CHAPTER IV
BUBBLES-EXPERIMENTAL

IV.a Experimental Procedure

Several groups have collected experimental data on the two dimensional
soap froth. Smith made the first studies using low pressure air in a sealed
cell circular glass cell and applied vigorous shaking to produce an initially
disordered froth with a few hundred bubbles and a bubble diameter of be-
tween one and two millimeters. Coarsening from this length scale to the
size of the container required approximately two hours.2%® He photographed
the cell periodically during coarsening. With this data Smith measured the
rate of area growth with time and Aboav the evolving distribution func-
tions of the froth.® Fisher and Fullman preformed a similar experiment in a
medium pressure sealed container and independently measured the rate of
bubble growth.8¢ More recently Weaire and Fu studied the evolution of a
froth using very small air bubbles in a cell made from microscope slides and
photographed under a microscope.®3 Typical coarsening times for their froth
were four or five hours. They were particularly interested in experimentally
verifying von Neumann’s Law. Glazier, Gross and Stavans collected more

complete data on the soap froth in a series of experiments which we describe

in detail below.93,94,220

Glazier, Gross and Stavans used a series of large rectangular experimental
cells. These were made of plexiglass and sized to be slightly smaller than
either an 8%” x 11” or 8%” x 14” piece of paper. The vertical spacing was
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either 1/8” or 1/16”. Catheters inserted through holes drilled in the spacer

allowed filling and draining. A thick coat of epoxy sealed the joints.

They used a soap solution consisting, of water (approximately 85% by
volume), Dawn brand liquid detergent (approximately 10%) and glycerol
(approximately 5%). While they did not attempt to control carefully the
mixing of the fluid, their results were apparently independent of the exact
fluid composition. However, they found that certain solutions (surprisingly
those containing a higher percentage of soap and glycerol) had a higher rate

of side breakage than others.

In different runs they used bubbles either of helium or air, helium froths
evolving roughly five times faster than air froths, but being otherwise similar.
In no case did they observe any evidence of leakage of the working gas from

the cell.

Since they were interested only in the long term behavior of the forth,
neither Smith nor Fullman made any effort to control the uniformity of their
initial bubble pattern. Indeed, the method of froth generation they em-
ployed always resulted in highly irregular patterns with broad area and side
distributions. Glazier, Gross and Stavans, on the other hand were particu-
larly interested in the transition from ordered to disordered patterns. They
therefore developed two basic methods to fill the cell with froth. In the first
method, which they used to obtain very uniform fills of small bubbles, they
completely filled the cell with soap solution, then tipped the cell on its edge

and slowly injected gas bubbles at the bottom of the fluid, draining excess
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fluid through a catheter at the bottom of the cell. The variation in the size
of the injected bubbles determined the initial degree of disorder in the froth.
They found that because of the long fill times (approximately ten minutes),
the top portion of the froth was significantly more developed than the bottom
at the nominal beginning of the experiment, which made early portions of
the time series more difficult to interpret. In the second method, they filled
the cell only about 10% full and injected the gas through one of the filling
catheters just below the surface of the soap solution. This allowed them to
control the size and uniformity of the bubbles both by varying the injection
pressure and the angle of the cell relative to the vertical. The advantage of
this method was that they could fill the cell more quickly, but it was more

difficult to obtain very uniform or very small bubbles.

When necessary they "annealed” the froth by injecting excess fluid and
gently tipping the cell to remove obvious irregularities, then draining the
excess fluid (their failure to measure the volume of fluid remaining in the
cell makes it difficult to provide quantitative estimates of the role of Plateau
border broadening), injected a small amount of ink and sealed the catheters
with corks and vacuum grease. The ink made the Plateau borders, the
thickened region of fluid between the membranes and the walls (see Fig. 8),
easily visible. To make measurements, they placed the prepared cell level on
a photocopier and copied periodically at intervals depending on the rate of
evolution (intervals of 15 minutes at early times and 12 or 24 hours at long

times). The photocopier has several advantages over photographic recording.



Fig. 8 Plateau Border: Top view of the region where three soap films
meet. The films’ top surfaces are in contact with a flat glass plate. The
wetting of the fluid on the glass sucks excess fluid onto the glass, resulting in
the broad lines seen. A similar effect thickens the line where the films meet,
which seen from above produces the central triangle. The films themselves
are thin, and can be seen to be well centered within the Plateau border

(Redrawn from Lewis 1949).147
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It is simple, much less expensive, and has an intrinsically high contrast ratio.

It also produces a large image with correct absolute lengths.

It is important to realize that both photographs and photocopies show
the Plateau borders and not the soap membranes themselves. One cannot
easily observe the actual position of the soap films nor whether they are
curved in the vertical direction. However, examination with a microscope of
untinted soap films suggests that the films are both well centered and flat,

as seen in Fig. 8.

