
CellML modularity and the
Physiome Model Repository

David Nickerson (d.nickerson@auckland.ac.nz)
Catherine Lloyd
Poul Nielsen

Outline

• Introduction to CellML
• Modularity in CellML
• The Physiome [CellML] model repository
• PMR2 – the software behind the repository
• Multiscale modelling

a quick introduction...

<component name="membrane">
 <variable units="millivolt" public_interface="out"
cmeta:id="membrane_V" name="V" initial_value="-86.2" />
 <variable units="joule_per_mole_kelvin" public_interface="out"
name="R" initial_value="8314.472" />
 <variable units="kelvin" public_interface="out" name="T"
initial_value="310" />
 <variable units="coulomb_per_millimole" public_interface="out"
name="F" initial_value="96485.3415" />
 <variable units="microF" public_interface="out" name="Cm"
initial_value="0.185" />
 <variable units="micrometre3" public_interface="out" name="V_c"
initial_value="0.016404" />

 <variable units="millisecond" public_interface="in"
name="time" />
 <variable units="picoA_per_picoF" public_interface="in"
name="i_K1" />
 <variable units="picoA_per_picoF" public_interface="in"
name="i_to" />
 <variable units="picoA_per_picoF" public_interface="in"
name="i_Kr" />
 <variable units="picoA_per_picoF" public_interface="in"
name="i_Ks" />
 <variable units="picoA_per_picoF" public_interface="in"
name="i_CaL" />
 <variable units="picoA_per_picoF" public_interface="in"
name="i_NaK" />
 <variable units="picoA_per_picoF" public_interface="in"
name="i_p_K" />

 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><eq />
 <apply><diff />
 <bvar><ci>time</ci></bvar>
 <ci>V</ci>
 </apply>
 <apply><times />
 <apply><divide />
 <apply><minus />
 <cn cellml:units="dimensionless">1</cn>
 </apply>
 <cn cellml:units="dimensionless">1</cn>
 </apply>
 <apply><plus /><ci>i_K1</ci>
 <ci>i_to</ci><ci>i_Kr</ci>
 <ci>i_Ks</ci><ci>i_CaL</ci>
 <ci>i_NaK</ci<ci>i_Na</ci>
 <ci>i_b_Na</ci<ci>i_NaCa</ci>
 <ci>i_b_Ca</ci><ci>i_p_K</ci>
 <ci>i_p_Ca</ci><ci>i_Stim</ci>
 </apply>
 </apply>
 </apply>
 </math>
 </component>

 CellML is an XML-based
markup language used to
describe mathematical
models of biological
processes

 Equations are expressed
in MathML, and metadata
are expressed in RDF

 But why is there a need
for CellML?

 %----------Calc the L-type Ca current----------------------

 [CfCa,RevPCa]=
CalcConstantfield(Cai,Cao,2, Vm); %Ca
 [CfK,RevPK] = CalcConstantfield(Ki,Ko,1,
Vm); %K
 [CfNa,RevPNa] =
CalcConstantfield(Nai,Nao,1, Vm); %Na
 if (count ==1 && currenttime == 0)
 Va = -74.0078;
 else
 Va = Vm;
 end
 if (count ==0)
 [mcal, hcal,n] =
calcRateConst(1,Va,0,Cai,mcal,hcal,count,dt); %Calc
m and h
 ICaLNa =
(0.00005*PCAL*CfNa)*mcal*hcal;
 ICaLK = (0.001 * PCAL * CfK)*mcal*hcal;
 %ICaLCa = (PCAL * CfCa*mcal*hcal);
%original
 ICaLCa = (PCAL * CfCa*mcal*hcal);
 ICaL = ICaLCa + ICaLK+ICaLNa;
 else
 ICaLNa =
(0.00005*PCAL*CfNa)*mcal*hcal;
 ICaLK = (0.001 * PCAL * CfK)*mcal*hcal;
 ICaLCa = (PCAL * CfCa*mcal*hcal);
 ICaL = ICaLCa + ICaLK+ICaLNa;
 [mcal, hcal] =
calcRateConst(1,Va,0,Cai,mcal,hcal,count,dt); %Calc
m and h
 end

