CHAPTER VI
DISTRIBUTION FUNCTIONS

In the next two chapters we examine in more detail the agreement be-
tween experiment and the predictions of the models discussed previously. We
focus on those properties which should distinguish among different classes of
systems. We examine, in particular, the distributions of number of sides and
area, and the correlation between area and number of sides and between the
number of sides of neighboring bubbles. Because of the large uncertainties
in the experimental measurements our conclusions will be indicative rather

than definitive.

Besides the mean bubble area, the two basic measures of the state of
a froth are the distribution of the number of sides, p(n), the probability a
randomly selected bubble has n sides, and the normalized area distribution,
p(A/ < a >), the probability that a bubble has an area which is a given
fraction of the mean bubble area. Such measurements have been made even
in systems for which the dynamics are not well studied. A typical example
is three dimensional grain growth in a metal, where measurement of the size
distribution usually involves sectioning and hence precludes measurements
in time.

A basic problem with any distribution function measured in a finite area
is that large bubbles are more likely to touch the area’s boundary (and hence
to be excluded from the statistics) than are small bubbles. We therefore have
a systematic bias against large (and many-sided) bubbles in our distribution
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functions and their moments. To the accuracies that we are able to measure,
this error is not significant, but we have given two examples of corrected
distributions in Table 7 and 8. For the second moment, the effective cor-
rection is of the order of 5%. It is relatively smaller for higher moments.
The mathematics of distribution function correction is discussed in detail in

Miles, Lantuejoul and Blanc and Mocellin.30:137:168

V1.a Side Distributions

We define the mth moment of the side distribution as:

o o]
b = Z p(n)(n— < n >)™, VL1
n=2
and the width of the distribution,
[~ <}
W= Ep(n)ln— <n>| VI.2
n=2

For experimental distributions, < n > may differ from six so our calculated
values for the moments may differ slightly from those given elsewhere. The
larger the difference between < n > and six, the less reliable the distribution
and the larger the error in the moment estimate. Moments higher than u2
are sensitive to the large n tail of the distribution, which is hard to measure,
and thus are frequently only useful as qualitative indicators. W is useful
because it is much less sensitive to small counting error fluctuations for large
n than are the higher moments. We will also refer to the ratio R = %%-,

another simple reduction of the distribution.

While there are no general rules for correcting for statistical errors, we

find that small sample sizes tend to reduce average moments. For example, if
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there is a nominal 1% probability for twelve-sided bubbles, the contribution
to ug should be 0.36, which we shall see is a large effect. With a typical
sample of thirty bubbles, however, we will usually not see any twelve-sided
bubbles, and our estimate of uy will be correspondingly low. The problem is
worse for higher moments. Occasionally we will attempt to correct for this
bias by averaging several distributions, but most of the time we do not have

multiple samples to average.

Let us begin our discussion by examining the typical evolution of the
side distribution for two dimensional soap bubble coarsening. In Fig. 33
we plot Glazier et al.’s data for the directly digitized air froth shown in
Fig. 17, which began a well ordered pattern with a side distribution sharply
peaked at six. As a function of time, they observed a monotonic decrease
in the fraction of six-sided bubbles p(6) and a monotonic increase in the
fraction of five-sided bubbles, p(5). The large n tail of the distribution first
broadened, then narrowed to an equilibrium width. At long times, just'af-
ter the rate of evolution rolled over to a power law (¢ > 10,000 minutes)
they observed an essentially time independent distribution function, with
R = 1.03, implying the existence of a scaling state. We may see this scaling
state more clearly in Fig. 34 (from Stavans and Glazier, taken from the
helium froth shown in Figs. 16 (d) and 9 (left)). In this figure, Glazier and

Stavans have superimposed the side distributions for three different times



Fig. 33 p(n) versus Time. Side distribution versus time for an initially
ordered air froth. In order of decreasing p(6), measurement times were: ¢ =0
minutes, ¢ = 545 minutes, t = 1124 minutes, ¢ = 1565 minutes, ¢ = 2044
minutes, and ¢ = 3163 minutes. Note that the distribution first broadens

and then narrows to its equilibrium shape (From Glazier et al. 1989).93
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Fig. 34 p(n) versus Time. Side distribution versus time for an initially
ordered two dimensional helium froth. Taken at three different times in the
scaling regime: ¢t = 15.25 hours (open circles), ¢ = 29.48 hours (solid circles),

