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SQUID Microscopy and Nanophysiometer
to monitor cellular dynamics and function

Franz J. Baudenbacher

Vanderbilt Institute for Integrative Biosystems
Research and Education (VIIBRE)
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Reductionism

Anatomy

Genome Protein Physiology

Organ
Cell

The Ultimate Forward Problem
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Start with the DNA sequence for a potassium
channel...

human Kv1.5

GCGGCCGCGCGGCTTTTTGACGTCAGGGCCAAGCGAGGGGATCGCGCCAGCAACCCCAGCTCTCCCCAGAGAGGGGCCGG
CCGACCGCTGGAGCGGAGCCTGACGCCAGGCGCCCGCGGAGCGTGAGTAGOGEGUCCEEGAGCCGGTCAGCTEGGEGCGECA
GCATGCCCTCTGCTCCCGCGCCATGGAGATCGCCCTGGTGCCCCTGGAGAACGGCGGTGCCATGACCGTCAGAGGAGGCG
ATGAGGCCCGGGCAGGCTGCGGCCAGGCCACAGGGEGEGAGAGCTCCAGTGTCCCCCGACGGCTGGGCTCAGCGATGGGCCC
AAGGAGCCGGCGCCAMNGGGECGCGCGCAGAGAGACCCGGACTCGGGAGTGCGGCCCTTGCCTCCGCTGCCGGACCCGGE
AGTGCGGCCCTTGCCTCCGCTGCCAGAGGAGCTGCCACGGCCTCGACGGCCGCCTCCCGAGGACGAGGAGGAMGANGGCG
ATCCCGGCCTGGGCACGGTGGAGGACCAGGCTCTGGGCACGGCGEGTCCCTGCACCACCAGCGCGTCCACATCAACATCTCC
GGGCTGCGCTTTGAGACGCAGCTGGCGCACCCTGGCGCAGTTCCCCAACACACTCCTGGGGCGACCCCGCCAAGCGCCTGCC
GTACTTCGACCCCCTGAGGAACCGAGTACTTCTTCGACCGCAACCGGCCCAGCTTCGACGGTATCCTCTACTACTACCAGT
CCGGGGGCCGCCTGCGAGGGETCARCGTCTCCCTGEACGTGTTCGCGGACGAGATACGCTTCTACCAGCTGGGGGACGAG
GCCATGGAGCGCTTCCGCGAGGATGAGGGCTTCATTAAAGAAGAGGAGAAGCCCCTGCCCCGCAMCGAGTTCCAGCGCCA
GGTGTGGCTTATCTTCGAGTATCCGGAGAGCTCTEGAGTCCGCGCGGECCATCGCCATCGTCTCGGTCTTGGTTATCCTCA
TCTCCATCATCACCTTCTGCTTGGAGACCCTGCCTGAGTTCAGGGATGAACGTGAGCTGCTCCGCCACCCTCCGGCGCCC
CACCAGCCTCCCGCGCCCGCCCCTGGGGCCAACGGCAGCGGGGETCATGGCCCCCGCCTCTGGCCCTACGGTGGCACCGCT
CCTGCCCAGGACCCTGGCCGACCCCTTCTTCATCGTGGAGACCACGTGCGTGATCTGGTTCACCTTCGAGCTGCTCGEGTGC
GCTTCTTCGCCTGCCCCAGCAAGGCAGGGETTCTCCCGGAACATCATGAACATCATCGATGTGEGTGGCCATCTTCCCCTAC
TTCATCACCCTGGGCACCGAACTGGCAGAGCAGCAGCCAGGGGGCGGAGGAGGCGGCCAGAATGGGCAGCAGGCCATGTC
CCTGGCCATCCTCCGAGTCATCCGCCTGGTCCGGEETGTTCCGCATCTTCAAGCTCTCCCGCCACTCCAAGGEGGCTGCAGA
TCCTGGGCAAGACCTTGCAGGCCTCCATGAGGGAGCTGGEGGCTGCTCATCTTCTTCCTCTTCATCGGGGTCATCCTCTTC
TCCAGTGCCGTCTACTTCGCAGAGGCTGACAACCAGGGAACCCATTTCTCTAGCATCCCTGACGCCTTCTGGTGGGCAGT
GGTCACCATGACCACTGTGGGCTACGEEGCGACATGAGCCCCATCACTGTTGCGGGCARGATCGTGGGCTCGCTGTGTGCCA
TCGCCGGGGTCCTCACCATTGCCCTGCCTGTGCCCGTCATCGTCTCCAACTTCAACTACTTCTACCACCGGGAAACGGAT
CACGAGGAGCCGGCAGTCCTTAAGGARAGAGCAGGECACTCAGAGCCAGGGGCCEGEECTGGACAGAGGAGTCCAGCGGAA
GGTCAGCGGGAGCAGGGEGATCCTTCTGCAAGGCTGGGGGGACCCTGGAGAATGCAGACAGTGCCCGAAGGGGCAGCTGCC
CCCTAGAGAAGTGTAACCGTCAAGGCCAAGAGCAACGTGGACTTGCGGAGGTCCCTTTATGCCCTCTGCCTGGACACCAGC
CGGGAAACAGATTTGTGARAGGAGATTCAGGCAGACTGGTGGCAGTGGAGTAGGGAATGCGGAGGCTTCTGAACATGGATA
TCTACATTATCCGCAGAGTATTTGACTCACTCCTCT
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Assemble the proteins
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And we solve the protein folding
problem...
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Insert the folded proteins into the membrane