model creation

model creation

translated into text and
equations for
publication

model creation

translated into text and
equations for
publication

reviewed & published

model creation

translated into text and
equations for
publication

reviewed & published

interpreted & implemented

 %----------Calc the L-type Ca
current----------------------

 [CfCa,RevPCa]=
CalcConstantfield(Cai,Cao,2, Vm); %Ca
 [CfK,RevPK] =
CalcConstantfield(Ki,Ko,1, Vm); %K
 [CfNa,RevPNa] =
CalcConstantfield(Nai,Nao,1, Vm); %Na
 if (count ==1 && currenttime == 0)
 Va = -74.0078;
 else
 Va = Vm;
 end
 if (count ==0)
 [mcal, hcal,n] =
calcRateConst(1,Va,0,Cai,mcal,hcal,count,dt);
%Calc m and h
 ICaLNa =
(0.00005*PCAL*CfNa)*mcal*hcal;
 ICaLK = (0.001 * PCAL *
CfK)*mcal*hcal;
 %ICaLCa = (PCAL * CfCa*mcal*hcal);
%original
 ICaLCa = (PCAL * CfCa*mcal*hcal);
 ICaL = ICaLCa + ICaLK+ICaLNa;
 else
 ICaLNa =
(0.00005*PCAL*CfNa)*mcal*hcal;
 ICaLK = (0.001 * PCAL *
CfK)*mcal*hcal;
 ICaLCa = (PCAL * CfCa*mcal*hcal);
 ICaL = ICaLCa + ICaLK+ICaLNa;
 [mcal, hcal] =
calcRateConst(1,Va,0,Cai,mcal,hcal,count,dt);
%Calc m and h
 end

translated into text and
equations for
publication

reviewed & published

interpreted & implemented

 %----------Calc the L-type Ca
current----------------------

 [CfCa,RevPCa]=
CalcConstantfield(Cai,Cao,2, Vm); %Ca
 [CfK,RevPK] =
CalcConstantfield(Ki,Ko,1, Vm); %K
 [CfNa,RevPNa] =
CalcConstantfield(Nai,Nao,1, Vm); %Na
 if (count ==1 && currenttime == 0)
 Va = -74.0078;
 else
 Va = Vm;
 end
 if (count ==0)
 [mcal, hcal,n] =
calcRateConst(1,Va,0,Cai,mcal,hcal,count,dt);
%Calc m and h
 ICaLNa =
(0.00005*PCAL*CfNa)*mcal*hcal;
 ICaLK = (0.001 * PCAL *
CfK)*mcal*hcal;
 %ICaLCa = (PCAL * CfCa*mcal*hcal);
%original
 ICaLCa = (PCAL * CfCa*mcal*hcal);
 ICaL = ICaLCa + ICaLK+ICaLNa;
 else
 ICaLNa =
(0.00005*PCAL*CfNa)*mcal*hcal;
 ICaLK = (0.001 * PCAL *
CfK)*mcal*hcal;
 ICaLCa = (PCAL * CfCa*mcal*hcal);
 ICaL = ICaLCa + ICaLK+ICaLNa;
 [mcal, hcal] =
calcRateConst(1,Va,0,Cai,mcal,hcal,count,dt);
%Calc m and h
 end

model creation

CellML has been developed as a
potential solution to the
inconsistencies between

computational and published
models

<component name="membrane">
 <variable units="millivolt" public_interface="out" name="V" initial_value="-
86.2" />
 <variable units="microF" public_interface="out" name="Cm"
initial_value="0.185" />
 <variable units="micrometre3" public_interface="out" name="V_c"
initial_value="0.016404" />
 <variable units="millisecond" public_interface="in" name="time" />
 <variable units="picoA_per_picoF" public_interface="in" name="i_K1" />
 <variable units="picoA_per_picoF" public_interface="in" name="i_Ks" />
 <variable units="picoA_per_picoF" public_interface="in" name="i_CaL" />
 <variable units="picoA_per_picoF" public_interface="in" name="i_NaK" />
 <variable units="picoA_per_picoF" public_interface="in" name="i_p_K" />

 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <apply><eq />
 <apply><diff />
 <bvar><ci>time</ci></bvar>
 <ci>V</ci>
 </apply>
 <apply><times />
 <apply><divide />
 <apply><minus />
 <cn cellml:units="dimensionless">1</cn>
 </apply>
 <cn cellml:units="dimensionless">1</cn>
 </apply>
 <apply><plus /><ci>i_K1</ci>
 <ci>i_to</ci><ci>i_Kr</ci>
 <ci>i_b_Na</ci<ci>i_NaCa</ci>
 <ci>i_b_Ca</ci><ci>i_p_K</ci>
 <ci>i_p_Ca</ci><ci>i_Stim</ci>
 </apply>
 </apply>
 </apply>
 </math>
 </component>