and t = 32.9 hours (crosses). Number of bubbles ranges from a few hundred

to about sixty (From Stavans and Glazier 1989).220
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Fig. 35 Side Distributions. Side distribution for the scaling state of
an initially disordered two dimensional air froth (solid) and for the Q = 48
hexagonal lattice, nearest neighbor Potts model (dashed) (From Glazier et

al. 1989).93



16

Soap Froth
-~=-Grain Growth
12

n
169




Fig. 36 ps versus Time. Second moment of the side distribution
versus time for an initially ordered helium froth (dots), and an initially dis-
ordered air froth (circles). The time scale of the initially ordered run has

been multiplied by three (From Stavans and Glazier 1989).220
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Fig. 37 u; versus Time. Second moment of the side distribution
versus time for two dimensional initially ordered air froth (From Glazier et

al. 1989).93
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Fig. 38 pu3 versus Time. Third moment of the side distribution ver-
sus time for two dimensional initially ordered air froth (From Glazier et al.

1989).93
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Fig. 89 p4 versus Time. Fourth moment of the side distribution
versus time for two dimensional initially ordered air froth (From Glazier et

al. 1989).93
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Fig. 40 W versus Time. Width of the side distribution versus time

for two dimensional initially ordered air froth (From Glazier et al. 1989).%3
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TABLE 7

SIDE DISTRIBUTION FUNCTIONS

o(3) p(4) p(5) r(6) p(7) p(8) »(9)
System (p(10) | (p(11)) | (p(22) | (o(18)) | (p(14)) | (o(15)) | (e(16))
Experiment
T Two D Soap Froth
Smith?%
Air?0e 1 0.01 0.08 0.27 0.35 0.18 0.11
Airt#31 0.018 0.006 0.282 0.318 0.161 0.083 0.031
(0.009) | (0.0006)
% 0.009 0.043 0.032 0.036 0.025 0.025 0.021
(0.009) | (0.00006)
Aboav®
t=0h - - 0.126 0.781 0.112 0.001
N = 4612
t=0h 0.002 0.022 0.212 0.537 0.204 0.022 0.001
N = 5687
t=15h 0.012 0.050 0.217 0.461 0.206 0.050 0.004
N =3550 | (0.0003) | (0.0003) :
t = 30h 0.011 0.059 0.265 0.378 0.198 0.074 0.018
N =3623 | (0.001) | (0.0006) -) (0.0003)
t=T75h 0.026 0.080 0.284 0.308 0.174 0.077 0.035
N=1372 | (0.011) (0.004) | (0.0007) | (0.0007)
t = 105h 0.034 0.111 0.291 0.262 0.149 0.077 0.033
p(18)]
N =584 (0.017) (0.010) (0.010) (0.008) [0.002]
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TABLE 7, continued

»(3) o(4) »(5) »(6) (7) p(8 #(9)
System (p(10)) | (p(11)) ((12)) ((18)) (o(14)) (»(15)) (o(16))
Experiment
Two D Soap Froth
Glasier et al.
Air®® 0.032 0.093 0.292 0.285 0.159 0.072 0.032
(0.018) | (0.018) (0.002)
Air® 0.003 0.102 0.277 0.329 0.201 0.073 0.009
N =343 (0.009) | (0.003)
N=111 0.000 0.090 0.333 0.315 0.144 0.072 0.045
Helium® 0.004 0.101 0.321 0.314 0.137 0058 | 0.041
N = 1696 (0.017) | (0.008) (0.008) (0.002)
N =428 0.000 0.071 0.383 0.208 0.187 0.073 0.038
0.008 0.090 0.325 0.289 0.198 0.064 0.032
N =311 (0.003) .
Average of 0.010 0.091 0.314 0.305 0.170 0.069 0.033
Above (0.008) | (0.008) | (0.0008) | (0.0003)
+ 0.013 0.011 0.023 0.017 0.027 0.006 0.013
(0.008) | (0.007) (0.001) (0.0007)
Metal Grains ___
Al +10~* Mg .22mm Foil™®
T=0 0.031 0.153 0.252 0.252 0.156 0.078 0.044
(0.016) (0.012) {0.002) (0.0083) -) (0.003)
T = 1.5h 0.034 0.153 0.274 0.254 0.161 0.090 0.033
[o(2)]
(0.0185) | (0.006) [0.003]
T = 3.25h 0.031 0.134 0.278 0.241 0.161 0.078 0.037
(0.022) | (0.008) :
T =425 0.045 0.120 0.236 0.236 0.152 0.084 0.032
(0.026) | (0.009) | (0.006) (0.007) (0.008) (0.003) {0.003]
Averaged 0.035 0.140 0.259 0.246 0.157 0.082 0.036
(0.020) | (0.009) (0.002) (0.0025) | (0.0012) | (0.0013) | [0.0016]
+ 0.002 0.007 0.016 0.019 0.009 0.005 0.006
(0.005) | (0.003) (0.003) (0.008) (0.002) (0.002) [0.002]
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TABLE 7, continued