Glazier, Gross and Stavans used a Xerox model 4000 photocopier which
provided relatively low contrast.?4 Stavans and Glazier, and Glazier et al.
employed a Mita Model DC-1255 photocopier,93'22° ‘a scanning type which
provided much better quality copies, but heated the cell signiﬁca.ntlsr during
each copy. While the duration of heating was short, and thus should not have
significantly affected the dynamics of the froth, it did result in occasional wall
breakage. The total number of walls broken during a run represented less
than .1% of the total side redistribution, but nevertheless may have resulted

in slightly greater numbers of very many-sided bubble.

IV.b Digitization

Many of the results described for the soap froth were obtained by direct
hand counting from photocopies or photographs. Fu, and Glazier Gross
and Stavans essentially followed the procedures established by Smith and

Aboav, though for area measurements Glazier Gross and Stavans had the
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advantage of using a digitizing tablet, a technique also employed by Kreines
and Fradkov.13! Problems with hand digitization include its extreme tedium

and large inaccuracies. However, its intrinsic resolution can be very good.

Glazier et al. relied on direct digitization of 30% samples of their photo-
copies using a camera type digitizer with a resolution of 600 x 500 pixels for
much of their Potts model and distribution function analysis, editing the dig-
itize& images by hand to remove obvious defects in the digitization. Raster
images were converted into grains using a standard “worm” technique, each
pixel being assigned to a separately numbered grain for analysis. The image
quality of their camera digitizer was sufficient that it produced very few spu-
rious bubbles or broken lines (fewer than 2%). The resolution of the digitizer
was sufficient to represent a few thousand bubbles with a typical size of 10
x 10 pixels. One advantage of this type of digitization was that the digitized
images could serve directly as initial conditions for Potts model simulations,
one pixel in the image corresponding to one spin in the model. A disadvan-
tage was that the relatively small image area gave rather poor statistics at

long times.
IV.c Basic Experimental Resultis

IV.c.s Qualstative Description of Coarsening

Let us first look at the qualitative features of the evolution of a soap
froth. We distinguish three basic patterns of evolution, that evolving from

an initially well ordered state, that evolving from an initially disordered state,



Fig. 9 Evolution of a Soap Froth: Coarsening of a two dimensional
soap froth. Illustrations show 15% details of the total area of the experimen-
tal cell. (a) The left side shows an initially well ordered run in Helium gas
(initial disorder 8(0) = 0.17). Times for the figures: (A) ¢t = 1 hour, (B)
t = 2.52 hours, (C) t = 4.82 hours, (D) ¢t = 8.63 hours, (E) ¢ = 19.87 hours,
(F) t = 52.33 hours. Letters are keyed to Fig. 16 (d) (b) The right side
shows an initially disordered run in air (initial disorder 8(0) = 0.85. Times
for the figures: (A’) t = 1.95 hours, (C’) ¢t = 21.50 hours, (F’) t = 166.15
hours. Letters are keyed to Fig. 16 (f). The final states are essentially

indistinguishable (From Glazier, Gross and Stavans 1987).94
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Fig. 10 Evolution of a Soap Froth Evolution of an air soap froth
with artificially broadened initial distribution functions. Lettered times cor-
respond to regimes in Fig. 16. The illustrated areas represent 5% of the

total experimental cell area (From Stavans and Glazier 1989).220
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and that evolving from an initial state with an artificially large distribution

of initial sizes.

Fig. 9 (a) presents details (corresponding to 15% of total area) of photo-
copies taken by Glazier, Gross and Stavans of an initially ordered run (with

initial disorder to be defined later, 8(0) = 0.17)
We may qualitatively distinguish these figures as follows:

(A) The bubble lattice is essentially ordered, being composed of hexag-
onal crystal grains with defects consisting of five- and seven-sided bubbles
at the grain boundaries. All bubbles are essentially the same size. Most are
six-sided. A few are five- or seven-sided. The rate of evolution is slow (See

Fig. 16 (d)).

(B) The grain boundaries become visibly marked as five-sided bubbles
shrink and seven-sided bubbles grow. However six-sided bubbles do not
evolve. The number of bubbles with n # 6 increases, as does the rate of

evolution.

(C) The grain boundaries grow into patches of disorder which eat away at

the ordered regions. The ordered and disordered regions occupy essentially

equal areas. The normalized width of the area distribution ( <<5:>> ) is

maximal. Many-sided bubbles are common as there is a large probability for

a large bubble to be surrounded by much smaller bubbles.

(D) The ordered regions have almost entirely disappeared. The width of

the normalized area distribution and the rate of evolution begin to decrease.
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The number of many-sided bubbles decreases. The fraction of five-sided bub-
bles, p(5), increases monotonically, while the fraction of six-sided bubbles,

p(6), decreases. See Fig. 33.

