CHAPTER V
THEORY OF COARSENING

The range of model types that have been used to simulate grain growth
is extremely large. Broad categories include pure phenomenological models,
pure statistical models, mean field theories, "exact” vertex and boundary
evolution models, and Potts model simulations. All have been successful to
varying degrees. An important division exists between models that attempt
to predict equilibrium distribution functions based on purely statistical or
geometrical considerations and dynamical models which focus primarily on
grain growth rates, though they may supply information on distribution
functions as well. We will first examine static models and then move on to

the many categories of dynamic simulation.

V.a Static Models

The construction of pure geometric models based on random partitions
of the plane, and attempts to determine their properties analytically, have
amused geometers for at least two hundred years.34:52,90,164,245 T} elegance
of some of the solutions and the complicated analytic geometry of others is
impressive in its own right, but these models also have some claim to be con-
sidered as models for grain growth (in the case of nucleation they can work
very well). In addition, the exact solutions of the properties of these mod-
els provide an extremely useful baseline for comparison to experiment and
less rigorous simulations. Especially for the Voronoi type models there are

90
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many analytic results for area and side distributions and correlations which
are difficult or impossible to obtain for more complicated constructions.164
Perhaps, the simplest approach to modeling the soap froth is to examine the
statistical properties of its long term state considered as a fixed polygonal
lattice. Taking this idea to an extreme we might study the regular hexago-
nal honeycomb as a model of the froth. Such a model is not very useful for

studies of coarsening, but as we noted above, it gives useful results in studies

of foam rheology.

V.a.s Voronot Type Models

Slightly more realistic models must take into account the fundamental
disorder of the froth and attempt to duplicate it geometrically. Most simply
we may throw down a set of points at random locations with some average
density, and assign to each point that subset of the plane which is closer to
it than to any other point, a process known as the Voronoi Construction
(see Fig. 27 (A)).34:52:88,89,90,151,245,254 Thijs construction subdivides the
plane into a unique network of polygons with straight sides and vertices
with codrdination number three, but with a range of vertex angles and a very
broad area distribution. In nucleation, this model corresponds to throwing
down a set of nucleation centers at a fixed time and growing a circular domain
from each at a fixed rate. The area distributions can be regularized by
establishing an excluded volume during seeding, so that the initial particles
are separated by a minimum distance (see Fig. 24 (A)). This narrows both

the area and number-of-sides distributions, and results in angles more nearly



Fig. 19 Glass Models. (A) Triangle raft. (B) Triangle-Line raft (From
Shackelford 1982).204






Fig. 20 Dual Lattice. Sample of a two dimensional soap froth (solid
lines) with the triangular dual lattice (dashed lines) indicated. Points replace
bubbles, and dashed lines between points replace edges between neighbors

(From Kikuchi 1956).121
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120°. The resulting pattern looks more like a real froth but still has non-120°

angles and too narrow a side distribution.30

The fundamental problem with models of this sort is that they freeze
in large scale inhomogeneities present in the seed pattern which would be
rapidly relaxed in a real froth. We can approximate this relaxation geomet-
rically by iteratively performing the Voronoi construction and moving each
nucleation center to a new position at the center of its polygon until we reach

an invariant pattern. This is known as a relaxed Voronoi construction.19

A third approach is to seed continuously but randomly in time in the "un-
crystallized area” while growing uniformly (the Johnson-Mehl model),
again producing a more irregular pattern than that observed in experiments,
but which can be regularized using an excluded volume or relaxation.164
Frost and Thompson have studied extensively,80 the effects of changing the
rates and types of nucleation and relaxation on the final distributions. In no

case do they find the observed experimental dominance of five-sided bubbles,

but the range of distributions they obtain is impressive.

One place where Voronoi networks are useful is to generate initial con-
ditions for sixhulations. In this case, any initial stresses equilibrate quickly,
and the patterns are sufficiently random to converge rapidly to a scaling
state. Both Frost and Thompson and Anderson et al. have discussed the

consequences of the choice of initial conditions.30:15

An additional application of the Voronoi construction in two dimensions

is to determine adjacencies when the widths of the boundaries between
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bubbles are comparable to the bubble size as happens in magnetic and lipid
monolayer froths. In this case the Voronoi construction applied starting with

the centers of each bubble, gives a unique assignment of areas and neighbors.

We also mention briefly a class of glass models originally proposed by
Zachariasen.204:256,258 We place equilateral triangles successively with ver-
tices touching and without overlap, in a clockwise spiral around a seed tri-
angle. At each step we randomly choose a number between four and eight
and attempt to build a closed ring with that number of links. Since not all
target rings sizes are possible at any given time we obtain a nontrivial side
distribution function for the number of triangles per ring (See Tables 7 and
8 and Fig. 19 (A)). Shackelford also proposed an extended model which gave
a narrower side distribution by allowing the use of lines as well as triangles,
a line being inserted if it would a) close a loop with six or more triangles
which had its target number of sides or more, and b) have a length between
one and two times the length of a triangle edge (See Tables 7 and 8 and Fig.
19 (B)).

V.a.&t Mazimum Entropy Models

We may extend our geometrical models a little more (as we did by in-
trodpcing relaxation), by considering the final distribution to be the limit
of a repetitively applied geometrical process. Kikuchi looked for the most
probable network configuration based on independent weighting of configu-
rations in the dual lattice (the pure triangular lattice obtained by replacing

each bubble by a point at its center, and each edge by a line connecting
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the centers of the neighbors (See Fig. 20).!2! In his first model (Kikuchi
I) he assumed that the bubble centers lay on a regular triangular lattice
and calculated the relative frequency of nearest neighbor and next nearest
neighbor links which gave the largest number of possible configurations, i.e.
the highest entropy. Then he calculated the distribution functions for this
most probable state. In his second model (Kikuchi II) he allowed vacancies
in his triangular lattice and third nearest neighbor links, again calculating
the most probable state and its distribution functions (See Tables 7 and 8).
Weaire has used a similar argument employing the probabilities of various
topological transforms on a lattice to obtain the nearest neighbor number of

sides correlation for an equilibrated froth (See Table 11).134:135

We can be slightly more sophisticated and try to guess the constraints on
a topological lattice. If the constraints are correctly chosen, then in statistical
equilibrium, the actual distribution functions should be such as to maximize
the distribution function’s entropy subject to those constraints, for uaﬁple
the first three or four moments of the distribution functions.50:115:116,139 The
difficulty in this ”Maximum Entropy” method is to choose the constraints

correctly.

Rivier has championed maximum entropy models and done extensive
analyses to predict the soap froth’s distribution functions.!%® He solves the
joint distribution function p(n, A) to maximize the entropy,

= - Z p(n, A) log(p(n, 4)) (v.1)

nA
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subject to the constraints that < n >= 6, that < a > is known, and that
that either Lewis’ law for areas, < A, > n, or the radius law, < r, >x n
(where < r, > is the average radius of an n-sided bubble) applies. The
two predictions of interest are that the area distribution function will decay
exponentially,

p(A) o exp 14, (V.2)

where ) is a fitting parameter, or, defining a’ = log(T‘:)-),
p(a") = log(a') exp™® . (V.3)
The number of sides distribution takes the form
p(n) = e(n — ¢;) exp™ ™", ©(Va4)

where 4 and ¢ are fitting parameters, and ¢; is a constant taken from Lewis’

Law (described in section VILa).