e(3) p(4) #(5) »(6) p(7) (8) (9)
System (p(10)) | (p(11)) | (p(12)) | (o(13)) | (p(14)) | (p(15)) | (n(18))
Experiment
Biological
Cucumber!43 - 0.023 0.265 0.445 0.281 0.035 0.003
Dividing!4” - - 0.016 0.255 0.478 0.224 0.026
(0.001)
Eupatorium®4? - 0.026 0.265 0.436 0.238 0.034 0.001
Human Amnionl4? 0.004 0.054 0.248 0.397 0.241 0.049 0.007
Mouthbreeder - - 0.214 0.643 0.143
Fish‘“
Rock Fracture
Pieri“'
Basalts
Giant’s Causeway - 0.040 0.347 0.507 0.081 0.024
Devil’s Postpile 0.025 0.091 0.368 0.440 0.076
Mt. Rodeix - 0.148 0.499 0.328 0.024
Devil’s Tower - 0.169 0.422 0.354 0.055
Europa Type 1,2 0.038 0.171 0.4623 0.2517 0.078
Coodrd # 4
Circle Cliffs 0.329 0.624 0.048
Zendan, Iran 0.406 0.52¢4 0.061 0.008
Colorado 0.324 0.656 0.020
Europa Type 3 0.404 0.463 0.124 0.008
Europa Mixed 0.182 0.491 0.243 0.074 0.002 0.007
Other 2 D
Photo 0.031 0.222 0.253 0.171 0.129 0.070 0.053
Emulsion!2 [o(17)] | [p(19)]
N = 1000 (0.034) | (0.019) | (0.009) | (0.004) | (0.001) | [o.002] | [0.001]
Lipid Monolayers
Stearic Acidl® 0.071 0.128 0.269 0.269 0.125 0.089 -
(0.035) -) ) (0.018)
Pentadecanoic
Ordered®? - 0.054 0.258 0.462 0.140 0.077 0.009
Disordered®? - 0.097 0.340 0.262 0.233 0.039 0.010
(0.010)
Wax Convect.147 - 0.023 0.357 0.377 0.220 0.023
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TABLE 7, continued

p(8) p(4) (5) »(6) e(7) »(8) e(9)
System (p(10)) (p(12)) | (p(12)) | (p(13)) | (p(14)) | (e(15)) | (o(16))
Experiment
Two D Sections of 3 D Mateﬂ'
Froths
Polyurethane 0.049 0.145 0.229 0.318 0.175 0.067 0.016
Foam3%0 (0.002)
Metal Grains
Tin ’
Champur®* 0.100 0.227 0.290 0.206 0.097 0.043 0.019
(0.008) (0.008) (0.003) (0.001)
Aluminum
High Purity 0.038 0.161 0.256 0.250 0.148 0.076 0.039
(0.019) (0.009) | (0.005)
Pure 500° C3¢
im 0.014 0.152 0.261 0.267 0.156 0.074 0.047
(0.020) (0.009) | (0.001) _
25m 0.028 0.167 0.257 0.253 0.149 0.096 0.035
(0.012) (0.008) | (0.005)
125m 0.073 0.198 0.286 0.230 0.114 0.048 0.034
(0.008) (0.005) (0.0085) :
625m 0.029 0.146 0.251 0.228 0.174 0.071 0.053
(0.081) (0.012) | (0.009)
Average 0.035 0.166 0.264 0.244 0.148 0.072 0.042
(0.018) (0.008) | (0.008)
+ 0.026 0.028 0.015 0.019 0.028 0.019 0.009
. (0.010) (0.008) | (0.008)
a kroa2%¢ 0.063 0.083 0.104 0.396 0.271 0.063 0.021
-Brass?®® 0.025 0.202 0.436 0.287 0.046 0.007
—__ Ceramias
Blanc et &l.%
AL Os 0.04 0.17 0.29 0.21 0.12 0.10 0.04
Uncorrected (0.02) (0.01)
Corrected 0.036 0.158 0.276 0.213 0.127 0.108 0.045
(0.02¢) (0.018)
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TABLE 7, continued

