The Role of Tissue Mechanics in Biological Responses to Mechanical Loading

Sponsored by:

The University of Notre Dame Center for the Study of Biocomplexity

and

Indiana University School of Medicine

November 8, 9 and 10th 2002 The University of Notre Dame McKenna Center for Continuing Education

Co-organizers:

Glen L. Niebur (University of Notre Dame), Charles H. Turner (Indiana University) and James Glazier (University of Notre Dame)

The mechanical properties of biological tissues have been studied by mathematicians and mechanicians for centuries. Biological tissues are of interest from an applied perspective, as they form the structural components that allow organisms to interact with their environment. From a theoretical standpoint, the mechanics of biological materials range from simple linear elasticity to complex coupled fluid-solid-electrochemical models, providing ample challenges for mathematicians, physicists and engineers.

Perhaps the most interesting characteristic of biological tissues is that cells on the surface, embedded within, or in close proximity to the tissue cause active or passive responses of the tissue to mechanical loading. Thus, tissues are not only structural components, but also act as transmitters and modulators of mechanical stimuli from the environment to cells. The cells in turn respond to these stimuli, resulting in altered mechanical properties or structure of the tissue.

This symposium will explore the function of biological tissues as modulators of mechanical stimuli applied to cells and as transducers of mechanical forces. A wide variety of lectures will be presented, ranging from tissue formation and remodeling, to methodologies for probing the mechanical properties of tissues and cells.

Support for Junior Researchers: Funds are available through a grant from the Whitaker Foundation to support the attendance of junior researchers (graduate student to assistant professor). Please mark the appropriate boxes on the registration form to be considered.

Submitted Abstracts: A limited number of openings are available for short research talks (10 minutes). Submit a short abstract to <u>gniebur@nd.edu</u> to be considered.

Thursday, November 7

4:00-5:00	The Biomechanics of Ancient Tasks	Steven Vogel
	Friday, November 8	
8:00 - 8:40	Nanobiotechnology: The convergence of engineering with modern biology	Carlo Montemagno
8:40 - 9:20	TBA	Charles Pell
9:20 - 9:30	Break	
9:30 - 10:10	Torsional versus flexural stiffness in natural structures	Steven Vogel
10:10 - 10:50	Tissue Liquidity and Organogenesis	Malcolm Steinberg
10:50 - 11:00	Break	
11:00 - 12:00	Submitted talks	TBA
12:00 - 1:00	Lunch	
1:00 – 1:40	Mechanical Interactions and Mechanosensing during Fibroblast Migration	Yu-Li Wang
1:40 - 2:20	Mechanotransduction in hair cells	Rob Rafael
2:20 - 2:35	Break	
2:35 – 3:15	Membrane Free Volume Theory for Mechanochemical Transduction	John Frangos
3:15 - 3:55	Mechanobiology	Marjolein van der Muellen
4:10 - 5:00	How does nature build tissues?	Stephen Cowin
6:00 - 8:00	Reception	

Saturday, November 9

8:00 - 8:40	TBA	Elliot Rosen
8:40 – 9:20	Probing polymerization forces using actin-propelled lipid vesicles	Arpita Upadhyaya
9:20 - 9:30	Break	
9:30 - 10:10	Biomechanics of the intracellular environment studied with magnetic tweezers	Gabor Forgacs
10:10 - 10:50	MEMS devices for measuring mechanical properties of cells	Wes Jackson
10:50 - 11:00	Break	
11:00 - 11:40	Atomic Force Microscopy in Cells	Agnes Ostafin
11:40 - 11:55	TBA	TBA
12:00 - 1:00	Lunch	
1:00 – 1:40	The Plasticity of Skeletal Muscle: Mechanical Consequences	Vince Caiozzo
1:40 - 2:20	Micromechanics of heart valve tissues.	Michael Sacks
2:20 - 2:30	Break	
2:30 - 3:10	Mechanics of Cardiovascular Development	Larry Taber
3:10 - 3:50	Negative Diffusion and Aggregation of Blood Cells due to Elastic Deformation in Shear Flow	Chia Chang
3:50 - 4:00	Break	
4:00 – 4:40	Cartilage Mechanics and Tissue Engineering	Gerard Ateshian
4:40 - 5:20	Contractile response of fibroblasts on a collagen-based matrix used in tissue engineering	Lorna Gibson

Sunday, November 10

8:00 - 8:40	Matricellular proteins: Extracellular modulators of bone cell biology	Kurt Hankenson
8:40 – 9:20	Modulation of Cell Adhesion during Migration	William Parks
9:20 - 9:30	Break	
9:30 - 10:10	Nonlinearities in bone remodeling	Charles Turner
10:10 - 10:50	Implications of Fluid Flow for Bone Function, from an Organ to a Cellular Level	Melissa Knothe Tate
10:50 - 11:00	Break	
11:00 – 11:40	Bone Adaptation after Joint Replacement	Rick Sumner
11:40 - 11:55	TBA	TBA
12:00 - 1:00	Lunch	
1:00 - 2:00	Submitted talks	TBA
2:10 - 2:50	Matricellular proteins: Extracellular modulators of bone cell biology	Subrata Saha
2:50 - 3:30	<i>Mechanistic models of the human spine</i> - the effects of scale	Eric Nauman