(a) Voltage gated Na' channel protein

(b) Voltage gated Ca’* channel protein

{c) Voltage-gated K ‘channel protein

Voltage-gated Na* channel

Voltage-gated Ca** channel

Voltage-gated K* channel

3/7/2003 Bloomington 2003 6
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Compute how
the protein
conformation
depends upon
voltage or ligand
binding

3/7/2003 Bloomington 2003 7
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1 nanometer: Pore 1n a gated 1on channel

— 104 meters
1T pore

i neurotransmitter
gtsige =\ binding pocket

= = 10" meters Gk
inside
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10 micrometers: Cardiac cell diameter

4
1 O m ete rS R. V. Krstié, General Histology of the Mammal, Springer-Verlag, Berlin (1984)
—
—

—t— 109 meters
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Cardiac cell length

——— 1 04 m ete rs R. V. Krsti¢, General Histology of the Mammal, Springer-Verlag, Berlin (1984)
I
N

Muscle

-1 Lesil 7)Y Intercalated X
— A . . W . = ﬁ‘l
1T g\ < W ) A

Nucleus —_GieTin i

5 ¥

—t— 109 meters
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10 centimeters: The human heart

— 104 meters

—te 109 meters

3/7/2003 Bloomington 2003
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The Spatial and Temporal Scales
of Cardiac Electrodynamics

 Spatial Scale: 10°* in volume
— Sequence of the proteins that form those channels
— Nanometer pore of gated 1on channels

— Ten-centimeter diameter of the entire heart

e Temporal Scale: 10° in time

— Nanosecond conformational changes of protein channels
— One-second heart beat

— Many seconds of a complex arrhythmia

3/7/2003 Bloomington 2003 12
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Two Extremes: Models of Cardiac Activity

Einthoven
[ e triangle and
: the cardiac
- dipole

40 msec moment

LA T SRAVYTEWETSVEDY s witll il

Channel
kinetics from
patch clamp
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Solutions to the Forward Problem

— Single cell cardiac myocyte models do not
extrapolate to the whole heart

* Understand the dynamics, control structures
and functions of the smallest living unit

— “Instrumenting and Controlling the Single Cell”

3/7/2003 Bloomington 2003 14
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Action Potential Propagation

Inside of axon Extracellular

Fluid

Synapse - connection
from another nerve [Na+]: 15

Dendrites

Node of [K+]=150

Ranvier

[CI=9
[MISC =156

Cell Body
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S4 domain ——Subunit

S
P

Central
pore

Sodium Channel

Depolarized
- L}’ membrane

414 3.
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Simplified Hodgkin-Huxley

Positive

Sodium
Conductance Membrane
Voltage

Na* CONDUCTANCE
K* CONDUCTANCE

Presynaptic
Impulse Membrane
Capacitance

e
=)

Inward
Current

current

oCONDUCTANCE (mmho/em?)

05 1.0
MILLISECONDS

Guyton, Arthur C.; Textbook of Medical Physiology, 6™ ed.; 1981, W.B. Saunders, p.110
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Action Currents Fibers in conducting Media

ION CURRENT
IN MEDIUM

ion current (Nat) ¢ ¥ displacement current

4+ 1I0mV -50mV -90mV

E /——internol ion current
Z depolarized | depolarization Z

membrane front membrane

o SRR

——— e
\.__/ DIRECTION OF

PROPAGATION

resting

3/7/2003 Bloomington 2003 18



=

LIVING STATE PHYSICS GROUP

ENT OF PHYSICS AND ASTRONOM VERSITY

High Resolution Superconducting
Quantum Interference Device (SQUID)
magnetometers should allow us to study

weak, single-cell action currents by
means of their magnetic field.

