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Stripes, Spots and Scrolls
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Overview

• Common processes underlying natural patterns
give rise to model equations capturing generic
features of pattern-forming systems

• Theoretical approaches accessible near onset,
but must resort to numerical tools and
experiments far from onset

• Need for high-fidelity scientific computation
to describe realistic physical systems as a
bridge between theory and experiment
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The Heart as a Physical System

• Sudden cardiac failure is the leading cause of death
in industrialized nations.

1000 deaths/day in North America

• Growing experimental evidence that self-sustained patterns
of electrical activity in cardiac tissue are related to
fatal arrhythmias.

• Goal is to use analytical and numerical tools to study the dynamics
of reentrant waves in the heart on physiologically realistic domains.

And ...

• The heart is an interesting arena for applying
the ideas of pattern formation.
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Scroll Waves in Anisotropic
Excitable Media

with Application to the Heart

with Prof. Andrew Bernoff, Harvey Mudd College
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Heart Physiology

Electrical Activity =⇒ Mechanical Function

From Textbook of Medical Physiology,

by Guyton and Hall

Seconds
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Heart Physiology (cont’d)

Tissue structure:

• 3d conduction pathway
with uniaxial anisotropy

• Propagation speeds:
c‖ = 0.5 m/s,
c⊥ = 0.17 m/s

From Textbook of Medical Physiology,

by Guyton and Hall From Streeter, et al., Circ. Res. 24, p. 339 (1969).
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Cable Theory

Electric potential propagation
in a neuronal cable:
Hodgkin and Rushton (1946),
Rall (1957,...)

τm∂V/∂t+RmIion

= λ2
m∂

2V/∂x2

Adapted from Mathematical Physiology, by Keener & Sneyd (1998).

Axial current : Ia = Ii + Ie

Transmembrane current : It = Iionic + Icapacitive + Iapplied

Transmembrane potential : V = Vi − Ve
Physical properties : Cm, Rm, ri, re, p, d

• Kirchoff’s law: Ii(x+ dx)− Ii(x) = Ie(x)− Ie(x+ dx) = −Itdx
• Conservation of charge: ∂Ia/∂x = 0

• Ohmic axial currents: Vi,e(x+ dx)− Vi,e(x) = −Ii,e(x)ri,edx
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Extension to the Heart

3d Cardiac Tissue

• Continuous approximation

. Bidomain: Intra/extracellular conductivities σi, σe

. Monodomain: σi = α σe

Ionic Modeling: INa+(V ), IK+(V ), ICa++(V ), . . .

• Quantitative modeling

. Hodgkin-Huxley (1952): Squid giant axon

. Noble (1960), Beeler-Reuter (1977), Luo-Rudy (1991, 1994), ...

• Reduced models: FitzHugh-Nagumo (1960), ...

Equations:

∂u

∂t
= ε

−1
f(u, v) +D∇2

u

∂v

∂t
= g(u, v)

f(u, v) = 3u− u3 − v

g(u, v) = u− δ

Notation:

Potential , V → u

Iion → f(u, v)

Gating variables → v

Physical parameters:

• ε: excitability
• δ: excitable/oscillatory
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Excitable Dynamics
Nullclines

ut = ε−1f(u, v) +D∇2u

vt = g(u, v)

Characterized by:

• Shape of nullclines (knees)

• Difference in time scales: ε� 1

• 4 stages: upstroke, excited,
refractory, recovering

Propagating pulse: 1d

Sima Setayeshgar, Princeton University Indiana University Biocomplexity Seminar 12



Birth of Spirals

(a) Propagating band

Ω+ : Excited

Ω− : Rest

• speed c = c(v)

• c(vf) = −c(vb)

(b) Disturbance (inhomogeneity):

• c(v) varies continuously
through zero:
c(vf) > 0 and c(vb) < 0

• Existence of pivot point:
c(v∗) = 0

Click for animation.

Reviews: Fife (1984), Keener and Tyson (1988), Cross and Hohenberg (1993)
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Birth of Spirals: Experiment

From W. F. Witkowski, et al.,
Nature 392, p. 78.

• Time spacing
between frames ∼ 5 ms

• Image size ∼ 5 cm

Click for animation.
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Big Picture

What is the mechanism of transition from ventricular tachychardia
to fibrillation? How can we control it?

