

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	000000	0000	000	00

Contents

- 2 Drosophila retina
- 3 Cell sorting
- 4 Aggregate compression

Postscript

Morphogen esis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
●○	0000000	0000		00
Animal de	velopment			

Morphogen esis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
●○	0000000	0000		00
Animal de	velopment			

René Magritte, Clairvoyance, 1935

Morphogen e sis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
∎⊖	0000000	0000		00
Animal da	volonmont			

Animal development

René Magritte, Clairvoyance, 1935

Karlstrom & Kane, Dev. 123:461, 1996

wikipedia

Morphogen e sis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
∎⊖	0000000	0000		00
Animal da	volonmont			

Animal development

René Magritte, Clairvoyance, 1935

- Growth (from 0.5 mm to 6 cm)
- Pattern formation
- Orphogenesis

Karlstrom & Kane, Dev. 123:461, 1996

wikipedia

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
●○	0000000	0000		00
Animal de	velonment			

- Growth (from 0.5 mm to 6 cm)
- 2 Pattern formation
- Orphogenesis: study its physical aspects

Karlstrom & Kane, Dev. 123 461, 1996

wikipedia

Morphogen esis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
○●	0000000	0000		00
C 1	and the second second			

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
⊙●	0000000	0000		00
C 1 1	and the second second			

Understand how individual cell properties act on the collective level

Physical analogies suggested in the literature:

- Cells and soap bubbles
- Cell sorting and liquid demixion
- O Cell aggregates and liquid drops

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
⊙●	0000000	0000		00
C 1 1	and the second second			

Understand how individual cell properties act on the collective level

Physical analogies suggested in the literature:

- Cells and soap bubbles
- Cell sorting and liquid demixion
- Cell aggregates and liquid drops

Soap bubbles and complex fluids: studied by the physicists in the lab

- Test the analogies by simulations
- Improve if necessary

Morphogen esis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
⊖●	0000000	0000		00
C 1 1	and the second second			

Understand how individual cell properties act on the collective level

Physical analogies suggested in the literature:

- Cells and soap bubbles: part 1
- Cell sorting and liquid demixion: part 2
- Cell aggregates and liquid drops: part 3

Soap bubbles and complex fluids: studied by the physicists in the lab

- Test the analogies by simulations
- Improve if necessary

Morphogenesis	Drosophila retina	Cell sorting 0000	Aggregate compression	Postscript 00
D 1.11				

Drosophila eye

With Takashi Hayashi and Richard Carthew, Northwestern University, USA

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	●000000	0000		00
C				

Hayashi & Carthew, Nature, 2004

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	●೦೦೦೦೦	0000		00
Chanting	a ta k			

Hayashi & Carthew, Nature, 2004

Why does cell packing resemble bubble packing? Same mechanics - surface minimisation?

Morp	hogen	esis
00		

Drosophila retina •000000 Cell sorting

Aggregate compression

Postscript

Starting point

Hayashi & Carthew, Nature, 2004

Why does cell packing resemble bubble packing? Same mechanics - surface minimisation?

D'Arcy Wentworth Thompson

ldea first (?) published in 1917

Morphogenesis 00	Drosophila retina 0●00000	Cell sorting	Aggregate compression	Postscript 00
Methods			Cellular Pott	s Model
Collaboration wit	h S. Marée and V. C	Grieneisen, Utrea	cht University, The Nethe	rlands

Morph 00	ogenes	sis	(Drosop	hila ret 00	tina		Cell s	orting		Aggregate compressionPostscript00000
Me Colla	tho ^{borat}	ds ion v	vith S	S. Ma	arée a	and V	′. Gri	eneis	en, L	ltrecł	Cellular Potts Model nt University, The Netherlands
4	4	4	4	4	3	3	3	3	3	3	
4	4	4	4	4	3	3	3	3	3	3	• a cell = a set of pixels same size as in experiments
4	4	4	4	2		3	3	3	3	3	 a movement = a pixel changes to another cell
5	4	4	2					3	3	0	
5	5	2						0	0	0	
5	5	2					0	0	0	0	
5	5	2				0	0	0	0	0	
5	5	5	2			1	0	0	0	0	
5	5	5	1	1	1	1	1	0	0	0	
5	5	5	1	1	1	1	1	1	0	0	