3/7/2003 Bloomington 2003 19
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Combined Action Current and
Potential Measurements

@ LIVING STATE PHYSICS GROUP

AP Measured Electrically AC Measured Magnetically

Reference Off

| At Light On 10 min
Reference Off p M Light On 20 min
Light On 10 min i '/ Light On 30 min
Light On 20 min 1 J | Light On 40 min
Light On 30 min - Light On 50 min
Light On 40 min
Light On 50 min

[=]
T
-

Magnetic Field

Time (sec) Time (sec)
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Action Currents Fibers in conducting Media

ION CURRENT
IN MEDIUM

ion current (Nat) ¢ ¥ displacement current

4+ 1I0mV -50mV -90mV

E /——internol ion current
Z depolarized | depolarization Z

membrane front membrane

o SRR

——— e
\.__/ DIRECTION OF

PROPAGATION

resting
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Detectable Action Currents

Repolarization Depeolarization

PROPAGATION
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Antheridium

Main axis
internodes

= ‘\“\. NS
¥ Lateral ‘_,,.-—--\
internodes

L. succinctum C. corallina

Fig. 1.2 Sketches of growth habit of plants of the algae C. corallina
and Lamprothamnium succinctum.
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Conclusions: Magnetic Imaging of Algae
Action Currents

e The Action potential duration 1s increased and the
propagation velocity 1s reduce during light exposure.

e The change in 10nic transport kinetic could be attributed
to a Ca gated Cl channel. The Ca is taken up by PSII and
cases a reduction of Ca 1n the cytoplasm.

Baudenbacher, F., Fong, L.E.*, Thiel, G., Jazbinsek, V., Stampfl, A., Holzer, J. R.+, Trontelj, Z.,
Intracellular Axial Current in Chara corallina Reflects the Altered Kinetics of Ions in Cytoplasm under
the Influence of Light (to be submitted to Biophysical Journal)

3/7/2003 Bloomington 2003 24
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The Vanderbilt SQUID Microscope

@ LIVING STATE PHYSICS GROUP

25um Sapphire
Window

Lever-
Mechanism

Baudenbacher, F., Peters, N.T. , and Wikswo, J.P., Jr., High Resolution Low-Temperature Superconductivity
SQUID Microscopes for Imaging Magnetic Fields of Samples at Room Temperature, Review Scientific
Instruments, 73 (3), 1247-1254 (2002).
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Pickup Coil

@ LIVING STATE PHYSICS GROUP

Sapphire
—  Bobbin

250 — 500um

25um Nb Wire
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[ ]
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_— |

-
o
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Resistively Shunted 250 um diameter

Josephson Junction
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-
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=
=
=
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i

10 100
Frequency (Hz)

Fong, L. E.*, Holzer, J.R.+, Radparvar M., Baudenbacher F., Multiloop Low-Tc SQUID sensor for imaging
biomagnetic fields with submillimeter resolutions (to be submitted to Appl. Phys. Lett.)
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Berkeley
Neocera
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A Hall Sensor (77K)
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Environmental
fields
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Earthfield —p

Biomagnetic
fields

Urban noise =P

Lung particles

Screwdriver
@5m

Car@50m +I
-

I Human heart
Skeletal muscles

Fetal heart
Humaneye

Transistor, i
IC chip @ 2'm Human brain (o)

. . Human brain
Transistor die (response)

@1m
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10 centimeters: The human heart

— 104 meters

—te 109 meters

Courtesy Peter Hunter, Aukland University
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The Excitatory Sequence
AN

—IN

i BB
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3 Dimensional Tissue
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The Cardiac
Depolarization
Wave Front

* Activated cells
collectively form a
sheet that 1s a moving
3-D battery

* | mm thick

 Moving at ~1 m/sec

40MSEC.

Courtesy of Ron Selvester

3/7/2003 Bloomington 2003 KR



DEPARTMENT OF PHYSICS AND ASTRONOMY, VANDERBILT UNIVERSITY

@ LIVING STATE PHYSICS GROUP

FIELD POINT T

The uniform
double-layer model

sOLID ANGLE £ (7)

e Assumes | | VENTRICULAR
— Uniform thickness - N NP
. ’ 77 .~ DEPOLARIZATION

— Uniform strength YY), | WAVEFRONT

— Current perpendicular to
the wave front

* The potential V(r) 1s

determined by the current
dipole moment and the
S

~— IMPRESSED CURRENT ==

olid angle subtended by “X_-7 oensiTY J
the double-layer rim

Heart vector or dipole
moment versus time
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Getting closer

T %
B SEE
W e

)

35
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Simplify the Problem ...