p(3) p(4) o(5) p(6) o(7) o(8) (9)
System (»(10)) (»(11)) (p(12)) (p(13)) [ (o(14)) | (p(15)) | (e(18))
Experiment
Two D Sectns of 3 D Mats
Ceramics
Sintered 0.021 0.153 0.258 0.281 0.131 0.131 0.100
Alumina?®? (0.009) (0.007) (0.001)
Corrected 0.018 0.141 0.246 0.281 0.140 0.111 0.044
(0.010) (0.008) (0.001)
MgO + LiF® 0.024 0.160 0.279 - 0.248 0.155 0.081 0.034
N = 9906 (0.018) (0.008) | (0.0013)
Biological Materials
Vegetable Cells?® |  0.051 0.273 0.397 0.254 0063 | o008 | o0.001
Theory
Geometrical Models
Pure Geometrical
Voronoi** 0.012 0.108 0.264 0.295 0.197 0.088 0.031
N =1377 (0.008) | (0.0007) | (0.0007) _
N = 57,0003 0.0110 0.1078 0.2594 0.2952 0.1984 0.0896 0.0296
(0.0075) | (0.0014) | (.00018) | (.00005)
Clumped 0.013 0.108 0.266 0.289 0.192 0.079 0.041
Relaxed1%® - 0.022 0.258 0.467 0.211 0.037 0.008
N = 1366 (0.011) | (0.0007) | (0.0007)
Glass Models?%¢
Triangle Raft - 0.062 0.256 0.392 0.196 0.095
Triangle-Line 0.009 0.078 0.245 0.363 0.183 0.107 0.010
Raft (0.004)
2 D Sectas of 3 D Arrays®®®
Pentagonal 0.089 0.128 0.212 0.293 0.204 0.061 0.007
Dodecahedra (0.008)
Tetrakaidecahedra 0.073 0.134 0.118 0.3144 0.185 0.130 0.037
(0.011)
Coordination # 4
Poisson!?! | 0.354 0.377 0.191 0.059 0.009
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TABLE 7, continued

o(3) s(4) o(5) »(8) p(7) (8) p(9)
System l (p(10)) | (p(11)) | (p(12)) (’(IM (p(14)) | (p(15)) | (p(16))
Theory
Maximum Entropy
Kikuchi [131 0.035 0.141 0.233 0.238 0.185 0.107 0.045
(0.015) | (0.001)
Kikuchi II 0.025 0.107 0.243 0.274 0.189 0.109 0.042
(0.009) | (0.001)
Almeida et al.1° 0.210 0.195 0.159 0.118 0.086 0.063 0.047
0.035 0.025 0.018 0.013 0.009 0.007
Vertex Models
Weaire ¢t al.
» Exact® 3¢ - 0.145 0.251 0.261 0.194 0.103 0.038
(0.008)
* Exact®343 0.003 0.078 0.259 0.358 0.200 0.091 0.008
(0.003)
Soares et al.310 0.027 0.149 0.229 0.228 0.198 0.125 0.040
Straight Sides (0.009)
Kawasaki et al.3%
Model I 0.054 0.153 0.236 0.216 0.151 0.091 0.055
(0.027) | (0.010) | (0.005) (0.002)
Model I 0.031 0.141 0.253 0.237 0.173 0.094 0.045
(0.019) | (0.008) (0.002)
Enomoto et al.%3 0.068 0.134 0.255 0.213 0.147 0.082 0.053
(0.023) | (0.014) | (0.005) - (0.005)
Mean Field Theories_
Marder!s? 0011 | 0.076 0.263 0.414 0.123 0.056 0.029
(0.015) | (0.008) | (0.006)
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TABLE 7, continued