Morph 00	ogenes	is	[(Drosop	hila ret 00	tina		Cell s	orting		Aggregate compressionPostscript00000
Methods Collaboration with S. Marée and V. Grieneisen, Utrech							Cellular Potts Model at University, The Netherlands				
4	4	4	4	4	3	3	3	3	3	3	$\mathbf{r} = \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}$
4	4	4	4	4	3	3	3	3	3	3	• a cell — a set of pixels same size as in experiments
4	4	4	4	2	2	3	3	3	3	3	 a movement = a pixel changes to another cell
5	4	4						3	3	0	
5	5							0	0	0	Energy
5	5						0	0	0	0	 Energy cost at cell boundaries Size conservation
5	5					0	0	0	0	0	
5	5	5				1	0	0	0	0	
5	5	5	1	1	1	1	1	0	0	0	
5	5	5	1	1	1	1	1	1	0	0	

Morph 00	ogenes	is	[(Drosop	hila ret 00	tina		Cell s	orting		Aggregate compressionPostscript00000
Methods Cellular Potts Mo Collaboration with S. Marée and V. Grieneisen, Utrecht University, The Netherlands							Cellular Potts Model at University, The Netherlands				
											Lattice
4	4	4	4	4	3	3	3	3	3	3	
4	4	4	4	4	3	3	3	3	3	3	• a cell = a set of pixels same size as in experiments
4	4	4	4	2	2	3	3	3	3	3	• a movement = a pixel changes to another cell
5	4	4						3	3	0	
5	5	2						0	0	0	Energy
5	5						0	0	0	0	 Energy cost at cell boundaries Size conservation
5	5					0	0	0	0	0	• Size conservation
5	5	5				1	0	0	0	0	Energy minimisation
5	5	5	1	1	1	1	1	0	0	0	 Surface minimisation Differential adhesion
5	5	5	1	1	1	1	1	1	0	0	Membrane fluctuations

• ... and much more

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	00●0000	0000		00
Cellular in	gredients		"Key comp	onents"

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	00●0000	0000		00
Cellular in	gredients		"Key comp	onents"

Cytoskeleton microtubules actin Rigidity Activity: formation of protrusions

Adhesion

linked to the cytoskeleton

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	00●0000	0000		00
Cellular in	gredients		"Key comp	onents"

Cytoskeleton microtubules actin Rigidity Activity: formation of protrusions

Adhesion

linked to the cytoskeleton

E.g.: Cellular Potts Model Marée et al., Bull. Math. Biol. (2006) 68: 1169–1211 Simulations of keratocytes by A. Marée

Morphogen esis	Drosophila retina 00●0000	Cell sorting 0000	Aggregate compression	Postscript 00
Cellular in	gredients		"Key comp	onents"

Cytoskeleton microtubules actin + myosin Rigidity Activity: formation of protrusions

Adhesion

linked to the cytoskeleton

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	00●0000	0000		00
Cellular in	gredients		"Key comp	onents"

Cytoskeleton microtubules actin + myosin Rigidity Activity: formation of protrusions

Drosophila retina

Adhesion

linked to the cytoskeleton

Cellular Potts Model

Zonal adhesion: possible to model in 2D

Morphogenesis 00	Drosophila retina 000●000	Cell sorting	Aggregate compression	Postscript 00
Experimenta	lobservations	and surface	e minimisation	

Morphogenesis 00	Drosophila retina 000●000	Cell sorting	Aggregate compression	Postscript 00
Experimenta	lobservations	and surface	minimisation	

Adhesion: E-cadherin

Morphogenesis 00	Drosophila retina 000●000	Cell sorting	Aggregate compression	Postscript 00
Experimenta	lobservations	and surface	minimisation	

Adhesion: E-cadherin <mark>N-cadherin</mark>

Morphogenesis 00	Drosophila retina 000●000	Cell sorting	Aggregate compression	Postscript
Experimenta	lobservations	and surface	minimisation	

Adhesion: E-cadherin N-cadherin More adhesion between cone cells

Morphogenesis 00	Drosophila retina 000●000	Cell sorting	Aggregate compression	Postscript 00
Experimenta	l observations	and surface	e minimisation	

Adhesion: E-cadherin N-cadherin More adhesion between cone cells First model: surface minimisation