Reproduction and provenance

doi:10.1093/bioinformatics/btn080

http://www.bioeng.nus.edu.sg/compbiolab/p2/

doi:10.1109/IEMBS.2008.4649689

http://www.bioeng.nus.edu.sg/compbiolab/p3/
http://models.cellml.org/workspace/a1/

 Not the only model
description language

 Even where MATLAB is
used – as a procedural
language it is distinct
from the published
model

 A CellML model is a
pure representation of
the maths in the
published paper

 %----------Calc the L-type Ca
current----------------------

 [CfCa,RevPCa]=
CalcConstantfield(Cai,Cao,2, Vm); %Ca
 [CfK,RevPK] = CalcConstantfield(Ki,Ko,1,
Vm); %K
 [CfNa,RevPNa] =
CalcConstantfield(Nai,Nao,1, Vm); %Na
 if (count ==1 && currenttime == 0)
 Va = -74.0078;
 else
 Va = Vm;
 end
 if (count ==0)
 [mcal, hcal,n] =
calcRateConst(1,Va,0,Cai,mcal,hcal,count,dt);
%Calc m and h
 ICaLNa =
(0.00005*PCAL*CfNa)*mcal*hcal;
 ICaLK = (0.001 * PCAL * CfK)*mcal*hcal;
 %ICaLCa = (PCAL * CfCa*mcal*hcal);
%original
 ICaLCa = (PCAL * CfCa*mcal*hcal);
 ICaL = ICaLCa + ICaLK+ICaLNa;
 else
 ICaLNa =
(0.00005*PCAL*CfNa)*mcal*hcal;
 ICaLK = (0.001 * PCAL * CfK)*mcal*hcal;
 ICaLCa = (PCAL * CfCa*mcal*hcal);
 ICaL = ICaLCa + ICaLK+ICaLNa;
 [mcal, hcal] =
calcRateConst(1,Va,0,Cai,mcal,hcal,count,dt);
%Calc m and h
 end

 Historical reasons – both languages were started around
1999/2000 and were unaware the other existed

 Functional reasons – SBML and CellML have different
emphases:
› “SBML is designed for representing models of

biochemical reaction networks”. (http://www.sbml.org/)

› “The purpose of CellML is to store and exchange
computer-based mathematical models”. (http://www.cellml.org/)

CellML has a flexible structure and can be used to
describe a diverse range of models… including…

CellML has a flexible structure and can be used to
describe a diverse range of models… including…

signal transduction

CellML has a flexible structure and can be used to
describe a diverse range of models… including…

metabolism

CellML has a flexible structure and can be used to
describe a diverse range of models… including…

electrophysiology

CellML has a flexible structure and can be used to
describe a diverse range of models… including…

immunology

CellML has a flexible structure and can be used to
describe a diverse range of models… including…

calcium dynamics

CellML has a flexible structure and can be used to
describe a diverse range of models… including…

cell cycle

CellML has a flexible structure and can be used to
describe a diverse range of models… including…

muscle contraction

CellML has a flexible structure and can be used to
describe a diverse range of models… including…

And synthetic biology

A question of scale...

Genes Cell
structure
-function

Tissue
 structure
-function

Clinical
medicine

Organ
 structure
-function

 Proteins
Lipids

Carbohydrat

es

mRNA

…

CellML FieldML + OpenCMISS

CellML has 2 essential features which
promote model exchange and reuse:

 CellML has a modular architecture;
allowing models to be broken down into
“components”

 CellML 1.1 has an “import” feature which
allows models to be connected and reused

Often biological
models are formed

from similar
components. They
can build on each
other, becoming

increasingly
complex over time.

Luo & Rudy I
1991

Luo & Rudy II
1994

Noble et al.
1998

Some natural systems have a
modular composition. Shared

entities or processes can be reused
between models.

Faville et al. 2009
2 models: cell & pacemaker
the pacemaker is defined

once and is imported into the
cell 10 times

CellML 1.1 modularity

Poul Nielsen

CellML

●CellML is designed to support the definition and sharing of models
of biological processes.
●CellML includes information about:

● Model structure (how the parts of a model are organizationally
related to one another);

● Mathematics (equations describing the underlying biological
processes);

● Metadata (additional information about the model that allows
scientists to search for specific models or model components in a
database or other repository).

●A public repository of over 500 published signal transduction,
electrophysiological, mechanical, and metabolic pathway processes
is available at http://models.cellml.org/

CellML components

●CellML has a simple structure based upon connected
components.
●Components abstract concepts by providing well-defined
interfaces to other components.
●Components encapsulate concepts by hiding details from other
components.

