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SQUID Microscopy and Nanophysiometer
to monitor cellular dynamics and function

Franz J. Baudenbacher

Vanderbilt Institute for Integrative Biosystems 
Research and Education (VIIBRE) 
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Reductionism

Anatomy
PhysiologyGenome Protein

Organ

Cell

The Ultimate Forward Problem
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Start with the DNA sequence for a potassium 
channel…
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Assemble the proteins
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And we solve the protein folding 
problem…



3/7/2003 Bloomington 2003 6

LIVING STATE PHYSICS GROUP
DEPARTMENT OF PHYSICS AND ASTRONOMY,  VANDERBILT UNIVERSITY

Insert the folded proteins into the membrane

Voltage-gated Na+ channel

Voltage-gated Ca++ channel

Voltage-gated K+ channel
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Compute how 
the protein 

conformation 
depends upon 

voltage or ligand
binding
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1 nanometer: Pore in a gated ion channel

10-9 meters

104 meters
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10 micrometers: Cardiac cell diameter

10-9 meters

104 meters
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100 micrometers: Cardiac cell length

10-9 meters

104 meters

s02749s02735
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10 centimeters: The human heart

10-9 meters

104 meters

Courtesy Peter Hunter, Aukland University
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The Spatial and Temporal Scales
of Cardiac Electrodynamics

• Spatial Scale: 1024 in volume
– Sequence of the proteins that form those channels
– Nanometer pore of gated ion channels
– Ten-centimeter diameter of the entire heart

• Temporal Scale: 109 in time
– Nanosecond conformational changes of protein channels
– One-second heart beat
– Many seconds of a complex arrhythmia
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Two Extremes: Models of Cardiac Activity

Einthoven
triangle and 
the cardiac 
dipole 
moment

Channel 
kinetics from 
patch clamp
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Solutions to the Forward Problem

• Develop and refine hierarchical multiscale
models to span the full range of space and time
– Single cell cardiac myocyte models do not 

extrapolate to the whole heart
• Understand the dynamics, control structures 

and functions of the smallest living unit
– “Instrumenting and Controlling the Single Cell”
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Action Potential Propagation
Extracellular

Fluid
Inside of axon

[Na+]=15 [Na+]=145

[K+]=150 [K+]=5

[MISC+]=5

[Cl-]=9 [CL-]=125

[MISC-]=156 [MISC-]=30

v=-70mV v=0V
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Action Potential Propagation

Sodium Channel
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Simplified Hodgkin-Huxley

Sodium 
Conductance

Potassium 
Conductance

Guyton, Arthur C.; Textbook of Medical Physiology, 6rd ed.; 1981, W.B. Saunders, p.110
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Action Currents Fibers in conducting Media
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High Resolution Superconducting 
Quantum Interference Device (SQUID) 
magnetometers should allow us to study 

weak, single-cell action currents by 
means of their magnetic field.
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Combined Action Current and 
Potential Measurements

AP Measured Electrically AC Measured Magnetically
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Action Currents Fibers in conducting Media
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Detectable Action Currents
DepolarizationRepolarization
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Conclusions: Magnetic Imaging of Algae 
Action Currents

• The Action potential duration is increased and the 
propagation velocity is reduce during light exposure.

• The change in ionic transport kinetic could be attributed 
to a Ca gated Cl channel. The Ca is  taken up by PSII and 
cases a reduction of Ca in the cytoplasm. 

Baudenbacher, F., Fong, L.E.*, Thiel, G., Jazbinsek, V., Štampfl, A., Holzer, J. R.+, Trontelj, Z., 
Intracellular Axial Current in Chara corallina Reflects the Altered Kinetics of Ions in Cytoplasm under 
the Influence of Light (to be submitted to Biophysical Journal)
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25µm Sapphire 
Window

Lever-
Mechanism

The Vanderbilt SQUID Microscope

Baudenbacher, F., Peters, N.T. , and Wikswo, J.P., Jr., High Resolution Low-Temperature Superconductivity 
SQUID Microscopes for Imaging Magnetic Fields of Samples at Room Temperature, Review Scientific 
Instruments, 73 (3), 1247-1254 (2002).
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Pickup Coil

25µm Nb Wire

Sapphire 
Bobbin

250 – 500µm
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Fong, L. E.*, Holzer, J.R.+, Radparvar M., Baudenbacher F.,  Multiloop Low-Tc SQUID sensor for imaging 
biomagnetic fields with submillimeter resolutions (to be submitted to Appl. Phys. Lett.)
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500 µm diameter
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Berkeley
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Vanderbilt 
SQUID 
Microscope
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10 centimeters: The human heart

