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• How can the genome regulate plant growth and form, and vice versa?

• A cell-centered perspective:

• DNA/regulatory networks regulate cell behavior (cell cycle time, cell 
expansion rates, etc.)

• Cell behavior leads to tissue and plant growth

• tissue architecture feeds back on regulatory networks

• Need to understand genetics in the context of the physics of collective 
cell behavior

? ?

Cell-based plant growth models



Cell-based Modeling
See e.g. Merks and Glazier, Phys. A 2005

• Allows for more detailed descriptions of the cells
• Genetic and metabolic networks primarily regulate 

individual cells
– Response to extracellular signals, secretion of signaling and 

extracellular matrix proteins, cell migration, cell adhesion, etc.

• To understand how genetics regulates multicellular 
phenomena, we must ask:
– how genetics drives cell behavior (i.e. networks)
– how cell behavior produces multicellular patterns
– how the cells (and their regulatory networks) respond to the 

multicellular environment
• “Middle-out approach”  (Denis Noble 2006, The Music of Life)

– the cell in the middle



Plant tissue growth and 
patterning



Cell-based plant tissue model
• Phenomenological model of plant cells:

– Representation of cell walls
– Cell’s relative position remains fixed
– Cell wall and membrane properties (elasticity, yielding 

threshold, wall permeability, transporter density, etc.)
– Cell properties: turgor, concentrations of intracellular 

chemicals, etc.
– Cell behaviors: division, cell expansion, etc.

• Energy minimization philosophy
– Calculate force balance between cell expansion and 

cell wall resistance using energy minimization 



Plant tissue model

A cell

A cell wall



Plant tissue model
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A cell expands

A cell wall contracts

A cell wall is flexible



Plant tissue simulation

A plant cell



Symplastic tissue mechanics
Metropolis algorithm
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Plant tissue simulation

A plant cell increases turgor pressure



Plant tissue simulation

A plant cell divides



Plant tissue simulation

A plant cell forms a new wall



• Set division axis

• Insert new nodes and 
add to neighboring cells

• Transfer nodes to 
daughter cell

• Insert cell wall

• Reset target areas

Cell division
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• Set division axis

• Insert new nodes and 
add to neighboring cells

• Transfer nodes to 
daughter cell

• Insert cell wall

• Reset target areas

Cell division



Plant tissue model
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A cell wall yields

A cell wall is elastic



Reduces wall strain if it exceeds a threshold

Cell wall yielding



Reduces wall strain if it exceeds a threshold

Cell wall yielding



Reduces wall strain if it exceeds a threshold

Cell wall yielding



Reduces wall strain if it exceeds a threshold

Cell wall yielding



M
onte Carlo Step

Move node

Move reduces
energy?

Reject move

Tried all nodes?

Energy stable?

Apply biological rules:
   e.g., cell expansion, cell division, transport of
chemicals, etc.

No

Yes

No

Yes

No Relaxation cycle



Callus growth:
 expansion and division

Tissue growth is exponential, due to cell division



Tissue mechanics: margin cell stiffness may 
determine leaf shape

(with Andrew Fleming, University of Sheffield) 

Stiff margin cells Floppy margin cells



Cell-cell communication

A cell contains chemicals

A cell wall is permeable

Cells and walls respond to 
chemicals f(  )



“Meristem growth”

1. Tip cell produces 
growth factor
2. Cells expand and divide 
for high concentrations
3. Cells expand for 
intermediate 
concentrations
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PIN1::GFP
Auxin efflux
 transporter

DR5::GPF
Marker for 

auxin activity

Polar auxin transport

How do leaf veins form?
Auxin and auxin efflux pumps (PIN1)



• Leaf venation patterning according to mechanism proposed for 
phyllotaxis: upstream pumping

• Is dominating view - positive feedback between auxin flux and PIN1 
polarization - the most likely hypothesis?

• Formation of midvein

• Comparison with experiments, e.g. NPA treatment

• Adding additional components to fine-tune model 

• Influx carrier: AUX/LAX

• Growth

Could cross-talk between PIN1 and 
auxin also drive venation patterning? 

