in the segment
polarity network.




Start the model from an initial state giving
the prepattern of all nodes

Sl B b l l l l Parasegment with four cells
wg | | H Two cells of a previous/
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en .
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hh B N H Bl cell with node ON
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Wild type initial state: wg in the last cell of the parasegment,

en/hh in the first cell of the parasegment, ptc and ¢i complementary to en,
no proteins.



Within six steps the model reproduces the
wild type steady state
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Initial state steady state

The net effect of the interactions is enough to
capture the functioning of the network.

The kinetic details of the interactions can vary
as long as their overall effect is maintained —

robustness.




Building a “functional topology”

We propose a novel approach: integrate the Boolean rules into the

network to express function through topology.

The future expression of a node depends on a combination of the
expression of other nodes.

hh!"' = EN! and not CIR!

CIR
EN v ECR
— *~-—- -0
Introduce “complementary” nodes. \ T R
hh hh

CIR, = not CIR,
Associate pseudo-nodes to node combinations.
(ECR), = EN, and CIR,

The future expression of nodes depends on the expression of
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The functional graph reveals activating paths
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Activating paths determine
segment polarity

« en, EN, hh, HH

- ci, Cl, CIA, wg, WG, ptc, PTC



What happens if the components are
perturbed?

The most severe perturbation is caused by gene mutations.

To model a null mutation, we assume that the mRNA is kept OFF,
thus the protein cannot be translated.
The effects of the mutation propagate throughout the network.

mutant
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Modeling wg, en or hh mutations
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No segmentation, regardless of initial state: lethal mutation.



ptc mutation broadens the stripes
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The wg, en and hh stripes broaden, regardless of initial state.



c/ mutation can preserve the prepattern
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The effect of ¢i mutation depends on the initial state.
For wild type prepattern, the wg, en, hh stripes remain.



Model matches experimental results
on mutants

m m m

predicton forwg ~ momTTE O oECOCE
wild type ci mutant hh mutant

wg final

Gallet et al., Development 127, 5509 (2000)



Comparison between ¢/ and pfc mutants
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Tabata, Eaton, Kornberg, Genes & Development 6, 2635 (1992)



Sensitivity to initial states

Possible number of prepatterns for a single node: 16

H H H H H H H H
Il HE BN H EE B andcomplements
I H BN Il Bl N N
I

Total number of network-wide prepatterns: N, =16"

All initial states lead to steady states within 10-15 steps! -
robustness



How many initial states lead to the experimentally
observed wild type steady state?
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There are two other frequently occurring
steady states

Broader initiation of wg, en or hh leads to broad stripes.
Absence of wg leads to a state with no segmentation.
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This state has been observed in heat-shock experiments.
Gallet et al., Development 127, 5509 (2000)



The steady states can be determined
analytically from the Boolean rules

 Inthe stable state x;" =x!

« Usethefactthat SLP, =SLP, =0and SLP, =SLP, =1
The set of equations reduces to:

- wg, =wg, and not wg, and not wg,
wg, = wg, and not wg, and not wg,
Wg; = W8, Or wg;

. Wg, =Wwg, or wg,

( PTC, = (not wg, and not wg,) or (PTC, and not wg, and not wg,)

PTC, = (not wg, and not wg,) or (PTC, and not wg, and not wg,)
. PTC, =PTC, =1

Reflects the assumption of stability of wg and PTC.



Model's prediction for the only

possible stable patterns
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The latter states have very small probability.



How robust is the model to changes in the
basic assumptions?

1. Node expression decays in one step if not renewed.
Change: proteins decay in two steps; EN!"' =en! or en]”
Same steady states, only the path leading to them changes.
More overall stability.

2. wg and PTC expression is easier to maintain than others.
Change: wg and PTC decay if not renewed.
ci mutants have no segmentation if wg decays;
no wild type steady state if PTC decays.

The model can be modified to include different timescales for transcription,
translation, post-transcriptional modifications, mMRNA and protein decay.



Can we relax assumptions of time-
independence?
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Conclusions

Boolean modeling successfully reproduced all known patterns of the
segment polarity genes, both wild type and mutant.

Functional topology reveals the robustness of the segment polarity
network

. The kinetic details of the interactions do not matter.
. The wild type steady state is robust to perturbations.
. The function is maintained even for some gene mutations.

The model predicts the existence of three additional steady states,
and illustrates the crucial role played by the wingless and sloppy
paired genes.



