

Modeling microsurgical interventions in morphogenesis

M. Shane Hutson - *Dept of Physics & Astronomy, Dept of Biological Sciences, Vanderbilt Institute for Integrative Biosystem Research & Education (VIIBRE)*

". . . it is critical that we complement the popular molecular and biochemical approaches to the control of morphogenesis with nuts-and-bolts analyses of the physics of how morphogenetic processes occur."

- M.A.R. Koehl, *Sem. Dev. Biol.* **1**: 367 (1990).

David Mashburn Holley Lynch Sarah Crews

Xiaoyan Ma (PD) Tomas Yan Aroshan Jayasinghe

National Science Foundation RE DISCOVERIES BEGIN

Human Frontier Science Program

UNITED STATES ARMY

DoD Medical FEL Program

Alumni

 Jason Rohner Gilma Adunas

Borislav Ivanov (PD) Yaowu Xiao (PD)

Undergraduates

 Rob Gish Siri Kadire Elliott Kim Peter Scully Alanna Patsiokas

John Kirkham - Rhodes McRae Linton - Duke Kevin Parker - Duke Brett Rosenthal - Duke

Collaborators

 G. Wayne Brodland - Waterloo Antonio Jacinto - IMM-Lisbon Frieder Shöck - McGill Glenn Edwards - Duke Dan Kiehart - Duke Stephanos Venakides - Duke Mingshuo Guo - Fisk John Kozub - VU Prasad Polavarapu - VU

Outline

What does it take to explain a morphogenetic process?

- The biologist's perspective
- The physicist's perspective
	- ... and never the twain shall meet?

Making quantitative measurements with laser-microsurgery.

- Time- and length-scales of plasma/cavitation dynamics during laser ablation *in vivo*.
- What can we learn from spatial recoil patterns?
- What can we learn from the recoil kinetics (given fast enough time resolution)?

Reproducing the experimental results *in silico*

- Cell-level finite-element modeling
- Finding the appropriate stress distribution ...
- and the appropriate passive viscoelastic response

What does it take to explain a morphogenetic process?

Step #0 for both the biologist and the physicist: describe the cell and tissue movements quantitatively and in 3D.

GFP-actin expressed in LE using Gal4/UAS system

DORSAL VIEW

end of Stage 14, start of Stage 15

courtesy of A. Jacinto and P. Martin

Millard and Martin (2008) Development 135: 621–626.

sGMCA expresssed in AS using Gal4-UAS system

courtesy of J. Weimann and D.P. Keihart

Yolk+ AS LE Necessary Components and Properties Vitelline Cells - LE - Polarization = epithelial, planar cell polarity Behaviors = adhesion (segment specific) shape change purse-string formation (1st row) filopodia extension (1st row) AS - Polarization = epithelial Behaviors = adhesion shape change - pulsatile, persistent apoptosis Yolk+ - Polarization = None Behaviors = adhesion volume change? Solids - Vitelline - Mechanics = elastic (very stiff) ECM? - Mechanics = viscoelastic (very flexible)

Fluids - Perivitelline - confined (constant volume)

Genes affecting cell motility in dorsal closure (from *The Interactive Fly*)

- * Anterior open
- * basket (also known as JNK)
- * Btk family kinase at 29A
- $*$ Cdc42
- * coracle (a protein 4.1 homolog)
- * crossveinless c
- * Decapentaplegic
- * DJNK (Synonym: Basket)
- * dysfusion
- * Fps oncogene analog
- * Hemipterous
- * Jun related antigen
- * lethal (2) giant larvae
- * misshapen
- * myoblast city
- * myospheroid (β-integrin)
- * Myosin-binding substrate
- * neurexin
- * PAK-kinase
- * peanut
- * polychaetoid
- * puckered
- * Rac1
- * ribbon
- * scab
- * schnurri
- * spaghetti squash (regulatory light chain of nonmuscle Myosin II/Zipper)
- * Src homology 2, ankyrin repeat, tyrosine kinase
- * slipper
- * spire
- * Src oncogene at 42A
- * Tec29
- * TGF-ß activated kinase 1
- * Transforming growth factor beta at 60A
- * trio
- * zipper (also known as: Myosin II)

Biologist Step #1: figure out the molecular parts list!

\mathbf{r}

Biologist Step #2: figure out how the parts are connected, i.e. the relevant pathways

Physicist Step #2: ask biologists to test the model(s)!

. . . and listen for the deafening roar (or silence).

Can laser ablation be a more quantitative tool for studying *in vivo* mechanics?

Can we measure the spatiotemporal distribution of mechanical stress in an embryo?

Is an epithelium more like a continuous sheet or a 2D cellular foam ?