Tachycardia: Fibrillation:

Courtesy of Sasha Panfilov, University of Utrecht

Click for animation.

Cartoon: Breakdown of single spiral to disordered state
resulting from various mechanisms of spiral instability.
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Focus

What is the role of geometry and anisotropy inherent in
the fiber architecture of the heart on scroll wave dynamics?

Previous Work:
A. T. Winfree, in Progress in Biophysics and Molecular Biology,
D. Noble et al. eds., (1997).

Numerical ‘‘experiments’’
In rectangular slab geometries:

• Panfilov, A. V. and Keener, J. P., Physica D 84, 545 (1995):
Scroll wave breakup due to rotating anisotropy.

• Fenton, F. and Karma, A., Chaos 8, 20 (1998): Rotating anisotropy leading
to ‘‘twistons’’, eventually destabilizing scroll filament.

Analytical work
Dynamics of scroll waves in isotropic excitable media, beginning with:

• Keener, J. P., Physica D 31, 269 (1988).

• Biktashev, V. N., Physica D 36, 167 (1989).
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Rotating anisotropy

from Streeter, et al., Circ. Res. 24, p. 339 (1969).

Diffusion constants:

D‖ > D⊥1 ∼ D⊥2

D⊥1
0 0

0 D‖ 0

0 0 D⊥2



D‖ 0 0

0 D⊥1
0

0 0 D⊥2


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Coordinate System

Natural coordinate system defined by fiber direction:

 x̃
ỹ
z̃


︸ ︷︷ ︸
‘new’

=

 1 0 0
0 α 0
0 0 1


︸ ︷︷ ︸

S

 cos Θ(z) sin Θ(z) 0
− sin Θ(z) cos Θ(z) 0

0 0 1


︸ ︷︷ ︸

R

 x
y
z


︸ ︷︷ ︸

‘old’

S : rescaling, according to 2d anisotropy α ≡ (D⊥1/D‖)
1/2

R : rotation, according to fiber direction Θ(z)
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Governing Equations

Governing reaction-diffusion equation in new coordinates:

~ut = ~f(~u) +D‖ ·∆2~u+D⊥2 · ~uzz

+D⊥2 ·
{

Θ
′2
[
∂2

∂θ2
+ (α

2 − 1)x
2 ∂

2

∂y2
+

(
1

α2
− 1

)
y

2 ∂
2

∂x2

]
~u

− 2Θ
′
[
∂

∂θ
+ (α− 1)x

∂

∂y
−
(

1

α
− 1

)
y
∂

∂x

]
∂~u

∂z

− Θ
′′
[
∂

∂θ
+ (α− 1)x

∂

∂y
−
(

1

α
− 1

)
y
∂

∂x

]
~u

}
,

Only depends on fiber rotation rate, Θ′ (no explicit dependence on Θ(z)).

For FitzHugh-Naguomo (FHN) kinetics:

~u =

(
u

v

)
, ~f =

(
−u3 + 3u− v
ε(u− δ)

)
, D‖ =

(
D‖ 0

0 0

)
, etc . . .
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Peskin Fiber Distribution Profile

Measured

from Streeter, et al., Circ. Res. 24, p. 339 (1969)

Derived

from Peskin, et al., Comm. on Pure and Appl.

Math 42, p. 79 (1989)

Θ(z) = sin−1 (z/rL)

r = cutoff parameter
2L = thickness of ventricular wall
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Perturbation Analysis

Consider the limit of ‘small rotating anisotropy’ :

• Non-dimensional small parameter:

ε
2

=
D⊥2

ω0L2

1

r2 − 1

(
γ2

4
− 1

) (
D⊥2
ω0

)1/2

: transverse diffusion length, `

2L : thickness of ventricular wall
r : cutoff parameter

γ = α+ 1/α : ‘anisotropy’

• Seek a solution in the form of:

~u = ~U0(r, θ − ω0t + Θ(z) + φ(z, t)) + ε
2
~u2,

where ~U0(r, θ − ω0t) satisfies:

O(1) :
∂ ~U0

∂t
= ~f(~U0) +D‖ · ∆2~U0

• Scaling assumptions: ~u2 ∼ O(1), φz ∼ O(ε), φt ∼ O(ε2).
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Validity of Perturbation Analysis?