(E), (F) Long term states. The evolution rate is essentially constant.
There are almost no three-sided bubbles and many-sided bubbles are rare.
However, the fraction of bubbles with more than seven sides, p(n), n > 7,

increases slowly.

For large initial disorder. (89 = 0.85), we observe a simpler pattern of

evolution. We present detail photos of such a run in Fig. 9 (b).

(A’) The lattice is relatively disordered but not in a long term scaling

state. The rate of evolution increases monotonically (See Fig. 16 (f)).

(C’) The lattice coarsens and the width of the distribution functions
first decreases slightly as the system overshoots equilibrium, then increases
to its final equilibrium value. The rate of evolution continues to increase

monotonically to its final value without overshoot.
(F’) Long term state. The state is indistinguishable from (E) and (F).

For an artificially broadened area distribution, including both well or-
dered and completely disordered patches, we again observe a monotonic
equilibration (Fig. 10).

(A”) Initial condition. Many small bubbles with a few very large bubbles

with very many sides.
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(C”) The large bubbles gradually lose sides to the advantage of their

neighbors. The relative area of many sided bubbles decreases.

(F”) Long term states. Except for the presence of one eleven-sided bub-

ble, the state is indistinguishable from (E), (F) and (F’).

IV.c.tt von Neumann’s Law: Ezperiment

Fu, Glazier, Gross and Stavans, and Glazier et al. have made experi-
mental measurements of von Neumann’s law.85:93%4 Fu measured areas by
cutting out the individual bubbles from his photographs and weighing them,
an extremely tedious procedure that limited him to small samples. Glazier,
Gross and Stavans and Glazier et al. made their measurements using a digitiz-
ing tablet (marginally less tedious), following around the edge of the bubble
and selecting a few key points to digitize. For example a seven-sided bubble
might have been digitized as fourteen- or twenty one-sided polygon depend-
ing on the degree of curvature of its sides. The digitization was repeated
either three or six times for each bubble and the results averaged together

to obtain an estimate for the bubble area.

This method had several disadvantages. The most serious problem was
the difficulty of making repeated accurate measurements by hand. The typ-
ical variation in area estimates for a single bubble could be as high as 5%.
Especially for images taken late in a run when the Plateau borders were
broad, it was difficult to find the centers of the Plateau borders to obtain

the correct perimeter. Enlarging the image increased the error from both



TABLE 3
VON NEUMANN'’S LAW

da, /dt System
Helium®¢ Helium® Helium®*

n | 0.817 (hours) 11.1 (hours) | 38.23 (hours)

3 - -8.

4 - -1.21 -1.28 -5.28 -0.41

5 -0.59 -0.50 -0.70 -3.04 -0.41

6 0.00 0.00 0.00 0.08 0.005

7 0.71 0.67 0.47 1.39 0.38

8 0.89 1.28 1.04 4.13 0.74

9 - - 1.82 5.28 1.18
10 - - - 8.42 1.29
11 - - - 24.47 1.88
12 - - - 18.97 -
14 - - - 31.18 -
18 - - - 19.93 -
17 - - - 28.78 -
21 - - - 25.18
22 - - - 47.59 -
24 - - - 37.52 -
25 - - - 35.00 -
36 - - - 23.01 -
66 - - - 46.54 -

56



Fig. 11 Von Neumann’s Law. Growth rates for n-sided helium
bubbles at (A) ¢ = 1.82 hours, (B) ¢ = 12.10 hours and (C) t = 39.23 hours,
for the run given in Fig. 16 (d). Results are consistent with von Neumann’s
law with x = 4.57 x 1072+ 3.8 x 1073 %“;;— at all times. Error bars indicate
the variation in x among individual n-sided bubbles at 95% certainty (From

Glazier, Gross and Stavans 1987).%4
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Fig. 12 Von Neumann’s Law. Growth rates for n-sided air bubbles.
The result is consistent with von Neumann’s law for n up to 24. Error bars
show one standard deviation. Single points indicate that only one measure-

ment was made for that number of sides (From Glazier et al. 1989).%3
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effects, and working with larger bubbles made the problem worse, since von
Neumann’s law predicts absolute not relative changes in area. Finally, the
measured area depended on the number of points used in the approximating
polygon and the exact position where they were set down, thus system-
atically underestimating the size of bubbles with fewer than six sides and

overestimating the size of bubbles with more than six sides.

Measurements made over the longest possible time intervals, i.e. mea-
suring the area of a bubble just after (and again just before) it changed its
numbér of sides, minimize these errors. Large statistical samples reduce the
random noise introduced by hand measurement. In the case of bubbles with
three or more than ten sides, however, the rarity of the types limited Glazier
et al.’s sample size to at most a few (sometimes only one) bubbles. Mea-
surements of six-sided bubbles were easier because of the tendency of such
bubbles to clump together at early times during a run. Treating a clump of
six-sided bubbles as one many-sided bubble greatly reduced the measurement
error. The essentially straight walls of six-sided bubbles further improved ac-

curacy in this case.