Almeida and Iglesias have done the same thing adding a bulk energy,
proportional to bubble area.l0 This has the peculiar effect of making < a,, >
roll over rapidly in n so that many-sided bubbles all have the same area, and
p(n) is monotonically decreasing in n. A later paper by the same authors
instead assumes that the average side length of bubbles is uniform and,
taking the second moment of the side distribution as a parameter, obtains

acceptable results for p(n) and < ay, > (See Tables 7, 8 and 11).11

V.b A Phenomenological Model
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Another approach is to discard microscopic considerations entirely and
to try to model the disordering process directly, considering only its salient
physical features. Such an approach cannot hope to predict the growth
exponent in the scaling regime, but it can provide a check on how well we
understand the froth’s approach to equilibrium. Based on the observations
that disordered regions eat away at islands of hexagons from the edges, and
that the long term rate of area growth is a power law in time, Glazier, Gross

and Stavans wrote the following phenomenological model.%4

They divided the population of bubbles into two classes, the bubbles in
ordered regions and the bubbles in disordered regions, denoting the number
of bubbles in each class by O(t) and D(t) respectively, with the total number
of bubbles, N(t) = O(t) + D(t). They next assumed that ordered bubbles
did not evolve but were converted into disordered bubbles at a rate propor-
tional to the total contact area between order and disorder (making use of
the experimental observation that ordered patches were stable except where
they were eaten away by disorder from their edges). To lowest order, assum-
ing random distributions, contact area is proportional to Do'((t?'-i-%((t't))' which

implies:
i(l(ﬂ _ O(t) - D(¢t)

& - o)+ D) (V.5)

where x; is a constant to be determined and represents the rate at which

disorder diffuses into ordered patches.

They also assumed that the rate of disappearance of bubbles in disordered

regions was independent of O(t) and was uniform in ¢, since experimentally
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they obtained nearly power law behavior for the area atlong times, when the
system appeared completely disordered, i.e., N(t) & t~. These assumptions
yield an equation for D(t) including terms for the conversion of order to

disorder and for power law dissipation:

aD(t) _ . O(t) - D(t)
dt o) +D()
where a = Fé_f While both O(t) and D(t) are abstract quantities, since

— k2 D(t), (V.6)

O(t) in particular is not simple to measure (there are six-sided bubbles in
disordered regions as well as ordered regions), combining them produces a
quantitative measure of the system disorder which we can then compare to

other possible measures, the Disorder
D(t)

°= 6+ DO

(v.7)

The parameter @ runs from zero for a perfect hexagonal lattice, to one for
an equilibrated froth in a power law scaling state. Thus its time evolution
provides information about the transition from order to disorder. It has
significant advantages over most other measures of disorder since it can be
computed from N(t) directly without calculating the distribution functions.
It is also an intrinsically averaged quantity, much less sensitive to small
fluctuations than high order moments and therefore is usable in smaller scale
systems. Glazier, Gross and Stavans calculated 3 by fitting N(0), 8, x1, 2
and 3(0) to give a minimal least squares error against the experimental N(t),
but 8, x; and N(0) can all be measured independently.

We present Glazier, Gross and Stavans’ values for 8@ in Fig. 16 (dashed

lines). For initially ordered runs, Fig. 16 (a)-(e), @ behaved as expected,
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increasing smoothly to 1, and reaching its final value where the experimental
value of N(t) rolled over into a power law. For the initially disordered run
shown in Fig. 16 (f), the rate of conversion from order to disorder was slower
than the rate of loss of disorder, and @ decreased slightly before increasing
to one at the rollover. While Glazier, Gross and Stavans originally dismissed
this decrease as an artifact of the model, Stavans and Glazier have since
shown that it accurately reflects the disordering of the pattern.220 We will
return to this point in our discussion of the moments of the distribution

functions. As expected, & was small for apparently well ordered conditions,

e.g. %g; < 0.1 and large for disordered conditions, e.g. %{%} > 1.0.

In Fig. 16 we also show Glazier, Gross and Stavans’ fits for N (t) (solid
lines). The fits yielded a value of § = 2.7 £ 0.3 corresponding to a =
0.59(1’8:(1);). We believe that their error estimate was rather optimistic be-
cause of the systematic boundary effects we have discussed, but it did ac-
curately reflect the numerical range in the estimate of the exponent. The
typical error of their fits for N(t) was better than 3%, and the maximum
observed error was 5%. In the two runs with the most complete time series,
Fig. 16 (d) and Fig. 16 (f), the apparent power law behavior held over a
full decade, so the deviation in exponent from a = 1 was not due simply
to noisy measurements. The excellent quantitative agreement between the
behavior of the model and the experiment, with a perfect matching of the
transient over a wide range of initial disorders strongly suggests that the

model contains most of the essential physics of the transition.
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V.c Radius Based Mean Field Theories

The term mean field theory is a broad one and we will discuss three sep-
arate categories, roughly in their historical order of development: dynamic
theories based solely on the distribution of grain radii, theories based on
both area and side distributions, and semi-exact models which keep track
of the structure of the topological network defined by the dual lattice. In
our discussion we will examine the predicted growth exponents and ability

to duplicate transients as indicators of the reasonableness of the theory.

Many of the models we present in this section emphasize simplicity at
the expense of much of the basic physics of grain growth. Historically, part
of the difficulty developing an adequate theory of coarsening was the focus
on grain growth in metals, in which it was impossible to measure the key
parameter, namely how the growth rate of a grain depended on its size and
geometry. It was therefore a common practice to start with an experimental
result (like a distribution function) and to work backwards to determine the
basic dynamical laws. In the absence of experimental checks on the dynam-
ics this procedure allowed essentially any result to be obtained. Another
result of the focus on metals was a general neglect of geometrical factors
which were hard to measure. Models tended to assume the proverbial spher-
ical cow, neglecting transients and equilibration processes, and frequently,
for good measure, invoking log-normal area distributions. Since von Neu-
mann showed that it is the number of sides a grain has and not its size that

determines the grain’s growth rate, it is somewhat surprising that radius
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based models work at all. What saves them is the strong correlation be-
tween number of sides and grain (or bubble) area. One decided advantage
of radius based models is that they are independent of dimension, giving
useful results for bulk grain growth, when the absence of an equivalent to
von Neumann’s law in three dimensions makes it difficult to develop more
sophisticated models. Additionally the success of radius based theories in
explaining Ostwald ripening (the growth of widely separated grains interact-
ing with a gas) suggests that these theories may be more relevant to the case

of liquid-gas phase transitions than they are to coarsening of froths.117:231

In our discussion we will consider only the mathematical formalism of
these theories, not the elaborate attempts to evaluate the various physical
parameters such as activation and surface energies and temperature depen-

dencies, which were of specific interest in metallurgical applications.