Q: What is the value of the small parameter
for the human ventricle?

Parameter Value

D‖ 1.0 cm2 s−1

D⊥ 0.1 cm2 s−1

ω0 12.6 s−1

∆Θ 180◦

2L 1.0 cm
r 1.5

ε2 ∼ 0.45
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Scroll Twist

For a straight scroll:

w(z, t) =

(
∂N̂

∂z
× N̂

)
·ẑ N̂ = ~∇u/|~∇u|

normal to tip trajectory at tip

In new coordinates:

w(z, t) = φz(z, t) + Θ′(z).

In old coordinates:

w(z̃, t) = Θ
′
(z̃)−

2α
(
φz̃(z̃, t) + Θ′(z̃)

)
(α2 − 1) cos [2 (ω0t− φ(z̃, t)−Θ(z̃))] + (1 + α2)

.
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Phase Equation

At O(ε2), introducing Φ(z, t) ≡
(
c1
c2

) [
φ(z, t)−

(
γ
2 − 1

)
Θ(z)

]
:

Φt − Φ2
z − Φzz = A(γ, r)F (z; r), −1 < z < 1

Burgers’ equation, with forcing given by fiber rotation:

• F (z; r) = 1−1/r2

1−(z/r)2
, A(γ, r) = Ã

(
γ2

4 − 1
)

1
r2−1

, Ã =
(
c1
c2

)2 (
4a1
c1
− 1
)

• (ai, ci) given by inner products from the solvability condition

Seek asymptotic and numerical solutions, using constant frequency-shift
ansatz:

Φ(z, t) =
∫ z

−1

k(z′)dz′ + λt+ Φ0
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Twist-dominated Regime: Φzz � Φ2
z

Formally valid for: |A| � 1

Cole-Hopf transformation: k(z) = ψz(z)/ψ(z),

d2ψ/dz2 + [−λ− V (z)]ψ = 0, V (z) = ∓A(γ, r)F (z; r).

Ground state (smallest |λ|) determined by potential in the vicinity of its minimum:

Negative forcing: A < 0

1d harmonic oscillator equation, λ determined by behaviour at the origin:

λ0 = −Ā/r2
, λ1 = −Ā1/2

/r
2

Ā = Ã
(
γ

2
/4− 1

)

Positive forcing: A > 0

Airy equation, λ determined by behaviour at boundaries:

λ0 = Ā/(r
2 − 1), λ1 = η

(
2Ā
)2/3

/(r
2 − 1)

4/3

where η is the first zero of Ai′(z).
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Twist-dominated Regime: Φzz � Φ2
z (cont’d)

A > 0: Formation of large twist in boundary layer in bulk
A < 0: Expulsion of large twist from bulk to boundaries
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Old versus New: Filaments

Old Coordinates: New Coordinates:

Assuming:

• Constant fiber rotation rate: Θ′ = constant

• Simple (straight, untwisted) scroll as initial conditions in new coordinates

• No-flux or periodic at vertical boundaries at vertical boundaries

Dynamics reduces to two dimensions:
Helical buckling ←→ Motion of spiral center.
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Relevance?

Henzi, et al. Can. J. Phys. 68, 683 (1990):

α = 1: Helical buckling (‘‘sproing instability’’) for twist > twist∗

Tip Trajectory Scroll Period

What about α 6= 1 ???
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Filament motion
Additional coordinate transformation:

x → x−Xc(t),

y → y − Yc(t),
∂

∂t
→

∂

∂t
+
dXc

dt

∂

∂ x
+
dYc

dt

∂

∂ y
,

Phase equation:

φT = Θ
2
Z

[
c3(α) + r1

(
1

α2
Y

2
c + α

2
X

2
c

)]
Dynamics of the center:

d

dT

(
Xc

Yc

)
= Θ

2
Z

(
µ1 µ2

µ3 µ4

)
︸ ︷︷ ︸

M

(
Xc

Yc

)

where µi = µi(α):

µ1(1) = µ4(1) = t1

µ2(1) = −µ3(1) = t2.