In Table 3 and Figs. 11 and 12 we present experimental measurements
of von Neumann’s law by Fu, Glazier, Gross and Stavans, and Glazier et al..
Fig. 11 shows a series of measurements made by Glazier, Gross and Stavans
in helium at different times during the same experimental run, and shows
that the area diffusion constant « (the slope of the line through each set of

points) remained constant to within 5% during the period of the measure-
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ments. 12 shows Glazier et al.’s results taken at a single time from an air
system in which a large range of bubbles sizes and hence number of sides were
purposely introduced, providing information on the growth rates of bubbles
with up to twenty sides, although not in a scaling state nor with any great
statistical accuracy. The indicated error bars in the measured values of ‘%ﬂ-
at least partially represent real fluctuations in bubble growth rates. For ex-
ample, some seven-sided bubbles do shrink. However, much of the scatter
is probably due to measurement error rather than intrinsic fluctuations in
growth rates. The calculated value of k depends on the details like the cell
thickness and the amount of fluid in the froth, so we neglect it. What is im-
portant is the linearity of the measured growth rates in n and the constancy

of the diffusion constant in time for a given run.

All three groups obtained the expected linear relation between n and ;‘ftn.
for bubbles with between five and roughly fifteen sides. Three- and four-sided
bubbles shrink slightly more slowly than expected and bubbles with more
than about fifteen sides perhaps grow slightly more slowly than expected.
The deviation for few-sided bubbles may be due to the stabilizing effect of
the Plateau borders on very small bubbles. It may also be due to the devi-
ations observed in the internal angles of few-sided bubbles discussed below.
The slow growth rate of many-sided bubbles may be due partially to angle

- deviations but since this cannot result in a saturation, merely a reduction in

the slope of the n dependence, its origin is not completely explained.

Since it is not possible to produce an experimental cell large enough to
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generate a twenty-sided bubble in a scaling state, Glazier et al. made the ob-
servations quoted above for many-sided bubbles using froths with artificially

introduced many-sided bubbles.

Experimentally Stavans and Glazier observed (Fig. 10) that many-sided
bubbles tend to lose sides continuously in time.220 Mathematically, we may

start from equation III.15:

dN kp(n)N(n — 6)
dat 2 An<a> @ (IIL.13)

n=3,4,6
the number of bubbles lost per unit time. If the total area of the experimental

cell is A, then < a >= A/N so

d<a> _ xp(n)(n — 6)
dt n——;i 5 An ’ )
<a) ( 5 _u(__)) ‘e 0
n=3,4,5 n :

where ag is the average area at the start of the experiment. Substituting

approximate experimental values for p(n) and A, we find
< a >= a9 + 0.8xt. (Iv.3)
On the other hand, an n-sided bubble will have area
Ap = Ay(0) + (n—6)nt (Iv.4)
The ratio is

lim Ap(0) + (n — 6)xt

=1.25-(n —6). V.5
o ap + 0.8kt 25 (n —6) (Iv.5)




Fig. 13 Internal Angles in the Soap Froth. Average internal angles
versus n for n-sided bubbles. Note that angles are smaller than 120° for few-
sided bubbles and larger for many-sided bubbles so that bubbles are more
polygonal than expected. Error bars show one standard deviation of the
measurement. Ten bubbles were measured for small n, fewer for large n

(From Stavans and Glazier 1989).220
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Fig. 14 Modified Von Neumann’s Law. Growth rates for n-sided
bubbles predicted by von Neumann’s Law using the measured angle devi-
ations in Fig. 13 (boxes) and ideal von Neumann’s Law (solid line). The
large error in the measured value of 6(3), means that we cannot tell if small

bubbles shrink slower than a liner law would predict.
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Fig. 15 Area Growth in Soap Froths. (A) Average area versus
time in a low pressure two dimensional air froth (From Smith 1952).208 (B)
Number of bubbles (equivalent to normalized average area) versus time in a
medium pressure two dimensional air froth. Circles are experimental data,