Each interface has a constant tension More adhesion = weaker tension = less minimisation

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000		00
Experimenta	l observations	and surface	e minimisation	

Adhesion: E-cadherin <mark>N-cadherin</mark> More adhesion between cone cells

First model: surface minimisation

Each interface has a constant tension More adhesion = weaker tension = less minimisation

Simulations

Strong adhesion between cone cells With **all** cells

Morphogenesis 00	Drosophila retina 000●000	Cell sorting	Aggregate compression	Postscript 00
Experimenta	l observations	and surface	e minimisation	

Adhesion: E-cadherin <mark>N-cadherin</mark> More adhesion between cone cells

First model: surface minimisation

Each interface has a constant tension More adhesion = weaker tension = less minimisation

Simulations

Wrong topology! Neighbours matter.

Strong adhesion between cone cells With **all** cells

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000●00	0000		00
Adhesion	and the cortical	cytoskeleto	n	

Model 2:

Lecuit & Lenne, Nat. Rev. Mol. Cell Bio. 2007

variable tension

- cell tension = contraction adhesion
- $\bullet \ \ adhesion \ \rightarrow \ \ spreading$
- cortical contraction resists spreading
- contraction depends on contact area
- feedback: tension \longleftrightarrow cell shape

Model 2:

Lecuit & Lenne, Nat. Rev. Mol. Cell Bio. 2007

variable tension

- cell tension = contraction adhesion
- $\bullet \ \ adhesion \ \rightarrow \ \ spreading$
- cortical contraction resists spreading
- contraction depends on contact area
- feedback: tension \longleftrightarrow cell shape

Model 2:

Lecuit & Lenne, Nat. Rev. Mol. Cell Bio. 2007

variable tension

- cell tension = contraction adhesion
- $\bullet \ \ adhesion \ \rightarrow \ \ spreading$
- cortical contraction resists spreading
- contraction depends on contact area
- feedback: tension \longleftrightarrow cell shape

Model 2:

Lecuit & Lenne, Nat. Rev. Mol. Cell Bio. 2007

variable tension

- cell tension = contraction adhesion
- $\bullet \ \ adhesion \ \rightarrow \ \ spreading$
- cortical contraction resists spreading
- contraction depends on contact area
- feedback: tension \longleftrightarrow cell shape

Agrees with observations!

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	00000●0	0000		00
T				

Tests: mutants

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000		00
Tests: muta	nts			

Mutation \rightarrow change only the corresponding parameter?

Morphogenesis 00	Drosophila retina 00000●0	Cell sorting 0000	Aggregate compression	Postscript 00
Tests: mut	tants			

Mutation \rightarrow change only the corresponding parameter?

Rough eye mutants:

Morphogenesis 00	Drosophila retina 00000●0	Cell sorting 0000	Aggregate compression	Postscript 00
Tests: mu	tants			
Mutation 🕇	• change only the	corresponding	parameter?	
Rough eye r	nutants: Topolog	gical agreemer	nt	

Morphogenesis 00	Drosophila retina 00000●0	Cell sorting 0000	Aggregate compression	Postscript 00
Tests: mut	ants			
Mutation →	change only the	corresponding	parameter?	
Rough eye n	nutants: Topolog	j ical agreemer	it	

Cadherin mutants

Wildtype: N-cadherin in cone cells, E-cadherin in all cells Mosaic mutants: decrease (-) or increase (+) in adhesion

Morphogenesis 00	Drosophila retina 00000●0	Cell sorting 0000	Aggregate compression	Postscript 00
Tests: muta	ants			
Mutation 🔿	change only the	corresponding	parameter?	
Rough eye m	utants: Topolog	j <mark>ical</mark> agreemen	t	
Cadherin mut	ants			
Wildtype: N- Mosaic mutar	cadherin in con nts: decrease (-	e cells, E-cad l) or <mark>increase</mark>	herin in all cells (+) in adhesion	

More examples: PNAS, 104:47, p 18549 (2007) Topological & geometrical agreement

Morphogenesis 00	Drosophila retina 00000●0	Cell sorting 0000	Aggregate compression	Postscript 00
Tests: mut	ants			
Mutation 🕇	change only the	corresponding	parameter?	
Rough eve n	nutants [.] Topolog	rical agreemer	1t	