Ma, Lynch, Scully and Hutson (2008) *Physical Biology* 6: 036004

Ma, Lynch, Scully and Hutson (2008) *Physical Biology* 6: 036004

Relaxation displacements around a circular hole in a thin sheet*:

$$
u_r(r,\theta) = B_1(r)(\sigma_x + \sigma_y) + B_2(r)(\sigma_x - \sigma_y)\cos 2\theta
$$

+ $u_r \cos(\theta - \theta_r)$

$$
u_\theta(r,\theta) = -B_3(r)(\sigma_x - \sigma_y)\sin 2\theta
$$

+ $u_r \sin(\theta - \theta_r)$

$$
B_1(r) = \frac{1 + v}{2E} \frac{R_0^2}{r}
$$

\n
$$
B_2(r) = \frac{1 + v}{2E} \left[\frac{4}{1 + v} \frac{R_0^2}{r} - \frac{R_0^4}{r^3} \right]
$$

\n
$$
B_3(r) = \frac{1 + v}{2E} \left[2 \frac{1 - v}{1 + v} \frac{R_0^2}{r} + \frac{R_0^4}{r^3} \right]
$$

isotropic, linearly elastic material *Assumes a homogeneous, under infinitesimal deformation.

Magenta - pre-ablation stressed state Green - post-ablation strain-relaxed state

Magenta - pre-ablation stressed state Green - computationally re-strained postablation state

Parameters from Re-straining

Assume r_0 =30 pixels, $v = 0.33$

So what cellular structures carry the in-plane tension?

Double wounds in a GFP-moesin embryo

Ma, Lynch, Scully and Hutson (2008) *Physical Biology* 6: 036004

Conclusions Ι (via spatial recoil patterns)

- 1. The spatial recoil patterns primarily resemble what you'd expect for a hole in a homogeneous thin sheet - much more so than what you'd expect for a 2D foam.
- 2. The arrangement of cell edges has a limited secondary impact.
- 3. The in-plane stress in each cell appears to be carried by its apical actin network.

But cells are viscoelastic. We need to look closely at the recoil kinetics.

Conclusions ΙΙ (via recoil kinetics)

1. Biphasic recoil kinetics are consistent with a soft glassy material that transitions to a Newtonian fluid at high-frequency (short times)

- 2. Stress concentration (1.6-fold) on cell edges in Stage 13; none in Stage 14
- \overline{C} 3. α decreases from Stage 13 to 14 \longrightarrow tissue becomes more solid-like
- 4. Stage-dependences of other parameters imply coupled constraints. These exclude 5 of 7 published models for apical constriction.

$$
\frac{\sigma_{C,14}}{\sigma_{C,13}} = (2.06 \pm 0.28) \frac{\sigma_{E,14}}{\sigma_{E,13}}
$$

$$
\frac{G'_{14}}{G'_{13}} = (1.24 \pm 0.07) \frac{\sigma_{E,14}}{\sigma_{E,13}}
$$

$$
\frac{\eta_{14}}{\eta_{13}} = (0.77 \pm 0.08) \frac{\sigma_{E,14}}{\sigma_{E,13}}
$$

Example scenario - constant η implies stiffness G' increases 1.6x stress $\sigma_{\rm E}$ increases 1.3x stress σ_c increases 2.7x

Can we reproduce our experimental observations *in silico*?

Hutson, Veldhuis, Ma, Lynch, Cranston and Brodland (2009) *Biophys. J.* in press.

2. $\langle v_{0,C} \rangle$ is the same or slightly less (~30%) than $\langle v_{0,E} \rangle$

TABLE 1 Conversion factors and estimated parameters from the best matches of simulations and experiments

The third column corresponds to the limit $\gamma \rightarrow 0$.

5. Successive wounds to adjacent cells produce two recoils. Same happens for successive wounds to different parts of a single cell.

Hutson, Veldhuis, Ma, Lynch, Cranston and Brodland (2009) *Biophys. J.* in press.

Conclusions ΙΙΙ (via modeling)

- 1. We can reproduce all 5 experimental observations using:
	- a. cells that carry interfacial (γ) and in-plane ($\sigma_{\rm in}$) tensions where σ_{in} is several times larger than in-plane γ -equivalent
	- b. a uniform cytoplasmic viscosity in each cell
	- c. a fine intracellular network of linearly viscoelastic elements
	- d. wide variability in either the viscosity or dim'less stress (could be inter- or intra-embryo variability)
- 2. We can get 4 of 5 with the viscoelastic network coarse-grained (i.e. only along cell edges).

CBO Redux: What needs to be specified for the mechanics of each cell?

- 1. viscoelasticity (measured creep function or alternative)
- 2. current unstressed cell shape (hole drilling accesses true strain from which this can be estimated)
- 3. volume constraint
- 4. surface area constraint(s) multiple if polarized