x’s Fullman’s vertex model (From Fullman 1952).86
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Fig. 16 Area Growth in Soap Froths. Disorder parameter and
number of bubbles in a fixed area cell (equivalent to average area) versus
time for increasingly disordered initial conditions, (a) 8(0) = 0.04 + 0.02,
a = 0.63 + 0.03 (Helium 1/16” cell thickness), (b) 8(0) = 0.08 +0.01, a =
0.50+0.01 (Heiium 1/8” cell thickness), (c) 8(0) = 0.11+0.02, @ = 0.50+0.04
(Air 1/8” cell thickness), (d) 8(0) = 0.17+0.04, « = 0.68+0.03 (Helium 1/8”
cell thickness), (e) 3(0) = 0.33 +0.01, a = 0.53 + 0.01 (Helium 1/16” cell
thickness), (f) 8(0) = 0.85 +0.05, « = 0.81 + 0.08 (Air 1/8” cell thickness).
Errors are at 90% certainty. Capital letters in (d) and (f) indicate times
referred to in the text and in Fig. 9. Dots are experimental values. Solid lines
and values of  are best fits computed from the phenomenological model of
Glazier, Gross and Stavans.?* Dashed lines are the disorder, 8, as calculated
from the model. Initial times are offset to 1 hour. For initially ordered
conditions the rate of evolution overshoots its long term value, while for
initially disordered conditions, the rate increases monotonically. In both

cases the long term states obey a power law, N o« t~%, where, a = 0.59+0.11

(From Glazier, Gross and Stavans 1987).9¢
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Fig. 17 Area Growth in Soap Froths. Average area (in pixels)
versus time for a two dimensional air froth in a large cell. Dots are experi-
mental data. Circles are values from a Potts model simulation starting from

identical initial conditions (From Glazier et al. 1989) 93
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Thus many-sided bubbles should equilibrate slowly, on a timescale of order

An(0

= In the absence of side shedding this relation would predict that the

average relative areas of n-sided bubbles would be proportional to (n — 6)
which is non-sensical. The equilibration will happen much faster if the rate
of side shedding is large. Unfortunately, no one has ever measured the mean
rate of side shedding to check these hypotheses. Thompson and Frost have

given an alternative argument for the equilibration of a froth.229

Stavans and Glazier also measured the average internal angle of an n-
sided bubble, 8(n) by enlarging each vertex, bisecting the Plateau borders
near the vertex, and measuring the internal angles with a protractor. Once
again, their chief source of error was finding the true position of the centers

of the Plateau borders.

In Fig. 13 we present their measurements of the average internal angles
for the same run shown in the von Neumann’s law calculation in Fig. 13.
They found small but significant deviations from the expected 120° angles.
In particular, the average wall curvature of all bubbles was smaller in mag-
nitude, i.e. bubbles were more polygonal, than expected. In Fig. 14 we
show the modified von Neumann’s law obtained from these values of 6(n)
and the linear predictions of the ordinary von Neumann’s Law. Within the
experimental error we cannot distinguish the two results, though the modi-
fied law predicts a smaller absolute rate of growth than the unmodified. The
apparent rate of shrinkage of few-sided bubbles is smaller than predicted by

a pure linear fit, as observed by Glazier et al.
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IV.c.i18 Quantstative Kinetics

We can begin to make our qualitative ideas about disordering and grain
growth more precise by measuring the average area per bubble as a function
of time, < a > or < A >. Such measurements have been made in two
distinct ways. Fullman, and Glazier Gross and Stavans hand counted the
number of bubbles in the experimental cell which were not in contact with
the cell walls and used the total area of the interior of the froth to obtain the
average bubble size.86:94 Smith, Aboav, and Glazier et al. measured bubble
areas directly, either by weighing cut outs from photographs or by digitizing

the ima.ges.s"‘;’a’zo6

We present results for average bubble area versus time in Fig. 15 (A)
(Smith’s results), Fig. 15 (B) (Fullman’s results), Fig. 16 (Glazier, Gross
and Stavan’s results, converted back into the number of bubbles needed to
cover the experimental cell completely), and Fig. 17. (Glazier et al.’s results
obtained by direct digitization of a 30% sample of an air run). The letters
in Fig. 16 (d) and (f) key to the regimes of evolution presented in Fig. 9. In
Fig. 17 the slight non-monotonicity results from the fact that large bubbles
are more likely to touch the frame boundary and hence to be excluded from

the ensemble.

These quantitative measurements confirm division of the evolution into
distinct regimes. For an initially ordered froth we observe a period of slow
growth, followed by a period of equilibration during which the average area

per bubble increases roughly exponentially, and finally a scaling regime dur-



TABLE 4

GROWTH EXPONENTS

Experiment Two Dim. Three Dim.
Group I System a a
~ Soap Froths
Smith38 Froth 1 -
Fischer®® 1 -
Aboav? 2 -
Glasier and Stavans®* 0.59 +0.11 -
Glasier et al.?3 1 -
Lipid Monolayers
Metal Grains
Moore et al.1%9 stearic acid 1.10£0.10 -
Lead
Bolling and Winegard®3 Pb 10™° Pure - 0.8 + 0.08
Pb + 0.005% Ag - 0.96
Pb + 0.01% Ag - 0.96
Pb + 0.02% Ag - 1.04
Pb + 0.04% Ag - 1.14
Pb + 0.005% Au - 1.12
Pb + 0.02% Au - 1.20
Drolet and Galbois®® Ultra Pure - 0.82
Tin
Holmes and Winegard!?? 10~% Pure - 1.00 £ 0.02
Drolet and Galbois?*® Ultra Pure - 0.86
Aluminum
Gordon?%0 Ultra Pure - 0.5
Beck et al.2%! High Purity
400° C - 0.18
600° C - 0.64
Al + 2% Mg
400° C - 0.34
600° C - 0.90
Al + .6% Mg
550° C - 0.3
650° C - 0.68
Beck3 Pure
350° C - 0.112
600° C - 0.644
® Near Melting” - 1
Fradkov et al.393 Al +10~* Mg Foil 1 -
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TABLE 4, continued

