CHAPTER III
THE GEOMETRY OF CELLULAR PATTERNS

Before we turn to the physical processes of two dimensional coarsening
we need to discuss a few basic mathematical relations describing general
coordination number three networks. We also present the basic evolution
equation describing bubble growth, (von Neumann’s law), since its derivation
is essentially geometrical and will therefore obtain to any purely diffusive

surface tension driven system.

II1.a Basic Mathematical Relations

The properties of a connected network consisting of vertices, edges, cells
(or faces), and polyhedra (in three dimensions) may be briefly encapsulated

in the Euler Relation,%! which states that

Nyertices — edges + Neeuts — N, polyhedra = 1. (ml)
In two dimensions there are no polyhedra so the Euler Relation reduces to
Nyertices — edges + Neets = 1. (IIIZ)

Another basic relation, the average number of sides per cell, < n >, in an
infinite lattice of coordination number 3 may be derived as follows. Each

vertex is shared by 3 cells and each cell has < n > vertices on average, so

1 )
Nyertices = 3 < n > Nes- (III3)
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Each edge is shared by two cells so

<n>
Nedgea = _2_"Nc¢lla° (I11.4)

Applying Euler’s Relation we obtain that

1 1
3 <n> Neys — 3 <n> Neeps + Neeyts = 1. (IIL.5)

In the limit of a large system,

lim H <n>=1. (I11.6)
Neeyty—00

So the average number of edges per cell < n >= 6.9 In three dimensions
there is an extra degree of freedom, so the equations are underdetermined.
If the average number of faces per grain is < f > and the average number of
sides per face is < ny > then for an infinite froth the quantities are related

as:
12
<f>

<ng>=6- (II1.7)

III.b Von Neumann’s Law

The simplest and most beautiful theoretical result for the dynamics of
the soap froth is due to von Neumann, who, in a comment to a presentation
by Smith argued that the rate of increase or decrease of a bubble’s area

should depend only on the bubble’s number of sides.18!

Let us first discuss the driving force behind cell growth and shrinkage,

pressure driven diffusion. If a film between two bubbles has a radius of
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curvature p, and occupies an angle ¢ its length, £ is, to lowest order, £ = p¢.

For a small change in normal radius, z, g:% = ¢. But ¢ = arcsin £ ~ % to

P
lowest order. So % ~ %. Since the surface tension o is a force per unit length,

the pressure difference required to sustain the curvature is AP = agﬁ- ~ %.

The same basic derivation holds for grain growth in polycrystals and for
similar reasons. We follow the argument given by Plateau.189 A curved film
has a larger surface energy than a flat film, and a curved grain boundary has
a higher surface energy than a flat grain boundary. In a grain there is no
surface tension per se but there is a surface energy— atoms at the surface of
the grain have a higher energy than those in the bulk. An atom sitting in a
convex portion of grain surface is more exposed to defects, and hence has a
higher energy than an atom sitting across the grain boundary in a concave
section of surface. Thus it is energetically favorable for atoms to jump across
the grain boundary from convex to concave surfaces. The energy difference
is proportional to the surface curvature so the basic result is that energy

driven diffusion results in a local boundary velocity, ¥, at a point Z, of

(2 = u(D) 22 (L)

where u(Z) is the local mobility which may depend strongly on time, temper-
ature (activation energy) and boundary orientation (anisotropy), fi(Z) is the
unit normal to the surface, and p(Z) the local curvature.!’? If the tempera-
ture is high enough that kT >> orientational anisotropy, and the boundary
mobility is constant in time (no zone refining effects), then averaging over a

large number of grain orientations reduces the surface energy to an effective



Fig. 7 von Neumann’s Law: Explanatory Diagram. A ﬁve-sidéd
bubble, where a is the average central angle, S half the average internal angle
of a polygonal approximation to the bubble, § the difference between 8 and
60°, £ the length of the side of the bubble, and p the radius of curvature of

the side.
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surface tension and differential pressure, and we can treat grain growth and
soap bubble growth as identical. If kT = orientational anisotropy, certain
grain boundary orientations will be stabilized and grain growth will gradually
slow, and may even stop at a finite grain size. If zone refining reduces
or enhances the average boundary mobility, cessation of grain growth or

explosive anomalous grain growth can result.