V.c.t Burke and Turnbull: a Zeroth Order Model

In a long review, primarily concerned with microscopic properties of
metal grains, Burke and Turnbull,#? discussed the coarsening dynamics of
metal grains, drawing a specific analogy to the evolution of a soap froth.
Their analysis neglected all interactions between grains which they consid-
ered as circular or spherical, so it certainly qualifies as a mean field theory.
They assumed, based on both microscopic energy considerations and surface
tension arguments, that for any grain, the rate of boundary migration was,

|4
v= lw';a (V.8)
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where p is a temperature dependent mobility, o a surface energy, p the
integrated radius of curvature, and V the atomic volume. This is just a
scalar form of equation (III.8). Assuming that all these constants were indeed
constant, that the radius of curvature was proportional to the grain radius,
r, and that the change in average grain diameter was proportional to the

rate of boundary migration, they obtained

dr &
—_——=— V.9

d r’ (V-9)
where « is a diffusion constant. Integrating this differential equation (which
is essentially equivalent to the second term in the phenomenological model

presented previously), produced

< a(t) >= /rt + ag. (V.10)

So for long times a = 1. The analysis is completely independent of whether
the grain growth occurs in two or three dimensions. Burke and Turnbull
noted agreement with scaling measurements in a two dimensional soap fréth
by Fullman,8® and rather optimistically concluded ?The fact that < r >«
t1/2 indicates that the geometrical analysis is essentially correct.” They then
suggested several mechanisms to explain the observed deviations from this
scaling law in real metal systems. Unfortunately, as shown in the section on
von Neumann’s law, any mean field theory must yield a long term scaling

exponent of one, so the agreement with experiment was fortuitous.173:174

Rhines and Craig took a view similar to that presented in the phenomeno-

logical model above,1%4 looking at coarsening as the progressive elimination
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of individual grains with average area < a >. They derived the dynamics of

their equation by assuming a bubble like diffusive motion of grain boundaries,
1 1

v =pAP = p(— + —), (V.11)
p1 P2

which meant that the change in volume per unit time of a grain was

av
- = V.
i uMS, (V.12)

where, M is the grain’s integrated curvature and S the grain’s surface area.
They next cited as an experimental fact that the product, MS = X, was pro-
portional to the length scale in any given experiment, and defined a sweep
constant, ©, the number of grains lost per unit distance of boundary mo-
tion. There has been some debate as to whether this choice of sweep constant
was correct, but for our purpose we need only note that in a scaling state it
must scale inversely with length scale.58:111:195 Swallowing ©, x and T into
a single rate constant x they concluded that the number of grains in a given

volume goes as
d1

1

putting in the initial condition N(0) = Ny. Again we obtain a = 1 at long

times in three dimensions.

V.c.ss Diffusional Radial Mean Field Theorses

The most obvious defect with the Burke and Turnbull and Rhines and
Craig models is their inability to predict radius or area distribution functions.

Several authors have proposed models which address directly the mean field
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evolution of the area distribution. The basic formalism of these models is
the same. Consider the distribution function of radii, p(r). The evolution of

this function may be described in terms of a probability current,

dp(r)
or

j(r)=-D + p(r)v(r), (V.14)

where the first term describes diffusional processes tending to broaden the
distribution function and the second deterministic evolution, D being a dif-
fusion constant and v(r) the growth rate as a function of radius. As we shall
see later, when applied to a distribution function including number of sides
as well as areas, this probability current formalism is completely appropriate
to a correct mean field theory of froth coarsening. The difficulty in this case
is that there is no simple way to reduce diffusion in the number of sides distri-
bution to diffusion in area distribution. Assuming the appropriateness of this
current, the continuity equation gives the time evolution of the distribution

as:

a,;(tr) - _32(:) - % (D%(:)_) - %(p(r)v(r)). (V.15)

We are now free to speculate on various values for D and v(r). We note that

this is the basic structure of the famous Lifschitz-Slyozov model for Ostwald

ripening. 148,149

V.c.t58 Deterministic Models

We first consider models that neglect the diffusive term in the evolution
equation (i.e. set D = 0). In essence these models neglect the possibility that

a grain can gain or lose sides in time. One can either hypothesize a form for
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v(r) and solve for the area distribution or vice versa. Feltham hypothesized

a log normal limiting distribution of areas

2

"'} (V.16)

<r>

1 1
== —]—=1
p(r) = —exp{-| iy
and applied an areal approximation to von Neumann’s law to obtain the

result that for a given grain:

). (V.17)

Assuming self similar distributions, he then obtained the unsurprising re-
sult that < @ >o ¢.%4 Hunderi and Ryum solved v(r) for several different

proposed area distributions.112:113,114

" Hillert began with our equation (II.8), assuming the basic relation that

interface velocity is proportional to the curvature driven pressure difference:106

v=puAP = ua(-l— + -1—), (V.18)
1 P2

where the p; are the principle radii of curvature. He then assumed that
small grains shrink and large grains grow. Since many sided grains tend
to be large this was not too unreasonable an assumption. In this case he

proposed a specific relation between grain curvature and grain size, of

v(r) « (;c%;t- - -}‘-), (V.19)

where r.,; is the average radius of a grain in two dimensions (derived by
working backwards from von Neumann’s Law!) and an experimentally de-

termined parameter in three dimensions. Substituting he obtained

dr 1 1
—pefm = V.20
L o) (v.20)
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which, assuming equilibrated distribution functions yielded the expected <
a >o t. He also made a detailed prediction for the area distributions using
the Lifschitz-Slyozov method. Letting r' = ;:T‘ he found

ér' —26

o) = (20 - e P (V.21)

where § is the dimension.

Kirchner has applied a similar argument to obtain the size distribution

function for lens shaped (two-sided) grains growing in grain boundaries.122

Thompson has also extended the model to include anisotropy and pinning

effects to study the growth of free grains in a medium.227

Hunderi and Ryum set up a radius based model of this sort in three

dimensions, which explicitly considered grain-grain interactions.112114 where
dr; K 1 1
=D Y 4y, (v.22)
dt r;2 'm,nz , g r;

where A;; = 7rmin(r,-2,r_,-2) is the contact area between grains. They as-
signed grain contacts by position in the index list rather than by looking at
a neﬁork topology, so this is a pure mean field theory rather than a network
model. In their first paper they obtained a scaling exponent of a = 1 but

later revised their figure to a = 0.76 & 0.04.
Novikov produced a closely related interaction model.183 He discretized
the radius distributions (bin width A, r; = A - {, N; =number of grains

in bin 1), and assumed completely random attachments and constant grain
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boundary mobility. As before

1 1
AP;j = 20(;’; - p_.')' (V.23)

However, he used a different, nonsymmetric contact area:

N/ V.24
Aij = 4(ri +1r;)% (V24

So the change in radius from any one contact between class ¢ and class j

was:
dr; 211
—=2a—————§———. V.25
dt 4(r; + r_.’-) (pj p,') ( )

As in the phenomenological model, the number of contacts between class ¢

and class j is

N7 = "'"—;v L (V.26)
where k; is a normalization to make the total areas come out consistent.
This yields

(V.27)

where k, is the averaged renormalization constant. Finally, summing over

classes, yields a master equation:

—1 . =2 ;
dN; — dN;? dN;_{’
i Sk e (V-28)
j=1 j=1

—[outscatter down] + [inscatter up]

& = dt
I=1+1 =142

—|outscatter up) + [inscatter down].
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Novikov solved the master equation using a montecarlo method and deleting
downscattered grains in class 1. Depending on the absolute length scale of
his initial conditions he obtained either a = 0.792 + 0.016 or & = 0.720 +
0.01, suggesting some problems in reaching complete convergence. Using the
same model with two values of grain boundary mobility he has measured
the distribution functions and exponents for anomalous grain growth, and
he has also studied boundary pinning using a damped equation for boundary
motion:
dr; 1 1

where F is a pinning force.184

Abbruzzese and Liicke have examined the effects of defect pinning®?®
and anisotropy* on models of this type. For normal grain growth they have
compared the theoretical predictions for experimental values obtained in thin

sheets of iron alloy, with reasonable success.