3/7/2003 Bloomington 2003
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Langendorff perfused Isolated Rabbit Heart

F |

Bath

Current Injection
Electrode

Return
Electrode

3/7/2003 Bloomington 2003 37



Y

LIVING STATE PHYSICS GROUP

DEPARTMENT OF PHYSICS AND ASTRONOMY, VANDERBILT UNIVERSITY

3/7/2003

Measure the magnetic field !

Y
‘%

Isolated -
rabbit heart K

a =N
From heat / o heaf
exchanger S v,....;.q exchanger

‘__ L
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CCD-Camera

1200
Frames/sec

Laser Light g
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Combine Vm and net current
measurements:
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v
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Action Currents Fibers in conducting Media

ION CURRENT
IN MEDIUM

ion current (Nat) ¢ ¥ displacement current

4+ 1I0mV -50mV -90mV

E /——internol ion current
Z depolarized | depolarization Z

membrane front membrane

o SRR

——— e
\.__/ DIRECTION OF

PROPAGATION

resting
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Cardiac Bidomain

@ LIVING STATE PHYSICS GROUP

haSu Y. _ Intracellular
Unit Extracellular
e e Block —— Non-linear
Membr ane
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2-D Bidomain Equations

 Homogenized * Two nonlinear reaction-diffusion
» Coupled V. & V, equations
d*V; d*V, aVm
e — = m- 4, ionvm _Iz'
S’&.’C de + Szy dy2 ﬂ * [C dt _I_ J ( )]
d%V, d?V, dV;
ea:""“"""f": e S = — m_nl Jz’on Vm — Ie
Sexy + Sy = =B+ On" g + (Vi)

where z is along the fibers and vy is transverse; the anisotropy ratios
for the tissue conductivities in S/m are S;; = 0.2, S;, = 0.02,
Sez = 0.8, Sey = 0.2; the membrane capacitance is C, = 0.01

F /m?; and the ratio of cell surface area to volume is 3 = 0.2 x 10°
-1
m
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TRANSVERSE ANISOTROPY
ORTHOGONAL ANISOTROPY

INTRACELLULAR

INTRACELLULAR

EQUAL ANISOTROPIES

d) INTRACELLULAR !

MEMBRANE
NOMINAL ANISOTROPY e '
EXTRACELLULAR

INTRACELLULAR

ISOTROPIC

MEMBRANE INTRACELLULAR f

EXIRACELLULAR MEMBRANE

EXTRACELLULAR
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Information Content of the Magnetocardiogram

46
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Electrically and Magnetically Silent Current Sources

Wikswo, J. P. Barach, J. P. J. Theo. Bio. 95, 721-729
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Findings from SQUID Microscopy

* Magnetic mapping can provide high resolution images of
net action current 1n cardiac tissue.

Baudenbacher, F., Peters, N. T. *, Baudenbacher, P., Wikswo, J. P., High Resolution Imaging of Biomagnetic Fields
Generated by Action Currents in Cardiac Tissue using a LTS-SQUID microscope. Physica C 368, 24-31 (2002).

* We have found electrically silent currents.

 The MCG appears to arise from sheets of current || wave
front, not current dipoles L. wave front.

J.R. Holzer+, V. Y. Sidorov, L. Fong*, F. Baudenbacher, Magnetic and Fluorescent Imaging of Wave Front
Propagation in Cardiac Tissue reveal currents parallel to the wave front, (to be submitted to Biophysical Journal)
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 What fraction of cardiac electrical activity
results 1n electrically silent current patterns
that do not contribute to the
electrocardiogram?

* What role do steady currents that are
difficult to detect electrically play during

® ischemia?

3/7/2003 Bloomington 2003 49
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Solutions to the Forward Problem

* Develop and refine hierarchical multiscale
models to span the full range of space and time

— Single cell cardiac myocyte models do not

extrapolate to the whole heart

— “Instrumenting and Controlling the Single Cell”

3/7/2003 Bloomington 2003
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How can we understand the
associated with cellular function ?

1{1)§
Instrumenting
and Controlling The Single
Cell
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Can we use single cell as toxin detectors by
probing cellular function and dynamics?

CGan we develop High throughput High Content
Devices for Pharmaceutical Drug Screening?

Can we deyvelop;hand\held deviges for

environmental mguatQring?
. . —
diagnosis"
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Cell Metabolism

Glycogen

NAD+

NADPH *, e
Oxidase xx,‘\\b Qiﬂﬂu&,/ﬁ

Oxygen Heat
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Cell Based Biosensor as Generalized
Toxicity Sensor

* We do not measure the toxin itself. We are
measuring the impact of the toxin on cell
physiology by probing cell functions!