with:

t1 =
〈
~̃Yx, D⊥2 · x~U0x

〉
=
〈
~̃Yy, D⊥2 · y~U0y

〉
, etc.

r1 =
〈
~̃Y0, D⊥2 · ~U0xx

〉
=
〈
~̃Y0, D⊥2 · ~U0yy

〉

Notes:

• Symmetry: α⇐⇒ 1/α
• At O(ε2) with φz = 0: Motion of center is decoupled from dynamics of phase.
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Motion of center/Helical buckling

Dynamics of spiral center governed by eigenvalues of M :

~Rc(T ) = C+~v+e
λ+T + C−~v−e

λ−T

No anisotropy: α = 1

λ± = t1 ± it2

• Stability is determined by t1, depends on reaction kinetics only.

• At O(ε2), Θz determines only the scaling of filament dynamics.

Weak anisotropy: α− 1 ≡ δ, |δ| � 1

λ± ≈ t1 ±
√
−t22 + 4δ2 (B2 − A2)

• Rotating anisotropy can lead to change in stability! (Necessary condition: B > A.)

Dependence on reaction kinetics of
• α = 1: Existence of a finite twist threshold to buckling
• α 6= 1: Destabilizing or restabilizing role of rotating anisotropy
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Summary

The heart is an important physiological system
that is amenable to physical analysis.

What has been done:

• Extension of asymptotics of scroll waves to anisotropic media,
verified by numerics:

. Forced Burgers’ equation for phase dynamics a

. Stationary twist solutions for realistic fiber distribution profile a

Rotating anisotropy generates twist: Destabilizing (‘‘sproing instability’’)
or restabilizing role of cardiac tissue structure on dynamics of scrolls depends
on electrophysiology. b

Extensions:

• Numerical verification of change in stability of scroll filament
due to rotating anisotropy

• Extension to bidomain description

a : Setayeshgar and Bernoff, Phys. Rev. Lett. 88, 2002. b : Setayeshgar and Bernoff, in preparation.
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Summary (cont’d)

• Numerical sproing bifurcation diagram with rotating anisotropy
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Numerical Simulation of 3d
Propagation

in Myocardium

with Xiujiang Li, graduate student in Chemical Engineering,
Princeton University
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From Toy to Fully Realistic Ventricular Modeling

Rectangular slab

From J.P. Keener, et al., in Cadiac Electrophysiology, eds.
D.P. Zipes et al., (1995).

Intact ventricles, using
physiological data

Courtesy of UCSD Cardiac Mechanics Group

• Complement experiments

• Systematic studies of electrophysiology on
physiologically realistic domains

• Better defibrillation protocols, drug therapy
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Fiber Architecture Modeling: Dissection Results

C. E. Thomas (1957)
. Nested, layered fiber surfaces
. Complete, qualitative description
. Beautifully hand-illustrated!

D. Streeter et al. (1969, 1978)
. Measurement of fiber angle distribution
. Fiber trajectories = geodesics!

‘‘Cylinder’’ of the Left Ventricle

From C. E. Thomas, Am. J. of Anatomy (1957).
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Fiber Architecture Modeling: Peskin derived model

C. S. Peskin: Comm. on Pure and
Appl. Math 42, p. 79 (1989)

What goes in:

• Stress: σij = −pδij + Tτiτj

• (Near) mechanical equilibrium:
∂σij/∂xj = 0

• Design criterion: ~∇ · ~τ = 0

What comes out:

• Fiber surfaces: nested ‘‘toroids’’

• Fiber paths:
approximate geodesics

• Fiber angle distribution:
in good agreement
with dissection results!

Fiber Surfaces

Sima Setayeshgar, Princeton University Indiana University Biocomplexity Seminar 36



Minimally realistic fiber architecture

Nested cone geometry

Computation is reduced to that in a rectangular box
by working in spherical polar coordinates.

Fibers in

Fibers out
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Preliminary Results

This approach motivated by:

• Numerical simulation severely
restricted by sharpness of
action potential

• Need for high fidelity
numerical experiments

• Systematic parameter studies

• Dynamics of scrolls on
spheres, see

. Chavez, F., et al.,
Chaos 11, 757 (2001).
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