77

Experiment Two Dim. Three Dim.
T _—
Group System a a
Metal Grains
a-Brass
Beck and Burke35? 70:30 - 0.4
Beck?* Ultra Pure - 1
Commercial - 0.4
Fullman®® 450° C - 0.42
. 850° C - 0.6
Beck34 High Purity 0.8
Burke?® 500° C - 0.7
850° C - 1
Fullman®® 500° C - 0.70
850° C - 1.2
Iron
Miller?! Carbon Steel
815° C - 0.16
1250° C - 0.44
Hu292 Ultra Pure Fe - 0.80
Ceramics
Dutta and Sprigs3%3 InO - 0.66
Kapadia and Liepold?%¢ MgO - 1
Gordon et al.3%8 - 0.66
Petrovic and Ristic3® Ccdo - 0.66
Tien and Subbaro3%” Ca.16Zr.5401.34 - 0.8
Kingery and Frangois?®® Lifo - 0.66



TABLE 4, continued

Theory Two Dim. Three Dim.
=m—
Group System a o
Mean Field Theories
Burke and Turnbull*3 Radius Based 1 1
Hillert!® 1 1
Feltham35° 1 1
Mulling!73:173 1 1
Rhines and Craig3% - 1
Louat?53 1 -
Novikov!83 0.91 -
Hunderi and Ryum?!!2 1 -
Hunderi and Ryum!4 0.77 £ 0.3 -
Mullins??3 Topological 1 -
Marderi? 1 -
Boundary Models
Frost et al.%3 1 -
Vertex Models
Fullman®® 1 -
Enamoto et al.3%1 1 -
Weaire and Kermode?43,:343 2 -
Network Models
Fradkov et al.”® 1 -
Beenakker37:3¢ 1 -
Potts Models
Anderson et al.1® 0.83 -
Wejchert et al 340 Initial Voronoi 0.84 £ 0.06 -
Initial Hard Sphere 0.98 4 0.06 -
Anderson ¢t al1¢ Q=36 0.87 -
Q=48 0.90 -
Q=64 0.94 -
Anderson et al.13:18 0.98 +0.04 0.96 + 0.12
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ing which < a > increases as a power law. For an initially disordered froth
we find a monotonic increase in growth rate until it reaches the equilibrium
power law. We have not measured growth rates for an artificially broad-
ened initial distribution, but we expect that the growth rate will decrease
monotonically to its equilibrium value, as observed in simulations of Frost
and Thompson.8% Smith and Fullman both begin with disordered states and

obtain < a >~ t at all times.86,206

While finite size effects may well be important in the latter stages of
pattern evolution, the range of rollover points from equilibrating to scaling
behavior observed (ranging from 1000 bubbles for Fig. 16 (a) and (d) to
100 bubbles in Fig. 16 (c)) suggests that the transition between these two
regimes is not an edge effect. To further control for edge effects .Glazier,
Gross and Stavans counted the number of bubbles touching the lateral walls
of the cell (edge bubbles) as a function of time. If the average area of a
bubble in contact with the edge were a constant times the average area of
a bubble in the bulk, we would expect N.4g, x b:ﬁk' This would be the
case if the edge behaved as a non-interacting window on an infinite cell or
as an infinite network of hexagonal bubbles. In either case the result would
suggest that edge effects were insignificant. They found N g4g, o Ng)ﬁg:to.u

which was consistent with either hypothesis.

In the scaling state the coarsening of the froth may be described by a scal-
ing exponent, o, < a(t) >o t*. Smith and Fullman both measured @ = 1 but

with relatively few bubbles. Aboav, reanalyzing Smith’s data found a = 28
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Glazier, Gross and Stavans obtained a value of a = 0.59(1'8:(% , Where the

