Building the Cell Behavior Ontology (CBO)

An Illustrated Guide

Michal Galdzicki, Daniel L. Cook, Benjamin L. Zaitlen, Ryan Roper, Herbert M. Sauro, John H. Gennari October 30, 2009 Biocomplexity X

To build the CBO we will strive towards the goals Professor Glazier set

- The working goal
 - Build Top-levels of CBO
- My goal in this talk is to
 - Help guide the development of the ontology
 - Systematize concepts so they can be used
 - To show how to describe images and simulations

This talk is organized into three parts

- 1. Annotating a Cell Size Growth example
- Creating a structured definition of Cell Behavior
- 3. Use cases and challenges going forward

Cell Size Growth is my simple example of how to describe a cell behavior

This 'cell' is growing in size. How can we describe this phenomenon?

The structure is provided by the foundation of the OPB framework

Data can also be annotated using an ontology as the description

To get an ontology structure we generalize from the example

We can make explicit the difference between kinetic v spatial properties

Structured descriptions of behaviors can help build the ontology

The structure is provided by the foundation of the OPB framework

To build a consistent CBO each term needs to be described the same way

Process

Physical Entity

Manifestation

Physical Property

A template set of questions can be used to guide ontology development

Which entities change during a process?

Process

has Participant

Physical Entity

Cell Size Growth

- Kinetic Physical Entity
 - > Structures
 - Anatomical Entity
 - Sub-cellular (pseudopods, nuclei)
 - Molecular (cadhedrins, Protein marker X)

- Spatial Entity
 - Regions
 - Surfaces
 - Shapes

Which properties of the entity are essential to defining the process?

- Kinetic Physical Entity
 - State Property
 - Mass
 - Concentration
 - Rate Property
 - Flow Rate
 - Force
- Spatial Property
 - Volume
 - Area
 - Locus, Location

How does each property change with respect to time?

- Property Manifestation
 - Increase
 - Asymptotically increasing
- Structural Manifestation
- Existential Manifestation
 - Fusion
 - Appearance

Note:

Possible for a Physical Property to change with respect to another Property and time.

Manifestation

has Property

Physical Property

Processes occur over time, which is often implied, but important

For each Cell Behavior a structured definition is formed

Differentiation requires starting and ending

"Simply": Cell Behaviors can be described by answering three questions

- 1. What **Entities** change during a process?
- 2. Which **Properties** of the entity are essential to defining the process?
- 3. How does each property **Change** with respect to time?

The CBO built using this structure can be applied in multiple contexts

- Annotate
 - Cellular image time series data
 - Simulation results and models
 - * Useful for retrieving them in the future
- Ontology described data can facilitate sharing of defined data in scientific communication

Data can be annotated the underlying definitions of behaviors

If the CBO is right it will be possible to match data exhibiting the behavior

Allows for automated reasoning

Cell Size Growth

The real challenge will be to organize the behaviors into sensible classes

CBO major classes include:

- Adhesion
- Communication
- Existence
- Regionalization
- Transport

Which factors drive their categorization?

- Structure
- Type of Change
 - Quantitative Property
 - Self Identity
 - Multi Cell Context
 - Relative Location
- Progress of Time

To summarize: In building the CBO we are writing the structured definitions

cell size growth is an increase of magnitude of the mass and volume of a cell

• Reticulocyte Differentiation is the expulsion of the nucleus

and

 Reticulocyte Differentiation is the change of identity of a orthochromatophilic erythroblast to Reticulocyte

My preliminary impression of the answers to the questionnaire

- A diversity of perspectives, but
- Consensus on terminology for behaviors
 - cells move
 - retinoic acid secretion
 - **≻**Entity- Change
 - Surface ligand presentation
 - Location Entity- Change

The proposed CBO structure can be organized using 'the square'

Thank You!

Biocomplexity X and CBO organizers

National Library of Medicine

Colleagues from UW BioEngineering, Indiana University BioComplexity Institute,

UW Biomedical and Health Informatics