Cadherin mutants

Wildtype: N-cadherin in cone cells, E-cadherin in all cells Mosaic mutants: decrease (-) or increase (+) in adhesion

wildtype + 22 mutant configurations, 6 parameters

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	000000●	0000		00
Lessons -	Part 1			

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	000000●	0000		00
Lessons -	Part 1			

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	000000●	0000		00
Lessons -	Part 1			

Different physical properties

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	000000●	0000		00
Lessons -	Part 1			

Different physical properties

Tissues and foams

Image: M. Asipauskas, SPECTRO

Image: Blankenship et al, Dev. Cell 2006

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	000000●	0000		00
Lessons -	Part 1			

Different physical properties

Tissues and foams

Image: M. Asipauskas, SPECTRO

Image: Blankenship et al, Dev. Cell 2006

Analogy on collective level

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	000000●	0000		00
Lessons -	Part 1			

Different physical properties

Tissues and foams

Image: M. Asipauskas, SPECTRO

Image: Blankenship et al, Dev. Cell 2006

Analogy on collective level Space tiling pattern:

no gap nor overlap

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	000000●	0000		00
Lessons -	Part 1			

Different physical properties

Tissues and foams

Image: M. Asipauskas, SPECTRO

Image: Blankenship et al, Dev. Cell 2006

Analogy on collective level Space tiling pattern:

no gap nor overlap

Analogy

Feedback between a cell's shape and its neighbour's shapes

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	000000●	0000		00
Lessons -	Part 1			

Different physical properties

Specific for cells

Adhesion and cortical tension Feedback between shape and tension

Tissues and foams

Image: M. Asipauskas, SPECTRO

Image: Blankenship et al, Dev. Cell 2006

Analogy on collective level Space tiling pattern:

no gap nor overlap

Analogy

Feedback between a cell's shape and its neighbour's shapes

 Morphogenesis
 Drosophila retina
 Cell sorting
 Aggregate compression
 Postscript

 Cell sorting of zebrafish germlayer cells

With M. Krieg & D.J. Müller

Biotec, Technische Universität Dresden,

Y. Arboleda & C.-P. Heisenberg

MPI-CBG, Dresden

Krieg et al., Nat. Cell Biol. 2008, cover

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	●000		00
Cell sorting	and liquid pha	se separatic	on	

Water molecules have strongest affinity, and end up in the centre

Differential Adhesion Hypothesis (DAH): Steinberg, 1963

Duguay et al, Dev. Biol. 2003

- Different cell types adhere with different strengths
- Cell sorting is like liquid demixing: weakly adhering cells surround strongly adhering cells

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000		00
Zebrafish ex M. Krieg, Y. Arbo	(periments oleda & CP. Heise	enberg		

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000		○○
Zebrafish e M. Krieg, Y. Ar	experiments boleda & CP. Heise	enberg		

Cell sorting

DAH predicts: ectoderm cells adhere most

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000		○○
Zebrafish e M. Krieg, Y. Ar	experiments boleda & CP. Heise	enberg		

Cell sorting

DAH predicts: ectoderm cells adhere most

Atomic Force Microscopy - measure cell-cell adhesion pairwise

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000		○○
Zebrafish e M. Krieg, Y. Ar	experiments boleda & CP. Heise	enberg		

Cell sorting

DAH predicts: ectoderm cells adhere most

Atomic Force Microscopy - measure cell-cell adhesion pairwise

mesoderm cells adhere most! Contradicts DAH!

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000		00
Cortex ten	sion			

Morphogenesis 00	Drosophila retina 0000000	Cell sorting 0000	Aggregate compression	Postscript 00
Cortex tensi	on			
Alternative ex	planation?			AFM
	e -	ectoderm cell	s have higher cortex t	ension
Simulations				
Ectoderm weak adhesic Meso-/Endode strong a	on, high cortex t rm Idhesion, weak t	ension		

Morphogenesis 00	Drosophila retina 0000000	Cell sorting	Aggregate compression	Postscript 00
Lessons -	Part 2			

Morphogenesis 00	Drosophila retina 0000000	Cell sorting	Aggregate compression	Postscript 00
Lessons - I	Part 2			

Like liquids

Aggregate surface tension σ determines cell sorting Difference of interfacial energy γ determines σ