CellML connections

●Connections provide the means for sharing information by
associating variables visible in the interface of one component
with those in the interface of another component.
●Consistency is enforced by requiring that all variables be
assigned appropriate physical units.

CellML encapsulation

●Encapsulation hierarchies are enabled using private interfaces.

CellML model
●A model is the root element for a CellML document. It is a
container for components, connections, units, and metadata.

CellML import
●Model reuse is enabled by the import element.
●New models may thus be constructed by combining existing
models into model hierarchies.

Model libraries

●Model reuse encourages the creation of model libraries.
●This is possible in CellML because there is no distinction
between models as stand-alone entities and models as templates.
●Every import creates a new instance of the imported model in
the importing model.
●The same model can be imported multiple times to create
separate instances (with distinct identifiers) within the importing
model.

Model libraries

●Obvious candidates for reuse are existing CellML 1.0 models
available in the model repository.
●Other candidates are the decomposition of existing models by
identifying reusable generic (sub)models.
●These generic models are then formulated as new library models,
making them available as basic building blocks for import into larger
models.
●Useful generic models include collections of:

● units (complicated combinations, non-SI definitions)
● constants (codata fundamental physical constants)
● processes (integrators, reactions, rate relations, ion channels, …)

●Sometimes difficult to balance genericity versus conciseness.

Combine models using CellML
import

Pandit et al.
cardiac action potential

Hinch et al.
Ca-induced Ca release

Niederer et al.
myofilament mechanics

Terkildsen et al.
Integrated model of e-c coupling

Best practice

●Most useful non-trivial library components describe clearly
identifiable biophysical processes.
●Sarala Wimilaratne has given several examples of this approach
in her PhD thesis on CellML model visualisation (Cooling 07
GCPR cycle, Hodgkin-Huxley 52, Nobel 62).
●We are compiling a list of best-practice examples based on the
experience gained through the process of model decomposition.
●This work is still in its early stages – there is still much to be
learned about which approaches offer the best long-term benefits.

Best practice

● Put reusable mathematics in separate components, and use <import>s to instantiate
these for use where appropriate.

● Use ‘_delta’ components to extensibly connect multiple fluxes to species of interest.
● Use separate conversion components for connections where applicable.
● Build coarse-grained components from aggregations of finer-grained, biologically

atomic components.
● Define <units> at the lowest level possible, <import>ing into higher level

components as necessary.
● Separate out all parameter values into one or more non-mathematical CellML

documents.
● Universal constants should be <import>ed from a non-mathematical CellML

document (a standard based document on [UC] is recommended).
● If encapsulating, expose all potentially useful values using

public_interface=“out”.

Dr Catherine Lloyd
Senior Database Curator
Auckland Bioengineering Institute

Dr Catherine Lloyd
Senior Database Curator
Auckland Bioengineering Institute

Physiome

 Began life as a set
of test cases

 Today contains
>500 models

 Most the models
are derived from
published papers

 All the models are
free for download

signal transduction

metabolism

electrophysiology

immunology

calcium dynamics

cell cycle

muscle contraction

synthetic biology

 Each model and
its associated
files are stored
together in a
workspace

 Every alteration
is recorded and
time-stamped to
provide a detailed
change-history

 Each model entry may be accompanied
by an abstract, curation status, citation,
and a schematic diagram.

 Curators

 Modellers

 Curators &
modellers together

 Curation involves model validation & annotation

 A star system denotes the curation status of a model

 There’s also a more detailed model status comment
on display, and the change-history comments
recorded in the workspace

 FACT: Of the ~500 models in the repository only a
small handful have been directly translated from
the published paper into a working CellML model

 QUOTE: “As anyone who has tried to reproduce a
published mathematical model will testify, it’s a
long, tedious, and generally futile task. Equations
are replaced by ambiguous descriptions,
parameter values are left undefined and, worst of
all, the main author has given up science to set up
a vegan cup-cake business.” Dr K. S.