— Metabolic pathways
— Electrical Excitability

— Cell to Cell Communication ........
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How to can we build a High Gain
Amplifier?

* Single Cell Experiments

* Confined Extracellular Space

Monitor physiological events in real time
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Expected Acidification Rate
of a Single Cell ina 0.1 nL
Volume

Feedback — Closed Loop Control
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Discrimination

Discrimination Sensor Array

NanoPhysiometer

3/7/2003 Bloomington 2003
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-~ BioMEMS Device Fabrication

Mask Design -~ \

NI/ \ Exposed and Developed

[f‘ 11k \] Photo Resist

\ f‘;

\\ ;

\ L //;f
Positve Photoresist PDMS Casting
Cure and Release

Substrate
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Device Design and Fabrication

Fluidics Layer

Flexible PDMS Membrane
(Valve)

[1] S.R. Quake and A. Scherer, "From Micro to Nano Fabrication with Soft Materials", Science 290: 1536-40 (2000). I/

[2] M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S.R. Quake, "Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography", Science 288: 113-116 (2000).
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Experimental

@ LIVING STATE PHYSICS GROUP

Setup
o

kel 55 —_
Fluid and "
Valve Control
Lines

PDMS Device

Interdigitated
MicroElectrode
(IME) Array
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Third Generation of NanoPhysiometers

Counter Reference Media/cell delivery

@ LIVING STATE PHYSICS GROUP Courtesy of A Werdich & R. Reisserer

Working
electrodes
Cell delivery/disposal

Toxin channels
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Changing the Extracellular Volume...
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Electrochemical Detection

@ LIVING STATE PHYSICS GROUP
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Oxygen Respiration of a Single Cell 1in
the Cell Trar
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Oxygen Consumption by Sensing Electrod

Cell in Cell Trap

Courtesy R. Reisserer
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IDE Sensing Arrays

Iridium oxide coated wire electrode
response to serial additions of acid
and base within physiologically
relevant pH range

@ LIVING STATE PHYSICS GROUP
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Courtesy J. Ges & J. Greene
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Current Status - NanoPhysiometer

* Micro- and Nanosensors can be incorporated into small
sensing volumes

* Single cell oxygen respiration in sub-nanoliter volumes
demonstrated in NanoPhysiometer.

* High sensitivity: ~0.1-1 pmol of analyte detected
electrochemically.

* Fast response time: 30 ms (a few ms possible)

* Arrays of NanoPhysiometers will operate 1n parallel.
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How are metabolic and signaling
pathways coupled?
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Cardiac Cell Model
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Ion currents and 1on channel clones

Current ”/—J\/\/

sodium current
L-type calcium current
T-type calcium current
Na-Ca exchange -
| (4-AP-sensitive) A

| (Ca-activated) o
Ix, —A—
IKr
IKur
| orl
| (inward rectifier)
L L
| (pacemaker current)

|

Courtesy of Dan Roden

Probable clone
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Na-Ca exchanger
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HERG + MiRP1
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Myocardial Ischemia

 Manifestation

— Anoxia: imhibits aerobic respiration and
reduces intracellular ATP

— Acidosis: pH 7.5 to 6.5, reduces Na, Ca
conductivity by 25%, reduces upstroke
velocity, Vrest reduction by 3-5 mV

— Hyperkalemia: Reduces rest potential

Blockage in right D\~ S
coronary artery T & from 85 — 60 mV and causes a

| shortening of the Action Potential
adam.com Duration
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Combine NanoPhysiometers with fluorescence imaging!

Nanophysiometer

FIIIT\IIH

B Objective
Axiovert 135 TV 40x

Zeiss

- J/,

PDA 16x16, 17x17 mm? <>

QE 80 % (max)

Res 518 mA/W (800) mm . mm

SampR 1 kHz
Gain 108 V/A

3/7/2003

RH-237*

600 700
wavelength (nm

4 X 64 ch amplifier PC _
Gain 10, 50, 100 LabView
Cutoff 0.5 — 10 kHz

amplifier ADC
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Myocardial Ischemia

* NanoPhysiometers will allow us to measure the
dynamics associated with anoxia in cardiac
myocytes.

* Develop a model, which couples membrane
potential to intracellular ATP level
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Plans for the future

— SQUID Microscopy

— Information content and origin of biomagnetic fields in the brain for a
future brain machine interface.

— The integration of nanoscale magnetics with biology as a novel
technique for the detection, manipulation, and functional control of
single cells.

— Metabolism in cardica myocytes with a particular focus on ATP
depended transport across cell membranes and compartmentalization

— PicoCalorimeter to monitor phase transitions and heat generation of
single cells
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