A travelling-wave hypothesis



PINs polarize towards auxin maxima? 
(E.g. Jönsson et al. 2006; Smith et al. 2006)

Auxin
PIN PIN pumps 

auxin

PIN sticks to 
“wall”

PIN drops 
from “wall”

PIN prefers 
auxin-rich 
“walls”...

over auxin-poor 
“walls”...

Cytoplasm





Jönsson et al. PNAS 2006

Phyllotaxis via auxin accumulation



Scarpella et al. Genes Dev. 2006

PIN1 may also produce 
auxin maxima in leaf margin



• “Biology’s way”: variation on a common theme

• If we accept that the Jönsson et al. and Smith et al. 2006 
phyllotaxis mechanisms are plausible...

• The canalization hypothesis would imply that PIN1 
and auxin interact differently in shoot and leaf

• Leaves initiate during phyllotaxis, so...

• Could auxin channels form in a mechanism similar to 
phyllotaxis?

Auxin convergence points:
role in leaf vascularization



Auxin concentration

Amount of PINs at wall

Auxin influx, leakage into cell 2

PIN1 goes up, localizes to cell 2

Auxin down in cell 1, PIN1 and 
auxin up in cell 2

reiteration

Auxin induces PIN1 expression
See e.g. Vieten et al. (2005); Heisler et al. 2006

Time

+





• Zero (or small) initial 
PIN1 concentration

• Auxin induces PIN1 
transcription, and 
PIN1 decays 
independently

Merks et al. (2007). Trends in Plant Science 12(9), 384-390

Auxin waves in 2D



Reduce number of “PIN1 docking sites”
Increase NPA concentration

 (Scarpella et al. 2006.)

g h i j

Experimental validation
Effect of auxin transport inhibitor NPA



Discrepancy between model & experiment
No “PIN1” convergence at leaf margin

• Experimentally:

•  sharp PIN “convergence” points at epidermis

• In model:

• funnel-shaped” PIN1 expression near epidermis



Next step: growing leaf

• Model for tissue mechanics

• Cell division and expansion rules

• Auxin enhances cell division and expansion?

Scarpella et al. 2006



Preliminary result:
AUX1-model + growth



Plant tissue modeling tool

• Virtual Leaf

• Plant development

• XML-based file format

• Model specification in plugin

• Domain-specific language 
under development



Domain-specific languages
for cell-based modeling

Simulation 
Framework 1

Simulation 
Framework 2

Simulation 
Framework n

...

Model
descriptions

tied tomodel

model

model

Tijs van der Storm, CWI



Problem statement

• Comparing simulations is hard

• Hard to repeat simulation experiments with 
alternative simulation methods

• Simulation descriptions often entangle concepts 
of the domain (cells) and simulation method

Tijs van der Storm, CWI



Domain-specific languages

• Capture essence of a domain in a modeling language

• Generate code for different back-end simulation 
frameworks

• Division of labor

• Biologists focus on modeling

• Computer scientists focus on simulation

• CWI has the technology to create DSLs
(Paul Klint group; Meta-environment, Rascal)

• Currently starting initial experiments with Virtual Leaf

Tijs van der Storm, CWI



Goal

Simulation 
Framework 1

Simulation 
Framework 2

Simulation 
Framework n

...

Model

Generate

Tijs van der Storm, CWI



Model plugin code
// (a couple of header files)

// To be executed after cell division
void TestPlugin::OnDivide(ParentInfo &parent_info, CellBase &daughter1, CellBase &daughter2) {}

void TestPlugin::SetCellColor(CellBase &c, QColor &color) { 

   color = QColor(“green”);
}

void TestPlugin::CellHouseKeeping(CellBase &c) {
 

	 c.EnlargeTargetArea(par->cell_expansion_rate);
	 if (c.Area() > par->rel_cell_div_threshold * c.BaseArea() ) {
	 	 c.Divide();	
    }
}

void TestPlugin::CelltoCellTransport(Wall *w, double *dchem_c1, double *dchem_c2) {}
void TestPlugin::WallDynamics(Wall *w, double *dw1, double *dw2) {}
void TestPlugin::CellDynamics(CellBase *c, double *dchem) { }

Q_EXPORT_PLUGIN2(testplugin, TestPlugin)



• Plant modeling framework for symplastic 
development, with only cell differentiation, 
division and expansion

• Traveling-wave mechanism produces auxin 
channels without experimentally unknown 
auxin flux-sensor

Summary
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