p(3) p(4) p(5) »(6 (7 p(8 (9)
System (p(10)) | (p(11)) | (p(12)) | (p(13)) | (o(14)) | (p(15)) | (p(18))
Theory
Network Models
Fradkov et al.”®
T1’s per T2 0.002 0.046 0.288 0.390 0.193 0.064 0.016
0 (0.002)
1 0.018 0.115 0.262 0.273 0.184 0.089 0.033
(0.010) | (0.003)
2 0.048 0.145 0.224 0.222 0.158 0.099 0.046
[#(2)]
(0.022) | (0.009) [0.010]
10 0.127 0.145 0.145 0.135 0.110 0.080 0.046
0033 | 0.022 [0.073]
) 0.127 0.107 0.093 0.077 0.085 0.053 0.049
(0.038) (0.032) [0.152]
Potts Model
Potts Model®® 0.025 0.128 0.271 0.253 0.161 0.084 0.039
Triangle Lattice | (0.019) (0.008) (0.003)
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TABLE 7, continued

(3) s(4) »(5) »(8) o(7) p(8) -1 p(9)
System (p(10)) | (p(11)) | (p(12)) (p(13)) | (p(14)) | (p(15)) | (o(186))
Theory '
Two D Sect of 3 D Mat
Carnal & Mocellin4®
=0 0.297 0.190 0.129 0.092 0.087 0.050 0.038
(0.029) | (0.022) | (0.018) | (0.014) | (0.011)
=2 0.085 0.174 0.222 0.205 0.138 0.086 0.050
(0.028) | (0.015) | (0.008) | (0.004) | (0.002)
B=4 0.011 0.118 0.264 0.297 0.171 0.083 0.035
(0.013) | (0.005) | (0.002) | (0.001) :
=6 0.002 0.070 0.273 0.373 0.184 0.069 0.021
(T1 rate) (0.008) | (0.001)
Blanc & Mocellin®®
0.036 0.173 0.231 0.215 0.154 0.099 0.054
(0.025) | (0.009) | (0.008) | (0.0008)
Depends on 0.100 0.146 0.194 0.194 0.151 0.101 0.064
2(3) as (0033) | (0.013) | (0.00) | (0.001)
a parameter 0.050 0.169 0.227 0.212 0.155 0.104 0.056
no T1’s (0.026) | (0.009) (0.008) (0.0006)
- 0.190 0.259 0.230 0.160 0.094 0.050
(0.021) | (0.006) | (0.0009)
Kurts & Carpay'¥?
Potts Model!®
0.076 0.185 0.230 0.212 0.121 0.082 0.046
(0027) | (0.010) | (0.008) | (0.004) | (0.002) | (0.001)
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TABLE 8
SIDE DISTRIBUTION MOMENTS

System <n> 77 U3 by w
Experiment
2-D Soap Froth
Smith121 5.928 1.759 1.148 10.21 1.005
Smith259 5.94 1.296 0.114 4.30 0.877
Aboav®
t = 0 hours N = 4612 5.988 0.242 0.003 0.26 0.249
t = 0 hours N = 5687 5.990 0.620 | -0.011 1.38 0.519
t = 15 hours N = 3550 5.968 0.976 | -0.068 3.56 0.687
t = 30 hours N = 3623 5.993 1.30 0.486 6.00 0.827
t = 75 hours N = 1372 5.982 1.98 1.763 15.62 1.028
t = 105 hours N = 584 6.010 2.86 8.153 76.10 1.247
Glazier et al. ‘
Air® 5.999 2.490 2.490 26.66 1.144
Air N = 343% 5.935 1.492 1.090 8.623 925
Air N=111 5.910 1.523 1.295 7.113 951
Helium N = 1696 5.983 2.151 3.933 24.29 1.045
Helium N = 423 5.972 1.437 1.017 6.01 0.927
Helium N = 311 5.915 1.491 1.017 6.87 0.958
Average of Above 5.952 1.764 1.980 13.26 0.992
+ 0.037 0.445 1.366 9.53 0.0087
Metal Grains
Al + 104 Mg .22mm Foil’® .
t = O hours 5.975 2.993 5.824 49.58 | 1.277
t = 1.5 hours 5.835 2.353 1.921 18.24 1.210
¢t = 3.25 hours 5.916 2.465 2.644 20.97 1.214
t = 4.25 hours 6.091 3.791 9.257 84.07 1.414
Average of Above 5.952 2.900 5.013 43.90 1.269
Biological Systems
Cucumberl4? 5.998 0.748 0.137 1.62 0.619
Dividing Cucumberl47 6992 | 0.656 | 0.092 1.23 0.570
Eupatorium!47 5.992 0.752 0.082 1.55 0.629
Human Amnion!42 5.087 1.00 0.068 3.02 0.734
Mouthbreeder Fish195 5929 | 0.352 | 0.004 0.35 0.398
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TABLE 8, continued