Beenakker has also written a radius based mean field theory, which began
with von Neumann’s law,2% but then made an ad hoc assumption that the
free energies of individual grains were minimized, resulting in a nonlinearly
increasing dependence of < a,, > on n. The model has the peculiar property
that the area distribution broadens to a width of 3.2 and then narrows again

to a width of 0.25. The long term growth exponent is o = 1.

V.c.tv Diffusive Models

An alternative approach is due to Louat, whose two dimensional analysis
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began by noticing that von Neumann’s law held only on average experimentally.1%2
He proposed that the rate of side swapping could be regarded as so large
that the von Neumann’s law component of the distribution function evolu-

tion could be completely neglected. He therefore wrote the basic evolution

equation as:

dp(r) _ 8%(r)
o = D= (V.30)

Assuming that there are no zero sized or infinite sized grains, the resulting
evolution is:

__r2/4Dt)’ (V.31)

p(r,t) = crexp (W
where ¢ fixed the mean area at the starting time. As expected, a = 1.
A time or scale dependent diffusion constant (like that hypothesised for the
soap froth, and observed in impure metals) leads to a variety of other growth

laws.

V.d Topological Mean Field Theories

The simplest approach to a model which includes topological transfor-
mations as well as von Neumann’s law, is to neglect spatial structure entirely
and treat the system as homogeneous and completely described by its dis-
tribution functions. Hillert proposed a model basically of this type looking
at the spread of topological charge as a series of defect climbs, but he did
not develop the model to any great extent nor did he derive equilibrium

distribution functions.43:108



Fig. 21 Elementary Topological Processes. (a) Side Swapping or
T1 process. (b) Disappearance of a three-sided bubble or T'2(3) process. (c)
Disappearance of a four-sided bubble or T'2(4) process. (d) Disappearance
of a five-sided bubble or T'2(5) process. (e) Wall breakage next to an n-sided
bubble, Break(n). Numbers are keyed to Table 6.
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TABLE 6
SCATTERING PROCESSES

Change Bubble Number
Process 1 2 3 4
T1 +1 -1 +1 -1
T2(3) -1 -1 | -1 | -
T2(4) -1 0 | -1 o
T2(5) -1 1| -1 | o
Break(n) +n—4 -1 -1 -

115
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Blanc, Carnal and Mocellin appear to have been the first to apply a topo-
logical mean field theory (they used only the number of side distribution) to
grain growth.30:48 We originally attempted such a mean field theory approach
using separate distribution functions for the number of sides and areas with
some qualitative but little quantitative success. This model was later refined

157

by Marder who employed a joint probability distribution p(n, A),"®’ and by

Beenakker.26:27,28

Any topological mean field theory for the soap froth starts with two
basic components, the dynamics given by von Neumann’s law, and a list
of fundamental processes, scattering processes if you like, which describe
the allowed changes in the distribution function. In general there can be
an arbitrary number of different scattering processes, but all the possible
behaviors of the soap froth can be described by five fundamental processes,

of which only four enter into the models we will discuss.

When shear stresses are present in the froth, a pair of adjacent bubbles
can be squeezed apart by another pair, as shown in Fig. 21 (a). This is
known as a T'1 process or side swappihg. In this case the two bubbles that
were neighbors each lose a side and the new adjacent bubbles each gain a
side. Topological charge, T = (n — 6) is conserved since the total number of

sides of the four bubbles before and after the swap is the same.

The disappearance of a bubble, a T2 process, also results in changes
to its neighbors’ number of sides. Topological charge is conserved in all

disappearances so once again the results depend only on the number of sides
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of the disappearing bubble. When a three-sided bubble disappears (Fig. 21
(b)) each of its neighbors loses a side. The equation for topological charge
is T = —8 = 3 x —~1. When a four-sided bubble disappears (Fig. 21 (c))
two of its neighbors stay the same and two lose a side. The equation for
topological chargeis T = —2 = 2 X —1 + 2 x 0. Finally, when a five-
sided bubble disappears (Fig. 21 (d)), one of its neighbors gains a side, two
stay the same and two lose sides. The equation for topological charge is

T=-1=1x14+2x0+2x—1.

Wall breakage (Fig. 21 (e)) is only a slightly different problem. When
a wall between an n-sided bubble and an m-sided bubble breaks, the result-
ing bubble has n + m — 4 sides and the two common neighbors each lose a
side. Thus there is a total loss of 6 sides and 1 bubble, preserving topolog-
ical charge. Note that wall breakage is the only mechanism that favors the
creation of many-sided bubbles. The T'1 process by itself is in equilibrium
with a slowly decreasing p(n) (See Table 7 under Fradkov oo) and bubble
disappearance results in exponential cutoff for large n. We may represent all
these relationships conveniently in a table (Table 6) which encodes all the
basic topological information about scattering in a connection number three

lattice.

While the rates for disappearances of bubbles are fixed by the distribution
functions and von Neumann’s law, side swapping and wall breakage depend
on different mechanisms and thus have rates independent of the basic froth

evolution. Experimentally we observe little side swapping at long times since



118
the soap froth is soft and tends to eliminate stresses quickly and over short
range. Some side swapping does occur, however, in the immediate vicinity
of disappearing bubbles. Therefore some of the models discussed include
side swapping as an external parameter. None of the models considers wall
breakage, but that rate too could easily be included. One peculiarity of three
dimensional models that examine two dimensional sections is that they must
iﬁclude the creation of three-sided grains caused by the growth of a previously

unseen grain into the plane being examined.

V.d.i Pure Topological Theories

Blanc, Carnal and Mocellin have solved the equilibrium distribution func-
tion p(n) subject to three scattering processes, side swapping, three-sided

80,46 The presence of

bubble disappearance and three-sided bubble creation.
three-sided bubble creation makes this model appropriate to three dimen-
sions where three-sided bubbles can “nucleate” in a planar section as grow-
ing bubblesv come to intersect the section. They require two parameters to
specify their model, the proportion of three-sided bubbles p(3), and the rate
of side swapping. In their first paper they fixed the rate of three-sided bubble
creation and adjusted the rate of side swapping to achieve a target p(3). In
their second paper they kept the rate of side swapping as a free parameter

and adjusted the rate of three-sided bubble creation to achieve the target

p(3). The probability that a given T'1 process affects an n-sided grain (n
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restricted to be > 3) is just

(V.32)

The probability that a three-sided grain appears or disappears next to an

n-sided grain is not a priors defined. They choose to use the value

_ _n7(n)
'/’n == Zn n,y"_p(n) ’ (V'33)

where 4 is rather arbitrarily defined to be the solution to

o0 [o o] 1 (>}
+1 _ 2
E nT" p(n) = Z n7p(n) [7 + 3 Z(n -~ 6) p(n)] . (V.34)
n=3 n=3 n=3
They then solved for the equilibrium of the system using montecarlo tech-

niques. We present their results for no swapping and for a fixed rate of side
swapping in Tables 7 and 8. The parameter f is approximately the reciprocal

of the rate of T'1’s.

Kurtz and Carpay, in a paper chiefly devoted to three dimensional grain
growth considered a two dimensional topological mean field theory subject
to von Neumann’s Law.132 They took the distribution of grain areas in each

topological class to be a fixed log normal distribution,

'n— 'n 2
Plre) = oz, P (-fmogm2), vay

where < ry >= cln(25). This distribution is approximately correct for a

two dimensional section of a three dimensional froth, but is not a very good
description of a true two dimensional froth. They assumed everything else
was random and solved by montecarlo as above. We present their results
in Tables 7 and 8. They have also performed the entire calculation in three

dimensions.



