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I. Cancer and the tumor growth model of J. Folkman.
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Metastasis

From Eckhart, Hosp. Pract. 1999
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Folkman’s experimental evidence, (Sci. Am.,1976)
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II. Other “developmental” phenomena.
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A. Mammary gland development.
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Schematics of mammary gland development

(From Wiseman and Werb, 2000)
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(From Wiseman and Werb, 2002.).  Fine structure of tree branching.
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From Silberstein (2001)
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C. Development of the optic nerve.
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III. The biochemistry of the onset of angiogenesis
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Cell to cell signaling

From Eckhart, Hosp. Pract. 1999
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Inhibition pathways

From Eckhart, Hosp. Pract. 1999
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IV. The role of chemical kinetics
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1. VEGF signals EC expression of protease:

V +Re

k1

�
k−1

{ReV }

Y + {ReV }
k2−→ mC +Re

2. Angiostatin acts as a direct protease inhibitor:

Cact +A
νe

� CI

3. Proteolysis of fibronectin by active protease:

Cact + F
k3
�

k−3

{CactF}

{CactF}
k4−→ Cact + F ′
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1. Protease mass balance:

[C] = [Cact] + [CI ] + [{CactF}].

2. MM hypothesis for VEGF signaling and for fibronecin
proteolysis:

[{ReV }] = [Re][V ]/K1
m,

[{CactF}] = [Cact][F ]/K2
m.

Note: One molecule of VEGF yields m molecules of C per cell cycle
(amplification). In fact; m=m([V])!!)
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Notation to follow: For the EC reaction: K1
m = (k2[Y ] + k−1)/k1

and K1
cat = k2[Y ]δ where δ is the number of receptors per

endothelial cell.

This makes EC density proportional to receptor density.

For the last reaction pair,K2
m = (k4 + k−3)/k3 and K2

cat = k4.
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A segment of capillary wall of fixed length L on the x axis at y = 0.
A tumor is located at y = `.
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Notation for the capillary wall:

v(x, t) = angiogenic factor, V ,

c(x, t) = total available proteolytic enzyme, C,

ca(x, t) = free active proteolytic enzyme, Cact,

ci(x, t) = inhibited proteolytic enzyme, CI ,

c̃a(x, t) = total available active enzyme, C̃act,

f(x, t) = fibronectin, F ,

a(x, t) = angiostatin as inhibitor, A,

η(x, t) = endothelial cell density.

38



In the ECM, the notation becomes:

V (x, y, t) = angiogenic factor, V ,

C(x, y, t) = proteolytic enzyme, C,

Ca(x, y, t) = free active proteolytic enzyme, Cact,

Ci(x, y, t) = inhibited proteolytic enzyme, CI ,

C̃a(x, y, t) = total available active enzyme, C̃act,

F (x, y, t) = fibronectin, F ,

A(x, y, t) = angiostatin as inhibitor, A,

N(x, y, t) = endothelial cell density.
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A. Kinetic equations in the capillary

Mass conservation yields:

ci = νeιaca, c̃a = c− ci = ca + caf/K
3
m.

With V 1
max = K1

catη0, mass action gives:

∂v

∂t
= − V 1

maxv

K1
m + v

η

η0
+ σ1

η

η0
+ ν1

∂V

∂y
(x, 0, t)− µ1v

∂c

∂t
=

mV 1
max v

K1
m + v

η

η0
− µ2c

∂a

∂t
= ar(x, t) + σ2

η

η0
− µ2a

∂f

∂t
=

4
Tf

(
1− f

f0

)
f
η

η0
− K2

catc̃af

K2
m + f
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If v(x, 0) = c(x, 0) = a(x, 0) = ar = 0, f(x, 0) = f0, then the
dynamics is driven by the flux term in vt, namely ν1Vy(x, 0, t).

Here ar(x, t) = angiostatin source term. This is assumed constant
and non-zero for the “treatment” phase of the simulations.
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B. Kinetic equations in the ECM

Mass conservation again:

Ci = νeIaCa, C̃a = C − Ci = Ca + CaF/K
2
m.