The remainder of the argument is purely geometrical and local. Von
Neumann’s derivation is economical and we follow it closely. We make the
following hypotheses. 1) That vertex angles in a froth are 120°. 2) That all
walls are sections of circular arcs. 3) That the pressure difference across a
wall A P is proportional to one over the radius of curvature of the wall. 4)
That the rate of gas diffusion across a wall is equal to its length times the
pressure difference across it. 5) That pressure differences are small so that

diffusion of gas is equivalent to diffusion of area.

We now make the following geometrical observations (See Fig. 7). The
average central angle,a of a triangular wedge of an n-sided polygon is a =

360°/n so the average internal angle, S, is
or. 2
B =90°(1— ;). (IIL.9)

The angle difference between the actual bubble angle and the polygon leaves,

by hypothesis 1, an angle deficit to be made up by curvature:

5=60°—f= 9o°(% - %) (I1L.10)
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to be made up by curvature, which gives, by hypothesis 2, a radius of cur-

vature,
£

"~ 360°(2-1)’

where £ is the length of the circular arc over the side of the polygon. If we

2 (IIL.11)

apply hypothesis 3 we find that

180° ,6 — n

AP 7 (3n )-

(IL.12)

Noting that the diffusion of gas is towards the region with lower pressure,
and applying hypotheses 4 and 5, we multiply by n sides and the length
of each section of circular arc, £, to obtain von Neumann’s law, the rate of

change of area, A,, of an n-sided bubble,

dA,
—dt—' = lC(n - 6), (III.13)
where x is a diffusion constant with the units of é-‘;‘—%.

Note that we have made no assumptions about the regularity of the froth
since the lengths of the circular arcs cancel side by side. Thus the law is both
exact and local for any pure diffusive system obeying our five hypotheses. If
we had assumed an n-dependent typical internal angle, 8(n), for the froth,

the derivation would follow as before to obtain the generalized result:

dAy

22 = K(3n(1 - n)yy ). (IIL.14)

180°
If the average internal angle of an n-sided bubble varies from bubble to
bubble, this revised law provides a mechanism for a variation of growth

rates within the population.
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The only patterns that are stable under von Neumann’s law are the
perfect hexagonal lattice and the empty lattice. Introducing even a single
defect pair into a perfect hexagonal lattice results in the collapse and eventual
disappearance of all the bubbles in the lattice. Thus we know that the only
possible type of equilibrium for the systems is one in which the average length
scale grows continuously in time, but the normalized distribution functions
(p(n), the probability that a given bubble has n sides, A, = %g, the
relative size of n-sided bubbles compared to the total population, etc.) and
local correlations (e.g. m(n), the average number of sides of a bubble next
to an n-sided bubble), remain constant. We call this equilibrium, if it exists,

a scaling state.

Von Neumann’s law predicts that in a scaling state, i.e., when the func-
tions describing the distribution of areas and number of sides are constant
in time, the average area of a bubble, < a > is proportional to the time, .
This result may be argued in several different ways 84:167:172,178 byt we find
it simplest to derive as follows. Let A be the area of the entire system, N
be the total number of bubbles, p(n) and ), as above. Then the number
of bubbles lost per unit time is the area lost by three-, four-, and five-sided

bubbles per unit time divided by their mean areas,

aN __ Y sp(n)N(n — 6) (I1.15)
dt 15 Mm<a> )

Substituting for < a > we obtain

dN kp(n)(n — 6)
- = -N% ) W R (I11.16)

n=3,4,5
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If the distribution functions are time independent, which is what we mean

when we say we are in a scaling state, then the sum is a constant and

dN
?oc—N2 =+ Nxt™! 2 <a>xt. (1m1.17)
The modified version of von Neumann’s law leads to the same result. Thus
by itself, von Neumann’s law predicts the asymptotic linear scaling of the

froth. Alternative derivation of the growth exponent from the hypothesis of

a scaling state have been given by Mullins and Weaire and Kermode.173:242

However, von Neumann’s law is not a complete description of the dynam-
ics of a froth. It describes only the growth of bubbles with fixed numbers of
sides. During the evolution of a froth bubbles typically change their number
of sides many times. In particular, whenever a bubble disappears some of
its neighbors change their number of sides. Since average bubble area can
only increase when bubbles disappear, von Neumann’s law cannot provide
a complete description of the coarsening process. Any complete description
of the evolution of the soap froth must make additional assumptions about
how éide redistribution takes place. Such information can only come from

direct experimental observations of real froths.