189

System <n> "2 U3 ' w
Experiment
Rock Fracture!9!
Giant’s Causeway 5.702 0.596 0.165 1.33 0.624
Devil’s Postpile 5.448 0.733 -0.325 1.80 0.719
Mt. Rodeix 5.228 0.522 0.005 0.69 0.592
Devil’s Tower 5.206 | 0.657 0.019 1.03 0.687
Europa Type 1,2 5.161 0.858 | -0.018 2.14 0.708
Codrdination # 4 Rock Fracture!®!
Circle Cliffs 3.720 | 0.297 | -0.008 0.22 | 0.473
Zendan, Iran 3.671 0.392 0.144 0.52 0.545
Colorado 3696 | 0.252 | -0.046 0.14 0.451
Europa Type 3 3.739 | 0.495 0.198 0.67 0.596
.Europa Mixed 4.243 0.791 0.553 2.69 0.692
Other 2-D Systems
Photo Emulsion N = 1000142 6.00 4.344 | 12402 | 111.66 | 1.580
Lipid Monolayers
Stearic Acid16? 5.836 3.309 7.705 66.37 1.313
Ordered®? 5.955 1.001 0.444 3.29 0.704
Disordered®? 5.874 1.432 1.125 7.28 0.958
Wax Convection4? 5.863 0.742 0.171 1.32 0.702
Two D Sections of 3 D Materials
Froths
Polyurethane Foam®Y | 5.607 1.771 0.172 8.70 1.076
Metal Grains
Champur Tin% 5.278 5.278 4.074 30.62 1.200
High Purity Aluminum®%¢ 5.877 2.746 3.739 29.40 1.271
Pure Aluminum at 500° C24
1 minute 5.967 2.445 3.047 21.68 1.188
25 minutes 5.883 2.440 2.849 22.48 1.216
125 minutes 5.500 2.534 3.779 28.64 1.243
625 minutes 6.081 3.118 4.534 35.33 1.362
a Iron206 6.000 1.708 | -1.125 9.46 0.917
(-Brass207 5.148 0.812 | 0.781 2.03 0.698



TABLE 8, continued

System r<n>l Bl l bs J He l w

Experiment
Ceramics
Blanc and Mocellin Al;043%°
Uncorrected 5.82 2.748 3.290 24.41 1.32
Corrected 5.939 2.901 3.386 26.25 1.343
Sintered Alumina uncorrected!3? 5.895 2.278 2.269 18.02 1.164
Sintered Alumina corrected!3? 5.098 2.348 2.226 18.31 1.162
MgO + LiF flux N = 9906° 5.835 2.279 2.415 18.51 1.188
Biological Materials
Vegetable Cells3%¢ | 5032 | 1022 | 0244 3.07 0.760
Theory
Geometrical Models
Pure Geometrical
Voronoi N = 137734 6.00 1.79 1.089 10.41 1.014
Voronoi N = 57,000°3 5.997 1.717 1.026 10.68 1.013
Negative Binomial Voronoi** 6.00 1.91 1.367 11.97 1.047
Relaxed Voronoil®® 6.000 0.754 0.222 1.858 0.603
Codrd. # 4 Poisson!®! 3.981 0.869 | 0.604 2.28 0.702
Glass Models3%4
Triangle Raft 6.007 1.079 | 0.185 2.95 0.768
Triangle-Line Raft 6.015 1409 | 0.400 6.01 0.879
2-D Sections of 3-D Arrays
Pentagonal Dodecahedra2®® 5.646 2.032 | -0032 | 1161 1.162
Tetrakaidekahedra 5.9938 2.506 | -0.212 | 16.08 1.202
Topological Transforms
Kikuchi '3 5.082 2.399 1.208 15.51 1.223
Kikuchi I 6.041 2.072 0.876 12.22 1.120
Maximum Entropy Models
Almeida et al.1° [ 598 o o oo 2.130(?)
Vertex Models
* Exact®344 6.005 1.907 1.116 9.516 1.089
» Exact?34 5.996 1.286 0.403 4.86 0.844
-Soares et al.310 5.997 2.273 0.740 12.63 1.213
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TABLE 8, continued

