Multiscale Simulation Using CompuCell3D and the SBML ODE Solver Library

Ryan Roper
University of Washington
Dept of Bioengineering

Sauro Lab

University of Washington Dept of Bioengineering Seattle, WA, USA

Glazier Lab

Biocomplexity Institute Indiana University Bloomington, IN, USA

Overview

Cell-Level Simulation

Multiscale (Cellular-Subcellular) Simulation

Graphical Construction of Multiscale Models

Cell Sorting Simulation using CC3D

CompuCell3D (CC3D) 🔐

- Implements Cellular Potts Model (CPM)
- Evolves lattice by Monte Carlo Simulation

Lattice-Based Representation of Cells

Energy Minimization

What is Modeled in Cell Sorting Simulation?

Cells are modeled with static physical properties that are independent of intracellular state

Incorporation of Intracellular States

How do we incorporate the intracellular time-evolution of chemical species concentrations?

Overview

CC3D-SOSlib Framework for Multiscale Simulation

CompuCell3D (CC3D) 😭

- Implements Cellular Potts Model (CPM)
- Evolves lattice by Monte Carlo Simulation

Cellular/Extracellular

Intracellular

- Loads SBML descriptions of biochemical networks
- Translates to ordinary differential eqs. (ODE)
- Numerically integrates the ODEs in step-wise manner

SBML ODE Solver Library (SOSlib)

CC3D-SOSlib Framework for Multiscale Simulation

Exchange of Biological Information within the CC3D-SOSlib Framework

Changing Adhesion Energy Simulation

Changing Adhesion Energy Simulation

Delta-Notch Simulation with Cell Growth

Delta-Notch Simulation with Cell Growth

Files for Multiscale Simulation

Overview

Tinkercell for Biochemical Network Design

Eudoria for Multiscale Cellular Systems Design

Eudoria with CompuCell3D

Eudoria in the Short Term

PIF file generation:

Specify cell types, sizes and locations

CC3D XML generation:

Specify Potts parameters, contact energies, volume and surface area plugins, etc.

Python script template generation:

Extend basic capabilities of CC3D and allow customization by modelers

SBML generation

Eudoria in the Long Term

- Move from only model-building and CC3D file-generation to multi-methodology simulation
 - Lattice-based simulation (CPM)
 - Lattice-free simulation
 - Hybrid simulation
- Conform, internally, to methodology-independent model specifications (CBO and SBO)
- Generate model specification files in relevant markup languages (e.g. Cell Behavior Markup Language, when it exists)

Acknowledgments

- Sauro, Glazier Labs (Ryan Roper, NIH, GM076692)
- Deepak Chandran (Tinkercell) NSF (FIBR 0527023), Microsoft
- Lucian Smith (Antimony) NIH (GM081070)

Changing Adhesion Energy Simulation

Delta-Notch Simulation with Cell Growth