Morphogenesis 00	Drosophila retina 0000000	Cell sorting	Aggregate compression	Postscript 00
Lessons -	Part 2			

Like liquids

Aggregate surface tension σ determines cell sorting Difference of interfacial energy γ determines σ

Specific for cells

Interfacial energy $\gamma = \text{contraction } T$ - adhesion J Differential contraction influences σ and cell sorting

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000		00
Compression	of cell aggreg			

With A. Mgharbel, H. Delanoë-Ayari, J.-P. Rieu: experiments

LPMCN, Lyon

P. Marmottant: physical model

SPECTRO, Grenoble

A. Mgharbel, Lyon
Morphogenesis 00	Drosophila retina 0000000	Cell sorting	Aggregate compression	Postscript 00
Compression	of cell aggree	ates		

With A. Mgharbel, H. Delanoë-Ayari, J.-P. Rieu: experiments

LPMCN, Lyon

P. Marmottant: physical model

SPECTRO, Grenoble

A. Mgharbel, Lyon

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000		00
Compression	of cell aggreg	gates		

With A. Mgharbel, H. Delanoë-Ayari, J.-P. Rieu: experiments

LPMCN, Lyon

P. Marmottant: physical model

SPECTRO, Grenoble

A. Mgharbel, Lyon

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000		00
Compression	of cell aggreg	gates		

With A. Mgharbel, H. Delanoë-Ayari, J.-P. Rieu: experiments

LPMCN, Lyon

P. Marmottant: physical model

SPECTRO, Grenoble

A. Mgharbel, Lyon

Morphogenesis	Drosophi la retina 0000000	Cell sorting	Aggregate compression ●00	Postscript 00
Aggregate	compression			

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000	•୦୦	
Aggregate c	ompression			

Measuring aggregate surface tension In vitro study of effect of cell properties on collective level

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000		●○○	00
Aggregate	compression			

Measuring aggregate surface tension In vitro study of effect of cell properties on collective level

Analogy with liquid drops

Norotte et al., Europhys. Lett. 2008

Compression requires force

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000	●○○	00
Aggregate	compression			

Measuring aggregate surface tension In vitro study of effect of cell properties on collective level

Analogy with liquid drops

Norotte et al., Europhys. Lett. 2008

Compression requires force Laplace's law: surface tension = pressure difference / curvature

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000	●○○	00
Aggregate	compression			

Measuring aggregate surface tension In vitro study of effect of cell properties on collective level

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000		●○○	00
Aggregate	compression			

Measuring aggregate surface tension In vitro study of effect of cell properties on collective level

Morphogenesis 00	Drosophila retina 0000000	Cell sorting	Aggregate compression ○●○	Postscript 00
Experiments	, simulations,	model		

time over which stress disappears: $t_c \sim \exp\left(\frac{\Delta \mathcal{E}_{T1}}{\epsilon}\right)$

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000	○○●	00
Lessons -	Part 3			

Morphogenesis 00	Drosophila retina 0000000	Cell sorting 0000	Aggregate compression ○○●	Postscript 00
Lessons - I	^D art 3			

Physics

Aggregate: from complex liquid to plastic solid - multiple time scales Need an explicit model for cell rearrangements

→ foam physics: space-tiling without gap nor overlap

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000		00
Lessons -	Part 3			

Physics

Aggregate: from complex liquid to plastic solid - multiple time scales Need an explicit model for cell rearrangements

 \rightarrow foam physics: space-tiling without gap nor overlap

Cell biology

Adhesion, cortical tension, active fluctuations

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000	○○●	00
Lessons -	Part 3			

"The way cells *interact*"

Aggregate: from complex liquid to plastic solid - multiple time scales Need an explicit model for cell rearrangements

 \rightarrow foam physics: space-tiling without gap nor overlap

Cell biology

Physics

"The way cells are"

Adhesion, cortical tension, active fluctuations

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000	○○●	00
Lessons -	Part 3			

Physics	"The way cells <i>interact</i> "	collective
Aggregate: from Need an explicit	n complex liquid to plastic solid - multiple t model for cell rearrangements foam physics: space-tiling without	time scales t gap nor overlap
Cell biology	"The way cells <i>are</i> "	individual
Adhesion, cortic	al tension, active fluctuations	