scaling exponent was determined using an indirect method discussed below.
Finally, Glazier et al., working in a larger experimental cell, obtained results
consistent with, though not conclusively demonstrating, « = 1. Observa-
tions of coarsening in thin film and bulk metals, alloys and ceramics have
yielded a similar variety of exponents, though non-von Neumann factors like
impurity pinning and three dimensional effects complicate the interpretation.
In general we find that higher impurity concentrations lead to lower growth
exponents as impurities zone refine to grain boundaries and act as pinning
centers which eventually reduce boundary mobilities to zero. Some impuri-
ties (e.g. Au in Pb), however, apparently enhance grain boundary mobility
or grain coalescence, and thus increase the growth exponent. Higher tem-
peratures nearly always result in higher growth exponents since they reduce
grain freezing due to anisotropy and other pinning effects. In two dimen-
sions, preferential etching or oxidation at grain boundaries can also reduce
boundary mobilities and growth exponents. Measured exponents in bulk and
thin films, metals, alloys and ceramics are all comparable. We summarize a
few selected experimental measurements and theoretical predictions of the
scaling exponent in Table 4. Where the original result was presented for the
average radius rather than the average area, the quoted value of « is twice
the radius exponent. This approximation is correct in the case of a scaling
state. Three dimensional results are given for two dimensional sections of

three dimensional volumes.
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Summarizing: most experimental coarsening has 0.3 < a < 1 and the
majority of models give a = 1. We observe experimental results close to the
theoretical values for a, only when the experiment is carefully controlled, a
large experimental cell and many bubbles in the soap froth, high tempera-
tures and pure materials in grain growth. At short times and for initially well
ordered conditions the transient during which a soap froth equilibrates re-
sults in a larger apparent exponent measured by Glazier, Gross and Stavans,
hence Aboav’s measurement of a growth exponent of two (we will discuss
later the reasons we believe that Aboav measured an equilibrating rather
than a scaling state). At very long times in the froth, we suspect that the
effective diffusion constant of the soap films decreases due to broadening of
the Plateau borders, hence the smaller apparent exponent. In grain growth
we have mentioned a variety of effects that can lead to smaller long term
exponents and even the complete cessation of coarsening. The most impor-
tant of these mechanisms are impurity segregation due to local zone refining
resulting in pinning of grain boundaries (an effect which can be observed in
a correctly designed soap froth experiment) and pinning of grain boundaries
due to strong orientational anisotropies in surface energies (which can be

duplicated in Potts model simulations).

The essential unanimity of the theoretical predictions of the growth expo-

nent, and the experimental uncertainties in measuring it,



TABLE §
PLATEAU BORDER BROADENING

Time (hours)

0.00
11.08
56.43

139.08
490.45

0.393 £ 0.028
0.430 + 0.027
0.475 £ 0.019
0.512 £+ 0.028
0.590 £ 0.034

Run 2
Time (hours) Width(mm)

0.00 0.309 £ 0.019

2.50 0.313 £ 0.018

18.47 0.312 £ 0.024

42.75 0.313 + 0.024

74.20 0.394 + 0.037

258.08 0.602 + 0.031

82



Fig. 18 Plateau Border Broadening. Plateau border widths versus

time for two air runs. Run 1 (circles). Run 2 (squares).
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suggest that a better test of the agreement between theory and experiment is
the theory’s ability to duplicate the observed transient behaviors for initially

ordered and initially disordered patterns.
IV.d Other Topics

IV.d.i Broadening of Plateau Borders

Glazier, Gross and Stavans originally proposed that the anomalous ex-
ponent they observed in the two dimensional soap froth resulted from the
failure of the froth to reach a scaling state.?* Later work has demonstra.téd
that their froths did reach a well behaved scaling state.?3:220 Others have sug-
gested that boundary effects play a role when many bubbles are in contact
with the walls of the experimental cell.137:200 However, the experiments of
Smith, and Fullman showed no such anomalous exponent though they worked
with even fewer bubbles.86:206 The Potts model simulations of Glazier et al.
did show a boundary effect glitch in the long time tail of the simulation (See
Fig. 17), just where the experiment showed a sudden decrease in growth rate,
but this similarity may be fortuitous.?3 One possible source of the difference
is that Glazier, Gross and Stavans used a rectangular cell, while Smith and
Fullman used a round cell. A later experiment by Glazier et al. in a larger
cell where edge effects should have been less important was consistent with

an exponent of a = 1.

The observation of anomalously low growth exponents is common in met-

als, where initially well dispersed impurities gradually segregate to the grain
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boundaries and reduce boundary mobility and hence slow (or even stop)
grain growth. Inversely, the presence of impurities which increase bound-
ary mobility can result in growth exponents larger than 1.24 In a froth the
equivalent to a decreased boundary mobility is a decreased diffusion con-
stant of the soap films. While changes in the chemical structure of the films
as they age are possible, it seems more likely that any decrease in diffusion
constant is due to the increase of the amount of fluid per unit length of soap
film in the sealed cell, as bubbles disappear and the total length of the soap
film -decreases. Film thickening per se is probably not too important since
the thickness of the soap films depends on the competition between van der
Waals attractive forces and electrical double layer forces between the lipid
monolayers on the surface of the film,17% and since the Plateau borders take
up most of the excess fluid.220 However, even a small amount of film thick-

ening would result in a large decrease in diffusion constant.