Again mass action considerations yield:

∂V

∂t
= ∇ · (DV ∇V )− V 1

max V

K1
m + V

N

η0
+ σ1

N

η0
− µ1V + Vr(x, y, t)

∂C

∂t
=

mV 1
max V

K1
m + V

N

η0
− µ2C

∂A

∂t
= ∇ · (DA∇A) + σ2

N

η0
− µ3A + ar(x, t)

(
1− F

F0

)
∂F

∂t
= DF ∆F +

4

TF

(
1− F

F0

)
F − K2

catC̃aF

K2
m + F

(Vr(x, y, t) is a source term for other potential ECM sources of
growth factor such as stem cells, fibroblasts, macrophages etc.)
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C. Coupling between capillary and ECM equations

1. Cell movement into the ECM from the capillary:

N(x, 0, t) = ψ1η(x, t)H(f1 − f(x, t)).

2. Flux of VEGF and angiostatin at the capillary:

DV (x, 0, t)
∂V (x, 0, t)

∂y
= ρ1(V (x, 0, t)− v(x, t)),

DA(x, 0, t)
∂A(x, 0, t)

∂y
= ρ2(A(x, 0, t)− a(x, t)).
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V. The role of reinforced random walks.
A. Random walk equations in the capillary

For the endothelial cell movement equation,

∂η

∂t
= Dη

∂

∂x

(
η

∂

∂x

(
ln

η

τcap(c̃a, f)

))
.

Here τcap(c̃a, f) is the probability transition function (PTF). EC is

movement c̃a, f dependent and is (to a point) up the c̃a gradient and

down the f gradient.

A simple PTF is τcap(c̃a, f) = c̃a
γ1f−γ2 . We molify this a bit to avoid

the zeros of (τ).

A better model is: τcap(c̃a, f) = c̃a
γ1e−γ3c̃a(f(1− f/f0)

γ2 .
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B. Random walk equations in the ECM

Cells will proliferate once they reach the ECM:

∂N

∂t
= DN∇ ·

[
N∇ ln

(
N

τecm(C̃a, F )

)]
+

{
N

[
θ1

(
1− N

η0

)
+ G1(C̃a)

∂C̃a

∂t

]
− µ1N

}
Proliferation of EC occurs only near the tips of growing capillaries.

The PTFs, τcap, τecm, are of the same form.

Cell proliferation responds to protease biphasically. That is,
G(X) = Θ′(X)

1+Θ(X) where Θ(z) is biphasic:
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VI. Boundary and initial conditions.

Normalizations: η0 = f0 = F0 = 1.

Initial conditions in the capillary:

η(x, 0) = 1, v(x, 0) = 0, c(x, 0) = 0,

a(x, 0) = 0, ca(x, 0)= 0, f(x, 0) = 1.

Initial conditions in the ECM:

N(x, y, 0) = 0, V (x, y, 0) = 0, C(x, y, 0) = 0,

A(x, y, 0) = 0, Ca(x, y, 0)= 0, F (x, y, 0) = 1.
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Boundary conditions away from the tumor surface:

At the capillary ends, y = 0, and x = 0, L:

η
∂

∂x

(
ln

η

τcap

)
= 0.

In the ECM at x = 0, L with 0 < y ≤ `

N
∂

∂x

(
ln

N

τecm

)
= 0.
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No flux conditions at x = 0, L:

DV ∂xV (0, y, t) = DV ∂xV (L, y, t) = 0,

DF ∂xF (0, y, t) = DF ∂xF (L, y, t) = 0,

DA∂xA(0, y, t) = DA∂xA(L, y, t) = 0.

At the tumor, y = `, a proposed mechanism for EC penetration is:

−DNN
∂

∂y

[
ln

(
N

τecm

)]
+ µ′1N = 0.