10-9 meters

104 meters

Courtesy Peter Hunter, Aukland University
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The Excitatory Sequence

s00003
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3 Dimensional Tissue
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The Cardiac 
Depolarization 

Wave Front

• Activated cells 
collectively form a 
sheet that is a moving 
3-D battery 

• 1 mm thick
• Moving at ~1 m/sec

Courtesy of Ron Selvester
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The uniform 
double-layer model

• Assumes 
– Uniform thickness
– Uniform strength
– Current perpendicular to 

the wave front
• The potential V(r) is 

determined by the current 
dipole moment and the 
solid angle subtended by 
the double-layer rim

Heart vector or dipole 
moment versus time

s00021
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Getting closer ...
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Simplify the Problem ...
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Langendorff perfused Isolated Rabbit Heart

Bath
Current Injection 
Electrode

Return 
Electrode
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Measure the magnetic field !
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Experimental Setup - Optical Imaging

Laser Light

CCD-Camera
1200 

Frames/sec

Heart
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Courtesy of J Holzer

Combine  Vm and net current 
measurements:

Point electrode stimulation

Fiber 
direction
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Action Currents Fibers in conducting Media
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Cardiac Bidomain

Intracellular
Unit
Block Non-linear

Membr ane

Extrace llular
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2-D Bidomain Equations
• Homogenized
• Coupled Vi & Ve

• Two nonlinear reaction-diffusion 
equations

s1350
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Information Content of the Magnetocardiogram
The Apex
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Electrically and Magnetically Silent Current Sources

Wikswo, J. P. Barach, J. P. J. Theo. Bio. 95, 721-729
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Findings from SQUID Microscopy

• Magnetic mapping can provide high resolution images of 
net action current in cardiac tissue.

• We have found electrically silent currents.

• The MCG appears to arise from sheets of current || wave 
front, not current dipoles ⊥ wave front. 
J.R. Holzer+, V. Y. Sidorov, L. Fong*, F. Baudenbacher, Magnetic and Fluorescent Imaging of Wave Front 
Propagation in Cardiac Tissue reveal currents parallel to the wave front, (to be submitted to Biophysical Journal)

Baudenbacher, F., Peters, N. T. *, Baudenbacher, P., Wikswo, J. P., High Resolution Imaging of Biomagnetic Fields 
Generated by Action Currents in Cardiac Tissue using a LTS-SQUID microscope. Physica C 368, 24-31 (2002).
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• What fraction of cardiac electrical activity 
results in electrically silent current patterns 
that do not contribute to the 
electrocardiogram?

• What role do steady currents that are 
difficult to detect electrically play during 
ischemia?
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Solutions to the Forward Problem

• Develop and refine hierarchical multiscale
models to span the full range of space and time
– Single cell cardiac myocyte models do not 

extrapolate to the whole heart
• Understand the dynamics, control structures 

and functions of the smallest living unit
– “Instrumenting and Controlling the Single Cell”
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How can we understand the dynamics
associated with cellular function ?

Quantitative integrative physiology on 
the single cell level

BioMEMS for 
Instrumenting

and Controlling The Single 
Cell
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Can we use single cell as toxin detectors by 
probing cellular function and dynamics?

High-Content Toxicology Screening Using 
Massively Parallel, Multi-Phasic Cellular 

Biological Activity Detectors

Can we develop High throughput High Content 
Devices for Pharmaceutical Drug Screening?
Can we develop hand held devices for 
environmental monitoring?

Can we develop devices for point of care 
diagnosis?
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Cell Physiology 
as a linked 
Network 

of Metabolic 
and Signaling 

Pathways



3/7/2003 Bloomington 2003 54

LIVING STATE PHYSICS GROUP
DEPARTMENT OF PHYSICS AND ASTRONOMY,  VANDERBILT UNIVERSITY

Cell Metabolism
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Cell Based Biosensor as Generalized 
Toxicity Sensor

• We do not measure the toxin itself. We are 
measuring the impact of the toxin on cell 
physiology by probing cell functions!

– Metabolic pathways
– Electrical Excitability
– Cell to Cell Communication ……..

Intrinsic amplification
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How to can we build a High Gain 
Amplifier? 

Size does Matter!