Fig. 22 Average Area versus Time. (A) For Marder’s mean field
theory (From Marder 1987).157 (B) From Fradkov, Shvindlerman and Udler’s
network model (From Fradkov, Shvindlerman and Udler 1985).281 (C) Av-
erage radius versus time for Beenakker’s network model for ordered (O) and

disordered (D) initial conditions (From Beenakker 1988).262
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V.d.ss A Complete Mean Field Theory

Marder attempted a true mean field theory depending only on the evolu-
tion of the distribution functions. He built his model as follows: Let p(n, A4, 1)
be the joint distribution function, and g(n, A,t) = N(t) * p(n, 4,t). At any
given time each n-sided bubbles obeys von Neumann’s law, so it shifts the
distribution per unit time as

dg(na A) — %
d 8t

k(6 — n)g(n, A,t), (V.36)
where the diffusion constant « is now dimensionless. The change in number
of bubbles with area A and n sides is now just the result of von Neumann’s
law plus the probability that a bubble with area A and n+1 sides loses a side

or a bubble with area A and n — 1 sides gains a side minus the probability

that a bubble with area A and n sides either loses or gains a side, i.e.,

g?g(n, A) = 5825'-(6 - n)g(n) A, t)

n+1
S

—[u(4) + d(4)|5o(n, 4),

n—1

+u(A) g(n + 1, A) (v.37)

g(n - I:A) + d(A)

where S is the total number of sides (a bubble with more sides is more likely
to be chosen at random), u(A) is the probability that a bubble of area A

gains a side, and d(A) is the probability that a bubble of area A loses a side.

Marder next assumed that the smallest bubbles neighboring a disappear-

ing bubble tend to lose a side and the largest to gain a side. In this case

d(A) = d5(A) + dg(A) + d3(4), (V.38)
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where:

45(4) = wo(5, 051 A + 1 p)ZA)) (v

is the probability to be next to a disappearing five-sided bubble and smallest

or next smallest among the bubble’s neighbors.

14(4) = rg(6,041S2 1 (1 - p(a)

2
p*(4)
= (V.40)
is the probability to be next to a disappearing four-sided bubble and smallest

or next smallest among the bubble’s neighbors.
d3(A) = kg(3,0)3! (V.41)

is the probability to be next to a disappearing three-sided bubble. Similarly,

[1 - p(4)]*

u(A) = xg(5,0)5! 2l

(V.42),

is the probability that a bubble is next to a disappearing five-sided bubble
and is the largest. We present results from Marder’s direct solution of the
model in Table 7. Impressively for a model with no free parameters, Marder
obtained quite good quantitative agreement with actual experimental time
series for < a(t) > (see Fig. 22 (A)), including the correct transient behavior

for two different initially well ordered experimental runs.

If we assume that there is no correlation in side shedding we instead

obtain

3
u(4) = xg(5, o)szg +9(4, 0)4!§ +9(3,0)3!7 (V.43)

and

u(4) = fcg(S,O)S!-;-. (V.44)
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This last is essentially a discretized version of the equations used in early
work by Beenakker.28 Fradkov has also taken this approach and solved for

the equilibrium distributions retaining the rate of T'1’s as a free parameter.’4

V.e Evolution on a Network

Conceptually, the most satisfying approach to a mean field theory is
that of the topological network. This was originally described by Frad-
kov, Shvindlerman and Udler, and apparently rediscovered independently
by Beenakker?”:’® They model the froth as a connected network of bubbles
where each bubble is completely described by its area, number of sides and
list of neighbors. The mean field theory assumption is that side redistribu-
tion occurs randomly upon the disappearance of a bubble. The simulation
is then straightforward. Von Neumann’s law is applied to each bubble in
the network, and the first time at which any bubble disappears, calculated.
Next, the areas of all bubbles in the network are recalculated. The disap-
pearing bubble is then deleted, its neighbors have their numbers of sides
updated according to Table 6 and the list of neighbor connections is cor-
rected according to Fig. 21. Almost any function of interest, < a(t) >, side
and area distributions and correlations, etc., can be directly calculated from
the state of the network as it evolves in time. The only aspect of the froth
abandoned by the model is the deterministic redistribution of sides upon
bubble disappearance. We may also include wall breakage processes without

any detailed modifications.

Fradkov, Shvindlerman and Udler assumed direct disappearance of
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three-, four- and five-sided bubbles with no redistribution correlations and
included the rate of T'1 processes as an adjustable parameter to obtain a
family of side distributions.”®77 For non-zero rates of side swapping they
allowed the creation of two-sided bubbles. The greater the rate of T1’s the
lower the value of n at which the distribution peaked and the larger the value
of p(3) (See Table 7). They also observed the expected monotonic increase

in growth rate to equilibrium for initially disordered states (See Fig. 22 (B)).

Beenakker employed the same model setting the rate of T1’s to zero and
assuming no redistribution correlations. He obtained excellent results for
An and the area distributions (See Table 7). Particularly striking was his
observation of the characteristic features of both initially ordered growth
(slow, fast, equilibrium) and initially disordered growth (monotonic increase
to equilibrium rate), as well as the broadening and subsequent narrowing of

the side distribution for initially well ordered distributions (See Fig. 22 (C)).

V.f “Exact Models”

As we shall see in the next chapter, mean field theories can predict well
experimentally observed distribution functions. What they cannot do is
generate an actual image of an evolving froth. To produce such a real space
picture we must simulate the behavior of the froth directly as a combination
of soap films and diffusing gas (or in the next section, as an array of hopping
atoms). For want of a better term we call these “exact” models, though
they are by no means always exact. “Exact” models come in two types.

They either move the films and then adjust the vertex positions (boundary
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dynamic models), or adjust the position of the vertices and then recalculate
the positions of the soap films (vertex models). We begin by examining

boundary dynamic models.

V.e.t Boundary Dynamic Models

47,48 assumed a radius based dynamics, v = £, where

Ceppi and Nasello =

v is the velocity of a given boundary, and p its averaged curvature. They

then discretized to a lattice and defined the function

Fi®) = /C gy SN (V.45)

where f;(Z) is one inside the sth bubble and zero outside, and C(Z,a) is
a circle of radius a (in their paper, six lattice constants) centered at Z.
The boundary between bubble ¢ and bubble 7 was then given by solving
implicitly for the position that yielded F;(Z) = F;(Z). They claimed that
this evolution law was equivalent to the velocity relation with a time step
of At = a? /6u. Disappearing grains were eliminated from the list, and
boundary reconnection was taken care of automatically by the definition. We
show a typical example of the evolution they obtained in Fig. 23. Taking

iterations of the algorithm as equivalent to time, they obtained a = 1.