An additional experimental problem is that we have no techniques to
measure the film thickness directly during a coarsening run. The Plateau
border width can be measured directly. Since we might expect that the
film thickness would increase with the widths of the Plateau borders which
indicate the amount of excess fluid present in the froth, a measurement of
Plateau border broadening cannot hope to separate the two effects defini-
tively. Of course, if we could measure the von Neumann x accurately as
a function of time we could check the constancy of the diffusion constant

directly, and correct our models without recourse to physical explanations.
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Against the diffusion constant explanation lies Glazier, Gross and Sta-
vans’ measurement of the constancy of the von Neumann & discussed in the
previous section. The helium run in question, however, gave a growth expo-
nent of & = 0.68 and would have given a still larger exponent (nearly 1) if the
data had been cut at the time of the last diffusion constant measurement.
There is thus no real evidence for the constancy of x in the tail of the time

evolution where the anomalous growth rates occurred.

Determining the fraction of the soap film obstructed by the Plateau bor-
ders was not straightforward. Glazier could measure only the widths of the
borders, not their vertical extent, and even measuring the widths from the
experimental photocopies proved unreliable, because the changes in width
during the experiment were comparable to the uncertainties in the widths
in the copies. In particular, the photocopier proved to be anisotropic in its
treatment of lines. Some orientations produced smooth well defined lines,
and some irregular lines with great variations in line width. Examination
of an actual froth with a magnifying glass showed that this was indeed an
artifact of the photocopies and not an exotic wetting effect of the plexiglass.
He therefore measured only lines oriented within 30° of the axis giving the
smoothest line profiles. We present the results for two air runs in an %” cell
in Table 5 and Fig. 18. In the first run the width of the Plateau borders

doubled during the run, in the second the increase was approximately 50%.

If we assume that the vertical extent of a Plateau border is roughly one

half its horizontal extent we obtain the following results (A larger wetting
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angle would result in a relatively larger obstructed area and hence in an effect
of greater magnitude). In the first run the fraction of the film obstructed by
the Plateau Borders ranged from approximately 12.4% at the beginning of
the run to 18.7% at the end. The growth exponent for this run was o = 0.81.
In the second run the obstructed fraction grew from 9.9% at the beginning of
the run to 19.0% at the end. The growth exponent for this run was a = 0.50.
The Plateau border width in the second run did not increase significantly
until the number of bubbles decreased to fewer than two hundred. The
fact that a lower exponent corresponds to a larger percentage increase in
obstructed area is suggestive but hardly conclusive. Even more suggestive
was the exponent of nearly one obtained by Glazier et al. in a much larger cell
which showed little Plateau border broadening. Also favoring Plateau border
broadening 'is the difference in average exponent between cells with a height
of 1/8” (a = 0.71) and 1/16” (o = 0.58). We would expect that Plateau
border broadening, but not film thickening, would have a larger effect in a

thinner cell.

To obtain a definitive measure of the growth exponent in the soap froth,
we need to repeat the grain growth measurement in a drained cell where the

width of the Plateau borders, and hence the film thickness, is held constant.

IV.d.s¢ Disappearance of Four- and Five-Sided Bubbles

Many of the models we will discuss require the enumeration of the differ-
ent fundamental processes by which a bubble can change its number of sides.

In particular, they depend on the rate of side swapping (T'1 processes) and
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the rate at which three-, four- and five-sided bubbles disappear. Smith, in
his original article, claimed that only three-sided bubbles could disappear di-
rectly, and that four- and five-sided bubbles always shed sides as they shrank
to become three-sided when they were very small.2% Glazier, Gross and Sta-
vans, on the other hand, claimed that 50% of four-sided bubbles and 10% of
five-sided bubbles disappeared directly.? Later Stavans and Glazier revised
their estimate for the rate of direct disappearance by five-sided bubbles to
24%.220 Fy also observed direct disappearance, though he did not publish
estimates for the relevant rates.3% A theoretical study by Weaire supports
the contention that arbitrarily small four- and five-sided bubbles may be sta-
ble against side shedding.237 However, the distinction may be more a matter
of deﬁﬁtion than a true physical difference. Very small bubbles are sensi-
tive to the thickness of the cell and are hence no longer two dimensional
in their properties. In particular, when a cylindrical bubble disappears, it
first pinches off on the bottom plate (where the Plateau borders are broader
due to gravity) to form a conical bubble, and then shrinks rapidly before
disappearing on the top plate. Since Smith took his photographs from the
top, he recorded the disappearance of the conical bubble, while Glazier et
al. photocopying from below, recorded the initial separation. Since the con-
ical bubbles behave in a manner qualitatively different from the ensemble of

cylindrical bubbles, the latter definition seems more sensible.