• Single Cell Experiments
• Confined Extracellular Space

Monitor physiological events in real time
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Expected Acidification Rate Expected Acidification Rate 
of a Single Cell in a 0.1 of a Single Cell in a 0.1 nLnL
Volume Volume 
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Discrimination

NB
Hep

G2

HeL
a

Cell
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Toxin

Sensor Array 
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pH DO Glc LacCO2 NADH

Discrimination 
Matrix

NanoPhysiometer
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Mask Design

Substrate

Si

Positve Photoresist

BioMEMS Device Fabrication

PDMS Casting

Exposed and Developed 
Photo Resist

Cure and Release
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Device Design and Fabrication

Flexible PDMS Membrane 
(Valve)

Control Layer
Fluidics Layer

Courtesy of  S. Quake et al [1]

[1] S.R. Quake and A. Scherer, "From Micro to Nano Fabrication with Soft Materials", Science 290: 1536-40 (2000).

[2] M.A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S.R. Quake, "Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography", Science 288: 113-116 (2000).



3/7/2003 Bloomington 2003 61

LIVING STATE PHYSICS GROUP
DEPARTMENT OF PHYSICS AND ASTRONOMY,  VANDERBILT UNIVERSITY

Experimental Setup

Interdigitated
MicroElectrode

(IME) Array

PDMS Device

Fluid and 
Valve Control 

Lines
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Courtesy of A Werdich & R. Reisserer

Third Generation of NanoPhysiometers
Media/cell delivery

Working 
electrodes

Counter Reference

Cell delivery/disposal

Vacuum

Toxin channels
100 µm
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Changing the Extracellular Volume…
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Electrochemical Detection

Solution saturated with O2 

Solution saturated with air

~30 ms time constant
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Oxygen Respiration of a Single Cell in 
the Cell Trap
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0 5 10 15 20 25

C
ur

re
nt

 (a
m

pr
es

)

3.5e-8

4.0e-8

4.5e-8

5.0e-8

5.5e-8

6.0e-8

6.5e-8

7.0e-8

Oxygen Consumption by Sensing Electrode

Cell in Cell Trap

Courtesy R. Reisserer
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IDE Sensing Arrays
15 mm
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electrodes

Iridium oxide coated wire electrode
response to serial additions of acid

and base within physiologically 
relevant pH range
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Courtesy J. Ges & J. Greene
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Current Status - NanoPhysiometer
• Micro- and Nanosensors can be incorporated into small 

sensing volumes

• Single cell oxygen respiration in sub-nanoliter volumes 
demonstrated in NanoPhysiometer.

• High sensitivity: ~0.1-1 pmol of analyte detected 
electrochemically. 

• Fast response time: 30 ms (a few ms possible)

• Arrays of NanoPhysiometers will operate in parallel.



3/7/2003 Bloomington 2003 68

LIVING STATE PHYSICS GROUP
DEPARTMENT OF PHYSICS AND ASTRONOMY,  VANDERBILT UNIVERSITY

How are metabolic and signaling 
pathways coupled? 
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Cardiac Cell Model

Clancy, C. E. and Y. Rudy. Nature 400 (6744) 566-569, 1999.
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Courtesy of Dan Roden
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Myocardial Ischemia
• Manifestation

– Anoxia: inhibits aerobic respiration and 
reduces intracellular ATP 

– Acidosis: pH 7.5 to 6.5, reduces Na, Ca 
conductivity by 25%, reduces upstroke 
velocity, Vrest reduction by 3-5 mV 

– Hyperkalemia: Reduces rest potential 
from 85 – 60 mV and causes a 
shortening of the Action Potential 
Duration
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Combine NanoPhysiometers with fluorescence imaging!
-+ amplifier ADC

PC
LabView

RH-237*

absorption emission

Nanophysiometer

PDA 16x16, 17x17 mm2

QE 80 % (max)
Res 518 mA/W (800) 
SampR 1 kHz
Gain 108 V/A

4 X 64 ch amplifier
Gain 10, 50, 100
Cutoff 0.5 – 10 kHz

Hg-arc

Zeiss
Axiovert 135 TV

Objective
40x

Fluo-3



3/7/2003 Bloomington 2003 73

LIVING STATE PHYSICS GROUP
DEPARTMENT OF PHYSICS AND ASTRONOMY,  VANDERBILT UNIVERSITY

Myocardial Ischemia 

• NanoPhysiometers will allow us to measure the 
dynamics associated with anoxia in cardiac 
myocytes.

• Develop a model, which couples membrane 
potential to intracellular ATP level
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Plans for the future
• High Resolution Imaging of Magnetic Fields

– SQUID Microscopy
– Information content and origin of biomagnetic fields in the brain for a 

future brain machine interface.
– The integration of nanoscale magnetics with biology as a novel 

technique for the detection, manipulation, and functional control of 
single cells.

• Quantitative integrative physiology on the single cell level
– Metabolism in cardica myocytes with a particular focus on ATP 

depended transport across cell membranes and compartmentalization 
– PicoCalorimeter to monitor phase transitions and heat generation of 

single cells
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