Frost, Thompson and their collaborators, in a long series of articles,’9:81,82,83,84,109,229

tried to duplicate the physical situation more realistically. They took equa-
tion (IIL8):

() = (@, (V.46)
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as their basic dynamics, and discretized by segmenting the boundary into
short, nearly flat sections represented by a point. The boundary segments
were then moved perpendicular to the boundary a distance vAt, to obey
the dynamical law. Vertices were separately adjusted to give 120° angles,
and radii of curvature calculated by local fitting of circular arcs. Boundary
points were added or removed as needed to minimize errors in the curvature
calculations., Side readjustments were made locally when vertices moved
too close together. In spite of the numerous opportunities for error in the
various discretizations, the model satisfied von Neumann’s law to within
3%, convincing evidence that it captured the basic dynamics correctly.80
It was straightforward to measure distribution functions and growth rates.
We present a typical pattern evolution from their model in Fig. 24. Since
the model stored only information describing the positions of boundaries
they could run extremely large simulations, to obtain @ = 1 over three
full decades for a variety of initial conditions. Unfortunately all of their
initial conditions were fully disordered so they were not able to observe the
disordering transient. One particularly attractive feature of this model is
that it is simple to include a whole variety of evolution equations once the
basic structure of the model has been established. Frost and Thompson
have considered anomalous grain growth (by locally increasing the boundary
mobility, ), continuous nucleation of new grains, and non-linear curvature

dependence ainong many other effects.



Fig. 23 Boundary Dynamic Grain Growth. (A) Initial Condition.
(B) After 5 iterations of the algorithm. (C) After 20 iterations. (D) After

40 iterations (From Ceppi and Nasello 1984).47
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Fig. 24 Boundary Dynamic Grain Growth. Grain growth in the
boundary dynamic model of Frost et al.. (A) Initial excluded volume Voronoi
construction. (B) ¢ = 0.5 diffusion times. (C) ¢ = 1.0 diffusion times. (D)
t = 3.0 diffusion times. (E) ¢t = 10.0 diffusion times. (F) ¢t = 30.0 diffusion

times (From Frost and Thompson 1988).260
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Fig. 25 Vertex Dynamic Grain Growth. Left hand side of each
column shows the evolution of an experimental two dimensional soap froth,
right hand side shows the evolution of a vertex model starting from identical
initial conditions. (A) (left) ¢ = 990 minutes. (A) (right) ¢ = 820 minutes.
(B) (left) ¢t = 1319 minutes. (B) (right) ¢ = 1236 minutes. (C) (left) ¢ =
1620 minutes. (C) (right) ¢ = 1652 minutes. (D) (left) ¢ = 2040 minutes.
(D) (right) ¢t = 2068 minutes. (E) (left) ¢ = 2690 minutes. (E) (right)
t = 2692 minutes. (F) (left) ¢ = 3525 minutes. (F) (right) ¢ = 3525 minutes.
Theoretical times were assigned by fitting N(¢t = 0) and N(tfina) (From

Fullman 1952).86
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Fig. 26 Vertex Dynamic Grain Growth. (A) Voronoi network
initial condition. (B) ¢t = 50 time steps. (C) t = 156 time steps. (D) ¢ = 300

time steps. (E) ¢ = 500 time steps (From Soares, Ferro and Fortes, 1985).210
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Fig. 27 Vertex Dynamic Grain Growth. Small samples of grain
growth in the vertex model of Kawasaki, Nagai and Nakashima. They begin
with a Voronoi lattice, N = 48,000. (A) ¢ = 5.0 montecarlo steps (MCS).
(B) t = 20 MCS. (C) t = 50 MCS (From Kawasaki, Nagai and Nakashima
1988).259 |
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V.e.is Vertex Dynamics

One appealing way to simplify the computatién of bubble evolution is to
treat the vertices as particles pulled by the grain boundaries. Such models
have the advantage of extreme simplicity, but are not in any obvious way
dependent on the real physics. We might expect them to work best in a
different limit, when the diffusion rate across the grain boundaries was large
compared to the rate of boundary motion. However, by choosing correctly
the dependence of the vertex motion on applied force, we can obtain reason-

able agreement with experiment.

The earliest example of a vertex model is that of Fullman (largely for-
gotten by later re:searchers).86 He treated interfaces as flat and defined the

force on a vertex j by

F; = e (V.47)
! ,;s lfi - Ejl’
neighbors

and the resulting velocity of the vertex by
|l
T e - F)F,

neighbors

- —
v; = F;

(V.48).

This effective mobility is a pretty good method to absorb an integrated wall
curvature into an angle deviation at the vertex. Fullman did not discuss his
tréa.tment of bubble disappearance or side swapping (he did all his calcula-
tions by hand! which limited the number of bubbles he could work with),
but it appears that he removed zero area bubbles directly, and swapped sides

whenever vertex pairs overlapped. With this model, starting with an actual
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soap bubble configuration, he was able to obtain good agreement both for the
rate of area growth (Fig. 15 (B)) and for the detailed geometrical evolution

of the froth (Fig. 25).

Soares, Ferro and Fortes also assumed that the froth behaves like a
damped network of springs, and that pressure and diffusion could be ne-
glected entirely.210 That is, they assumed that wall mobilities were much
greater than vertex mobilities. There is no reason a priors to expect that
this should be true in the soap froth. They further assumed that boundary

walls were flat, and the velocity of the tth vertex in the network given by

-

v; = uF; (V.49)

where u is the mobility of the vertex, and F; is the force on the vertex from
equation (V.47). They performed side swaps whenever a given line con-
necting vertices shrank below a cutoff length ly. Triangular cells with sides
smaller than lg were deleted and replaced with a single vertex at the mid
point of the triangle’s shortest edge. As with all "exact” models, calculat-
ing distribution functions, etc. was straightforward. We show their sample
evolution in Fig. 26, beginning with a Voronoi network and employing pe-
riodic boundary conditions. They obtained a value of o = 1.04 for the area
exponent.

Kawasaki, Nagai and Nakashima have developed a series of vertex based
models that include a realistic description of the energetics of the soap
films 82:118,119,179 yngtead of merely assuming a constant force dependent

velocity, they included an explicit velocity dependent damping term. Let
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7; be the position of the sth vertex and o be the surface tension. The free

energy of the whole network then is :
F=o) |-l (V.50)
1,J

7=

If v; is the velocity of the ith vertex and #i;; = F-?"T is the normal between
i1

vertex ¢ and vertex j, the dissipation is:

g - a - A — A
R=ct 2 Z (5 - A45)® + E (% - Ag5) (%5 - 45) |
¢ Mighl’zon(i) (covmu:t'a,i pairs)
(V.51)
where L sets the length scale of the pattern relative to the typical velocity.

In terms of ¥ and R the equation of motion for the sth vertex is given by:

¥ oOR
-3-7':,'. + -3_17_, =0. (V.52)

These equations are not soluble for large numbers of bubbles. They may,
however, be reduced to a soluble form by neglecting any anisotropy in the

dissipation to obtain a simplified equation for the motion of a vertex

1 — - | = F‘ - ;‘.
o X R-hli=- X = Medd (V)
j .
neighbora(s) neiahzoro(l')

Averaging over the nearest neighbor lengths on the left hand side reduces

the equation to an even simpler form:

=

1., i — 7y
A Z =1 Model II (V.54)

s —f
7, neighbors(s) I73

equivalent to the model of Soares, Fero and Fortes. Kawasaki, Nagai and

Nakashima treated swapping by setting any two vertices within a critical
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distance to be equivalent, and replacing small triangles with a single vertex
at the midpoint of the shortest side. They solved the equations by direct
integration. We show the typical evolution of their Model II in Fig. 27
in a configuration beginning with a 48,000 bubble Voronoi lattice. The
distributions were clearly much broader than in a real froth. Neither model
obeyed von Neumann’s law, with six-sided bubbles shrinking and few sided
bubbles shrinking much slower than expected. In later papers they drew on

the work of Fullman,!19 substituting the velocity dependence:

F; - /(5]
;= — V.55
! 2”:;1.3 , ?}:si;" 0,-1-’ ( )

where ;; is the angle to the jth vertex. They also tried a local vertex

)N A N
g s( """"’"gz , (V.56)

which gave more attractive distribution functions, with @ = 1, and obeyed

mobility®2

both the Aboav-Weaire Law, and the radius law that < r,, > n.