Na+

INa INa,b

Na+Ca2+Ca2+

ICa,b ICa,LICa,T

Ca2+

IKr K+

IK1 K+

IKs K+

IKto K+

IKp K+

 ICl

Cl−

Na+

INa INa,b

Na+

TRPN

Calcium
Buffering

CMDN

Ca2+Ca2+

ICa,b ICa,LICa,T

Ca2+

IKr K+

IK1 K+

IKs K+

IKto K+

IKp K+

 ICl

Cl−

3Na
+

NCE

Ca2+

 ATP

Ca2+

 ATP
Ca2+

Vup NSRJSR Vleak

Vrel

CSQN
Ca2+

Vtr

Na+

INa INa,b

Na+

TRPN

Calcium
Buffering

CMDN

HCO3
− + H+ CO2

Intrinsic

 pH Buffering

H+

NHE

Na+ HCO3
−

NBC CHE
OH−

AE
HCO3

−

Cl−

Ca2+Ca2+

ICa,b ICa,LICa,T

Ca2+

IKr K+

IK1 K+

IKs K+

IKto K+

IKp K+

 ICl

Cl−

3Na
+

NCE

Ca2+

 ATP

Ca2+

 ATP
Ca2+

Vup NSRJSR Vleak

Vrel

CSQN
Ca2+

Vtr

 Labelling the models with biological & biophysical data

 Using consistent terms from ontologies

 For improved repository searches, facilitated language
interconversion, and model visualisation

 MIRIAM – The Minimal Information Required in the Annotation of Models

 MIRIAM provides a list of criteria a model must satisfy to become fully curated

 By replacing the “stars” with MIRIAM-based “flags” the curation status of a model becomes
less ambiguous

Physiome model repository
models.physiomeproject.org

PMR2
The software behind

the repository

Glossary

• Workspace – data agnostic mercurial repository
• Changeset – a representation of a single revision of the

content of a workspace
• Exposure – a permanent link to a specific changeset

with data rendered for the web
• Exposure plug-ins – an extensible framework for

rendering workspace content for web presentation
• Plone CMS – workflow manager; user access controls;

web presentation; etc.

An example from computational
physiology

• Build up a multiscale model of the renal nephron
– ion transporters, cellular models, segmental models,

whole nephron...
• Share the various models with collaborators
• Publish the model along the way

• Disclaimer: not all the following features are
implemented/integrated in either language
specifications and/or supporting software tools – and
such features may change considerably before they are
supported.

Membrane transporters

(Workspace)

Membrane transporters

Membrane transporters

Assemble a cell model

Epithelial Cell

Embedded workspaces

• Intended to manage the separation of modules which
are integrated to create a model

• Facilitate the sharing and reuse of model components
independently from the source model

• Enables the development of the modules to proceed
independently, thus the version of the workspaces
embedded is also tracked

• Allows authors to make use of relative URIs when
linking data resources providing a file system agnostic
method to describe complex module relationships in a
portable manner

Collaborative model development

Versioning embedded workspaces

• Workspaces can be embedded at a specific revision or
set to track the most recent revision of the source
workspace

• Changes made to the source workspace will not affect
the embedding workspace until the author explicitly
chooses to update the embedded workspace

• Provides the author with the opportunity to review the
changesets and make an informed decision regarding
alterations to embedded revisions

Data agnostic workspaces

• Generic mercurial repositories
• Can contain any format data (currently relatively

unrestricted)
– CellML, SBML, FieldML, SED-ML, PDF, .doc, ...

• No restriction to models only
– experimental data, simulation results, generated

images, ...

Multiscale models

Renal Nephron

Renal Nephron

Epithelial Cell
Epithelial Cell

Epithelial Cell
Epithelial Cell

OpenCMISS

• Connecting variables in CellML models to field
components in a finite element model
– Prototype for linking CellML and FieldML models?

• Allows information to flow in both directions
– Field values can be controlled by the CellML model

and CellML model variables can be controlled by field
components

• Will have the ability to make use of many different
CellML models which can be simulated independently

• Each CellML model may be replicated many millions of
times for large scale problems
– Distributed computing, GPUs, FPGAs, ...

“Team CellML”

Acknowledgements

	Title goes here
	Slide 2
	Outline
	What is CellML?
	Slide 5
	The Underlying Problem? The Publishing Process
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Model exchange and reuse
	FAQ 1: why can’t we just use MATLAB?
	FAQ 2: this sounds a lot like SBML, why do both exist?
	CellML language features
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Language “limitations”
	Modularity and reuse
	Model reuse 1: models can evolve over time
	Model reuse 2: models can share entities & processes
	Model reuse 3: a model with a repeating unit
	CellML 1.1 modularity
	CellML
	CellML components
	CellML connections
	CellML encapsulation
	CellML model
	CellML import
	Model libraries
	Slide 38
	Combine models using CellML import
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Best practice
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101

