Mechanics of Lipid Membrane

Yi Jiang Theoretical Division Los Alamos National Laboratory *jiang@lanl.gov http://math.lanl.gov/~yi*

Lipid Membranes

Partition & Transport

Lipid Bilayers

- Amphiphilic molecules *spontaneously form bilayers in aqueous solution*
- Lipid bilayer is a two-dimensional fluid *flexible, thermal fluctuation important*
- Fluidity depends on bilayer's composition *packing ability, lateral diffusion, phase separation*
- Lipid bilayer is asymmetrical *spontaneous curvature*

Structure difficult to determine experimentally – (freeze-fracture/etch electron microscopy, NMR, X-ray, neutron, EPR)

Elastic bending modulus ~ $10^{-19} J$ ~ $100 K_B T$

• Los Alamos

E. Evans et al (2000)

Elastic Bending

Mean curvature:

$$H = C_1 + C_2 = \frac{1}{R_1} + \frac{1}{R_2}$$

Gaussian curvature:

$$K = C_1 C_2$$

Helfrich elastic bending energy:

$$F_1 = \int d^2 r \left[\frac{\kappa_1}{2} (H - H_0)^2 + \kappa_2 K \right]$$

Helfrich (1970)

Elastic Bending

+ area constraint & volume constraint

 $\delta \left(F_1 + \gamma A + pV \right) = 0$

Kerndl et al., (1991)

Real plasma membranes are mixtures of different lipids

Sheetz & Singer (1974)

DMPA+DMPC Sackmann & Feder (1995) 500nm (b) (d)1000 Å

Echinocytosis: related to chemical environment (PH) change

Suggesting coupling between local curvature and phase separation

Phase Separation

Consider concentrations instead of single molecules

Los Alamos

Phase & Shape

$F = \int dS \left[\frac{\kappa_1}{2} \left(H - H_0 \right)^2 + \kappa_2 K + \frac{\xi}{2} g^{ij} \varphi_{,i} \varphi_{,j} + V(\varphi) + \Lambda \varphi H \right]$

Elastic bending

Phase separation

Coupling

K term disappear for closed surfaces

 H_0 is determined by membrane asymmetry

$$V(\varphi) = \frac{\alpha}{4}\varphi^4 - \frac{\beta}{2}\varphi^2$$

bilinear coupling dictated by symmetry

$$dS = \det(g^{ij}) dX_i dX_j$$

Equilibrium Phase and Shape

YJ et al. (2000)

Deformation

As a function of

elastic rigidity

coupling strength

• Los Alamos

Composition & Curvature

Vesicles are DLPC/DPPG mixture, stained with 1:1000 AS dye; collected at 25°C.

Non-spherical morphologies may be formed when the membrane components phase segregate.

P. Weiss et.al (2000)

Drastic changes in curvature result when the local structure is perturbed.

Fluid phase domains at regions of higher curvature.

Time Evolution

Evolution as a Function of Composition

• Los Alamos

Taniguchi (1996)

Bead supported DPPC/DLPC mixture

50°C +∆H

45°C +∆H

40°C +∆H

20°C -∆H

T. Baranda

Evolution equation in dimensionless form:

$$\frac{\partial}{\partial t}\varphi(\vec{r},t) = -\nabla^2(\nabla^2\varphi + \varphi - \varphi^3) + \sqrt{\varepsilon}\eta(\vec{r},t)$$
(1)

Local interaction energy at the surface of *inclusions*

$$F_s = \int ds \left[h\varphi + \frac{1}{2}g\varphi^2 + \dots \right]$$

Boundary conditions:
No flux

$$\hat{n} \cdot \nabla (\nabla^2 \varphi + \varphi - \varphi^3) = 0$$
 (2)
Surface equilibrium
 $\hat{n} \cdot \nabla \varphi + h + g \varphi = 0$ (3)

YJ & J. Douglas (2000)

- Extend of composition wave as a function of noise
- Interference of composition waves
- o Stabilizing transient pattern
- o Critical spacing/density

Membrane Bending-Mediated Protein Interactions

Bending elasticity + Phase Separation + Inclusions

Bridging MD & Continuum

Normal molecular dynamics for small scale membrane

Assume constitutive viscoelastic properties

• Los Alamos

Ayton et al (2001)