V.f.5t{ Other

Weaire and Kermode wrote a hybrid between a vertex and a boundary
dynamic model.?43:244 They used von Neumann’s law to adjust cell areas and
then relaxed the positions of the vertices to produce 120° angles connected
by minimal length circular arcs. They performed T'1’s whenever vertex re-
laxation would have caused crossings in the boundaries and deleted very

small three-, four-, and five-sided bubbles. They started their model with a
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randomized lattice using periodic boundary conditions. Unfortunately lim-
itations on the availability of computer time limited them to two hundred
initial bubbles. Probably because of the small size of the simulation, they
never seem to have reached a scaling state (their side distribution widened
continuously), and they observed a growth exponent of a = 2, typical of high
growth rate equilibration. It is difficult to believe that they would not have
obtained a = 1 for a larger system. They did obtain good fits to experimen-
tal correlation functions and were able to perform a variety of rheological

simulations.

V.g Potts Model

The vertex and boundary dynamic models we have been discussing arise
naturally from a consideration of the basic physics of a soap froth, in which
gas diffuses across well defined soap films. In a metal the grain boundaries
are just regions of high concentrations of defects and move by the hopping of
atoms between regions of different crystalline orientation. The Potts model
simulation takes a quasi-microscopic view of froth evolution. It was devel-
oped by metallurgists who found it natural to think of the interior of a grain
as being composed of a lattice of "atoms,” and the grain boundaries, as the
interface between different types (or orientations) of those "atoms.” Philo-
sophically this is as far as one can get from a mean field theory, but the
starting point is not too different. The mean field theories begin with von
Neumann'’s law, the Potts models with surface tension. The chief exponents

of the Potts model approach have been the Exxon group of Anderson, Grest,
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Sahni and Srolovitz who have published a monumental series of papers in-

vestigating every aspect of the model.12:15,16,93,99,100,202,215,216,217,218,219

We have mentioned in our discussion of von Neumann’s Law that the
basic driving force in a coarsening system is surface tension (or more gen-
erally surface energy) which creates pressure differences which result in gas
diffusion. The Potts model puts surface tension on a lattice by defining an
energy which is proportional to the total length of grain boundary in the

system.

Mathema.tica.lly we may do this by defining on each site of our lattice,
a spin O(i.5)» where all the lattice points lying within a given grain in our
initial configuration are assigned the same value of spin, with a different
spin for each grain. In practice to increase computational efficiency, we may
reuse spins, using a finite number Q of spins, but taking enough that the
probability of two grains with like spins coming in contact and coalescing
is small. will discuss below. The energy of interaction between like spins is
defined to be zero, and between unlike spins to be one. We may thus write
the total Hamiltonian for our spin system as:

=3 Y Soupomm—1s (V.57)

t,7 neighbors
N

where the range of the second sum will affect the nature of the interaction.
The spins are flipped using a montecarlo selection, where a spin is chosen
at random and flipped only if the flip would lower system energy. This

corresponds to the zero temperature limit, which is appropriate if we



Fig. 28 Potts Model Grain Boundary Migration. (A) Flat bound-
ary, second nearest neighbor interaction. All boundary spins have energy 3,
flips would increase energy to 5. (B) Curved boundary. Circled spins lose
energy by flipping (6 — 3). The 2 grain will grow at the expense of the 1

grain.
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Fig. 29 Potts Model Anisotropies. Energy per unit surface length as
a function of surface angle. (a) For nearest neighbor hexagonal lattice (From
Srolovitz et al. 1983).218 (b) For nearest neighbor square lattice. (c) For next
nearest neighbor square lattice. Labelled arrows show energy extrema and

values.






Fig. 30 Potts Model Anisotropy. Shrinking of an initially circular
grain in an hexagonal nearest neighbor Potts model simulation. Times from
outermost contour moving inwards are, t = 0, ¢ = 1200, ¢ = 2100, and
t = 3000 montecarlo steps. Some hexagonal anisotropy is evident at later

times (From Srolovitz et al. 1983).216
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Fig. 31 Potts Model Grain Growth. Grain Growth in the next near-
est neighbor Q = 48 Potts model starting with random initial conditions on a
periodic lattice. (A) ¢t = 4,000 montecarlo steps. (B) ¢t = 8,000 montecarlo
steps (C) ¢t = 12,000 montecarlo steps. (D) ¢ = 20,000 montecarlo steps

(Figure supplied by G. S. Grest 1989).
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Fig. 32 Potts Model Grain Growth. Comparison of two dimen-
sional soap froth (left) and next nearest neighbor square lattice Potts model
simulation starting from identical initial conditions (right). Areas shown are
30% details of the soap froth and the entire 600 x 500 Potts model simu-
lation. Note the missing walls along the lower boundary in the ¢ = 1640
minute image and the spurious two-sided bubbles in the ¢ = 559 minute and

t = 1119 minute images (From Glazier et al. 1989).93
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want to study relaxation processes rather than phase transitions (The tem-
perature remains a useful control parameter, however, for the analysis of

conditions where fluctuations are significant).

We may understand why this surface energy results in a von Neumann
like diffusion if we look closely at a region of grain boundary (Fig. 28). If
the boundary is straight (Fig. 28 (A)) there is no tendency for spins to flip,
since all spins border more of their own kind than of others. If a boundary
is curved (Fig. 28 (B)), however, spins on the convex side will tend to see
more of the opposing type and thus to flip. The result is that the boundary
recedes at a rate proportional to its curvature. The original version of this
argument was given by Plateau in his study of soap bubbles.189190 gince
the system attempts to minimize surface length the same factors that favor
120° angles at vertices are at work, so the rest of the von Neumann’s law
derivation follows. One difficulty with this argument is that a simple near-
est neighbor interaction on a square lattice results in a strongly anisotropic
surface energy (the ratio of lowest to highest surface energies as a function
of orientation is 1.41) which allows stable vertices deviating from the 120°
rule (See Fig. 29 (b)). As a result grain growth in a nearest neighbor square
lattice Potts model tends to gradually slow and finally stop altogether (as ob-
served in many real metals with a high anisotropy), rather than coarsening
continuously. One way to treat this problem is to work at a higher tem-

perature where fluctuations overcome anisotropy pinning (experimentally in

metals, higher temperatures result in larger growth exponents so this choice
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is reasonable in simulations of grain growth). However, the soap froth is
essentially fluctuation free, and therefore should be simulated in the zero
temperature limit. A better solution is to use a nearest neighbor hexagonal
lattice (Fig. 29 (a), energy ratio 1.15) or a next nearest neighbor square
lattice (Fig. 29 (c), energy ratio 1.13), to reduce pinning. There is still some
preferred boundary alignment in both cases, but no evidence of freezing.
Anderson et al. have checked the anisotropy effect in the hexagonal lattice
by tracking the evolution of an initially round grain (Fig. 30). It becomes

slightly hexagonal, but continues to shrink essentially uniformly.