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000	○○●	00
Lessons -	Part 3			

5	CONECTIVE
Aggregate: from complex liquid to plastic solid - multiple tin	ne scales
Need an explicit model for cell rearrangements	
➔ foam physics: space-tiling without ga	p nor overlap

individual

Cell biology "The way cells *are*" Adhesion, cortical tension, active fluctuations

Bio-physical model

Allows to answer specific biological questions

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000		●0
Wishes				

Morphogenesis 00	Drosophila retina 0000000	Cell sorting 0000	Aggregate compression	Postscript ●0
Wishes				
Modeller				
Experiment	alist			

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000		●0
Wishes				

Modeller

- Finer simulations or physical model of intracellular cytoskeleton
- Coarser physical model (e.g. part 3)
- Time dynamics of development, cell differentiation

Experimentalist

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000		●0
Wishes				

Modeller

- Finer simulations or physical model of intracellular cytoskeleton
- Coarser physical model (e.g. part 3)
- Time dynamics of development, cell differentiation

Experimentalist

Measure individual cells quantitatively

- in vitro
- in vivo

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000		●0
Wishes				

Modeller

- Finer simulations or physical model of intracellular cytoskeleton
- Coarser physical model (e.g. part 3)
- Time dynamics of development, cell differentiation

Experimentalist

Measure individual cells quantitatively

- in vitro
- in vivo
- forces, constraints (e.g. laser ablation)
- shape, packing (time-lapse microscopy, 2 & 3D)

Morphogenesis	Drosophila retina	Cell sorting	Aggregate compression	Postscript
00	0000000	0000		⊙●
Combine e	xperiments &	computation		

Morphogenesis 00	Drosophila retina 0000000	Cell sorting 0000	Aggregate compression	Postscript ⊙●
Combine e	experiments &	computatio	on	
Experimental	biology			
 Starts w 	ith a complex org	ganism		

- When doesn't it function anymore (knockouts)?
- identify genes, reconstruct pathways, supply hypotheses

Morphogenesis 00	Drosophila retina 0000000	Cell so	orting	Aggregate compression	Postscript ○●
Combine experiments & computation					
Experimenta	l biology		Comput	ational biology	
 Starts w When d anymore identify pathway 	rith a complex orga oesn't it function e (knockouts)? genes, reconstruct rs, supply hypothes	es	 Fev Hove beh Co tim loo hyp 	v, known ingredier w to get the observ 1aviour? ntrol one paramet 1e k for cause and eff potheses, predictior	nts ved er at a ect, test is

Morphogenesis 00	Drosophila retina 0000000	Cell sort	ting	Aggregate compression	Postscript ⊙●
Combine experiments & computation					
Experimenta	l biology		Computa	ational biology	
 Starts v When a anymor identify pathway test press 	vith a complex org doesn't it function e (knockouts)? genes, reconstruct ys, supply hypothes edictions	anism es	 Few Hov beh Cor time look hyp 	r, known ingredien w to get the observ aviour? n trol one paramete e k for cause and effe otheses, prediction	ts red er at a ect, test s

Morphogenesis 00	Drosophila retina 0000000	Cell sorting	Aggregate compression	Postscript ○●	
Combine experiments & computation					
Experimental	biology	Cor	nputational biology		
 Starts wi When do anymore identify g pathways test pred Disassemble t 	th a complex org besn't it function (knockouts)? genes, reconstruct s, supply hypothes ictions he organism	ganism : ses	Few, known ingredients How to get the observed behaviour? Control one parameter time look for cause and effect hypotheses, predictions	l at a :, test	

Morphogenesis 00	Drosophila retina 0000000	Cell sor	rting	Aggregate compression	Postscript ⊙●
Combine experiments & computation					
Experimenta	l biology		Comput	ational biology	
 Starts v When c anymor identify pathway test pre 	vith a complex orga loesn't it function e (knockouts)? genes, reconstruct ys, supply hypothese edictions the organism	anism es	 Few How beh Colution lool hyp 	v, known ingredie w to get the obser naviour? ntrol one parame e k for cause and eff potheses, prediction	nts ved ter at a fect, test ns
			and 'cor	npute' it back tog	ether

Close collaboration between modellers and experimentalists Experiments and models progress together