For angiostatin and fibronectin, no flux conditions:

DA∂yA(x, `, t) = 0, DF ∂yF (x, `, t) = 0,
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The growth factor to the ECM from the tumor is controlled by the
flux:

DV
∂V (x, `, t)

∂y
= V0[1− cos(2πx/L)]β1e−Θ1t.

1/Θ1 is the relaxation time for the avascular tumor’s capacity to
supply growth factor.
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VII. Some illustrative computations.

Two cases for the angiostatin:

A. ar(x, t) = 0, no therapeutic agent present.

B. ar(x, t) = A0 > 0 agent uniformly distributed in the circulatory

system.

We took Θ1 = 0. That is, we assumed infinite tumor capacity to supply

growth factor at a fixed rate.

The model involves 67 biological and empirical parameters. Some of

them (enzyme constants, cell movement constants, protein diffusion

constants) were found in the literature. Others were guesses or, in the

absence of other information, set to zero or unity where appropriate.

The proliferation sensitivity constant was adjusted to give tip

proliferation. (Changing this constant also changes the tip speeds. Low

sensitivity slows the tip speed while very high sensitivity causes

singularities in the EC density.)
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Results and conclusions:

I. No angiostatin case:

A. The onset of sprouting time and the onset of vascularization
time, when scaled up to one or two mm. agree with the
experimental results of Folkman et. al. as well as with
CAM assay experiments.

B. The channel widths (6-10 µmm) are the same order of
magnetude as for capillary diameters.

C. EC proliferation is a maximum a little behind the moving
tip.

D. Tip speed increases as the forming capillary approaches the
tumor source.

E. The model predicts the onset of sprouting without EC
movement into the ECM when one allows for protease
diffusion in the ECM.
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Travel times and tip speeds
Distance Extrap. Extrap.

from times times

capillary Time Mean in days in days

to tumor in velocity for for

in microns hours (mm/day) 1 mm 2 mm

0.00 3.49 5.817 11.633

2.50 3.74 0.242 6.817 13.633

5.00 3.88 0.436 7.317 14.633

7.50 3.99 0.545 7.650 15.300

10.00 4.09 0.580 7.900 15.800

12.50 4.18 0.703 8.100 16.200

15.00 4.25 0.831 8.267 16.533

17.50 4.32 0.914 8.410 16.819

20.00 4.38 1.015 8.535 17.069

22.50 4.43 1.015 8.646 17.291

( ` = 25µmm, L = 50µmm)
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Fibronectin density in the capillary
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II. Angiostatin case with a large equilibrium constant:

A. The opening from the mother capillary closes.

B. The EC density in the daughter capillary drops.

C. The tip retreats and the channel closes.

D. It takes much longer for the channel to close completely
than for the EC density to fall to negligible values.
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Cell density in the capillary
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Fibronectin density in the capillary
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Smiley’s simulations

a. Two diffusible paths.

b. EC probability transition function isgrowth factor (not
protease) dependent.

c. Variable EC/protease response to growth factor.

d. Fibronectin PTF has form F (1− F ) so that EC probability
density will tend to aggregate along the channel wall.
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T= 9.09 hours
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EC and GF level sets

Solid lines correspond to GF level sets, dashed lines to EC level
sets.
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VIII. Work in progress and future directions.

1. Model adapts other inhibitor pathways:

a. Inhibitors which block capillary invasion of ECM.

b. Inhibitors which limit EC proliferation (endostatins).

c. Inhibitors which bind to VEGF or its receptors.

2. Modeling ideas can be used to model

a. the role of plasminogin/plasmin in angiogenesis.

b. the role of growth factor released by ECM stem cells in response

to tumor necrotic factors (TNF’s),

74



3. The model extends to other cell types such as:

a. mast cells which respond to TNF’s by expressing heparin, an

FGF stabilizer.

b. machrophages, transformers of hypoxic factors into growth

factors.

c. pericytes, regulators of the capillary wall thickness and tissue

remodeling.

d. fibroblasts which maintain ECM protein.

4. Test the model against laboratory experiments.

5. Develop software for a 2d-3d version of the model.

75