A second difficulty with the Potts model grain growth simulation is the
range of length scales it requires. To successfully measure the scaling expo-
nent for the growth of average grain area, for example, the following relation

must hold:

Lpattice Spacing << LGrain Initial << LGrain Final << LLattice Sizes
(V.58)

i.e. each grain must contain many spins, the grains must grow a substantial
amount, and the final configuration must have many grains. This means
that for truly reliable results the lattice needs to be at least 1000 spins per
side. An insufficient appreciation of this problem lead to some confusion over
the actual scaling exponent of the model.18:83 In their most recent paper the
Exxon group obtained good agreement with von Neumann’s Law. While
they originally obtained a growth exponent of a = 0.76 possibly due to non-

equilibrium and anisotropy effects,202 they have since revised their estimate
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up to a = 0.98 +0.04.1% In the same paper they obtained a growth exponent

in three dimensions of a = 0.96 £+ 0.11.

It is, perhaps, not too surprising that the Potts model shows excellent
qualitative agreement with the coarsening of a soap froth. We show a simu-
lated evolution of an initially random distribution of 48 different spin types

(Q = 48) in Fig. 31.

In the case of the Potts model, we had the advantage of doing the simu-
lations ourselves and could therefore match the conditions of the experiment
and simulation more closely. We ran the simulation using a 600 x 500 square
lattice with open boundary conditions (in which spins on the boundary wére
assumed to interact with frozen impurities) employing the digitized image
at t = 2044 minutes as the initial state. As seen in Fig. 32, this time was
late enough that there were few islands of six-sided bubbles remaining from
the initial fill. We used a value of Q = 48 to minimize wall breakage without
unreasonably increasing the time required for the computation. To prevent
freezing of the domain boundaries at long times, we set the nearest and next
nearest neighbor coupling constants equal. The resulting anisotropy appears
as a preferential alignment of grain boundaries along 45° and 90° angles,
which does not appear in the triangle lattice. However, grain areas and
topological distribution functions appear to be independent of the lattice

type, for simulations in which the boundaries do not freeze.

In Fig. 32 we show the soap froth (30% detail) and the Potts model

at various stages of evolution, beginning with identical initial patterns. The
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qualitative features of the disordering are similar, though the differing bound-
ary conditions (the sample of the froth is taken from the bulk whereas the
simulation has open boundary conditions) result in a rapid divergence be-
tween the actual patterns. A clear example of the difference in boundary
conditions is the contact angle between the domain walls and the edges of
the cell. In the experiment, the boundary of the viewing window does not
affect the froth and the films can cross the boundary at an arbitrary angle.
In the simulation (and adjacent to the cell walls in the experiment) the an-
gle of contact is always close to 90°. The digitization can also result in the
appearance of spurious small bubbles near the image boundaries and occa~
sional wall breakage that they attempt to correct for in calculations. The
disappearance of residual order occurs in both systems at comparable length
scales (after approximately an one order of magnitude increase), and the
qualitative patterns remain comparable. At long times in the Potts model
grain boundaries appear to lie preferentially along 45° angles. This effect is
not seen in simulations on the triangular lattice and presumably reflects the

anisotropy remaining in the second nearest neighbor Hamiltonian.

In Fig. 17 we compare the average bubble size versus time for the froth
and the model. Since the initial condition of the model was taken from
the same digitized image used to measure the areas of the bubbles in the
froth, there was no freedom in assigning areas to bubbles. The multiplicative
constant relating real time to montecarlo steps is a free parameter, however.

If we believe the result that the soap froth does show a growth in average area
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slower than t at long times, we obtain from a least squares fit, ¢ (minutes)
= tm * .32 + 2044, where t,, is the number of montecarlo steps. In this
case we have essentially exact agreement between the froth and the model
up to 20,000 minutes where the statistics are best, after which the rate of
evolution of the soap froth slows noticeably. If we neglect the long term effect,
we obtain a best fit with ¢ (minutes) = t,, * .38, which gives agreement over
the whole time period within approximately 20%. In both cases the typical
dynamics for an initially ordered froth appear, slow initial evolution, followed
by rapid growth during which any residual order disappears, and a long term
tail with slower, approximately power law growth. We even obtain a purely
fortuitous agreement in the long time tails of the two areas, where the soap
froth and simulation both show non-monotonic changes in average area (at
the same time) due to the contact with the cell boundary (and hence loss

from the ensemble) of a large bubble.

Wejchert, Weaire and Kermode modeled the froth using a slightly dif-
ferent Potts model technique. They included von Neumann’s law explicitly
to control the dynamics in their calculations and used the hexagonal lat-
tice Potts model only to relax the grain boundaries. They therefore used a

different Hamiltonian,

1 A )
A= 2N E Z 6"(;'.:’):0(.-1,5:) -1+ I E (ax — ak)z, (V.59)
4y M“:"f"" cells k

where k indexes the bubbles, &; is the von Neumann'’s law determined target
area for the kth bubble, and X specifies the strength of the area constraint.

This Hamiltonian relaxes to the surface tension case with the constraint that
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each bubble has a fixed target area d;. The target areas were updated ac-
cording to von Neumann'’s law, %ﬁ = Kk(ny —6), at each time step. This had
the advantage over the Exxon model that even bubbles small relative to the
lattice constant properly obey von Neumann’s law, since they are not depen-
dent on statistical averaging along their walls, but the basic requirement of

a large lattice remains.

The Potts model has several significant points in its favor. First is sim-
plicity. Its one assumption is that wall energy is the only mechanism driving
coarsening. Redistribution of sides occurs automatically without making
further assumptions. T'1 processes are also automatically included with the
correct rate. Second, it can be easily extended to include grain coalescence
and wall breakage. If, instead of assigning a different spin to each grain, a
fixed number, @, of spins are used, then the probability of a broken wall
between two grains meeting as a result of a reorganization of the lattice is
just % Thus one can study in detail the effects of wall breakage on froth
evolution.}®217 Other straightforward extensions include three dimensional
lattices (limited by the availability of computer time to do 1000° monte-

8

carlo calculations),!® the consideration of pinning centers,1® orientational

anisotropies,1%0 and anomalous grain growth in which volume dependent

terms are added to the surface energy in the Hamiltonian.219

V.h Summary

We have examined seven basic types of models for coarsening in two

dimensions: static models, phenomenological models, radius based mean
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field theories, topological mean field and network models, boundary dynamic
models, vertex dynamic models, and the Potts model. We draw the follow-
ing conclusions about the physics of two dimensional coarsening. The phe-
nomenological model’s success shows that we understand the basic mech-
anism of disordering, that regions of homogeneous, unstable disorder eat
away at regions of stable order along the boundaries between the regions.
The ability of network models to reproduce the dependence of disordering
on initial disorder confirms our basic statistical assumption, that the dy-
namics is independent of any correlations in side shedding. The ability of
boundary dynamic models to predict both pattern evolution and dynam-
ics goes a step further, demonstrating that local wall length minimization
and the Ageometrica.l constraints of a codrdination number three network can
provide a complete description of two dimensional coarsening. Finally, the
Potts model extends our understanding to the microscopic level, proving that
purely local energy considerations at the “atomic” level can give rise to the

correct diffusive and geometrical laws.

In this limited respect our underst;nding of the universal dynamics of
two dimensional coarsening is complete. We have only hinted at the many
types of non-universal behavior, which would be of paramount importance in
any real application, because they are still poorly understood. We have also
neglected three dimensional coarsening, another problem of great practical

importance.