System <n> w2 U3 ™ w
Theory
Vertex Models
Kawasaki et al.259
Model I 5.993 3.277 4.085 36.41 1.401
Model II 5.979 2.544 2.288 20.75 1.239
Enomoto et al.%2 5.980 3.609 6.390 57.50 1.437
Mean Field Theories
Marder157 6.005 1.909 3.287 21.57 | 0.905
Network Models :
Fradkov et al.’®
T1’s per T2
o 5.991 1.111 0.560 4.14 0.765
1 5.554 2.758 0.983 20.36 1.358
2 5.929 2.984 2.089 26.56 1.357
10 5.502 5.170 5.129 66.72 1.886
(e ) 5.159 7.136 11.168 114.65 2.254
Beenakker?® 6.00 max=3.2
final=0.25
Potts Model
Potts Model®® 5.978 2.490 2.971 23.22 1.196
__Two D Sections of 3 D Mater.
Blanc and Mocellin%°
p(3) = 0.036 5.264 3.969 5.172 44 .41 1.654
p(3) = 0.100 5.984 3.839 3.660 41.45 1.558
p(3) = 0.050 5.989 3.174 3.300 30.78 1.403
- p(8) = 0.000 5.976 2.489 2.881 19.18 1.244
Carnal and Mocellin*®
B=0 5.37 7.156 24.918 206.69 2.120
B=2 597 3.881 6.921 59.42 1.510
B=4 6.005 2.107 2.475 18.77 1.073
=6 5.995 1.342 0.946 6.73 0.835
Kurtz and Carpay2%0
5.748 2.308 0.992 12.91 1.253
3 D Potts Model!®
5.830 3.736 7.189 61.80 1.492
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and found them identical within experimental error, thus showing that the
distribution was indeed time invariant. We give Glazier et al.’s measurement

for the scaling distribution in Fig. 35.

Smith’s data for the two dimensional froth had R < 1 (See Table 7), sug-
gesting that he never saw a fully equilibrated froth. His actual distributions
were not too different from those of Stavans and Glazier, however, considering
the large counting error in his small sample. His measured growth exponent
of a = 1, on the other hand, suggests that he did observe a scaling state. If
his side distribution came from early in the run (he never indicates when he
made the measurement), it would resolve the apparent contradiction. Aboav
observed the same sequence of events, with R increasing monotonically, and
the large n tail of the distribution broadening (See Table 7), but, as we noted
in discussing his value for the growth exponent, stopped his measurement
just before the froth reached its scaling state (only his last data point had
R > 1) so he did not observe the subsequent narrowing and equilibration of

the distribution.

In Fig. 36 we show evidence from Stavans and Glazier, that the scaling
state is universal for the soap froth. They measured the second moment
versus time for an initially ordered helium froth (that shown in Fig. 16 (d)
and 9 (a)) and an initially disordered air froth (that shown in Fig. 16 (f) and 9
(b)). The initially ordered froth started with a very small u which increased
rapidly to a maximum value of up = 2.65, (at about 9 hours, corresponding

to Fig. 16 (d) point D and Fig. 9 (D)) at the time when the rate of area
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increase was maximal. us then dropped rapidly, reaching a constant value of
p2 = 1.4 £ 0.1, at around 15 hours when the rate of growth rolled over into
a power law (Fig. 16 (d) point E and Fig. 9 (E)). In the initially disordered
froth the value of uy first dropped for about five hours (thus confirming the
initial drop in @ shown in Fig. 16 (f)). At these early times there were
many bubbles and the moment estimates were sufficiently accurate that the
drop cannot be a counting error fluctuation. ug then recovered, reaching a
constant value of g = 1.4%£0.1, at around 50 hours when the rate of growth
rolled over into a power law (Fig. 16 (f) point C’ and Fig. 9 (C’)). Thus
the final value of ug was independent of the diffusing gas and of the initial
configuration of the froth. In both cases the scatter increased as the number
of bubbles decreased at long times. There was no evidence of any significant
trend at long times, the slight decrease in the last few values of u3 apparently
occurring when the expected number of nine-sided bubbles dropped below
one. If we reject these points, our estimate of the equilibrium value of u2
would increase slightly to uz = 1.45 £ 0.1 for both the initially ordered and
initially disordered froths. In contrast, Aboav observed a monotonic increase
in uq from 0.242 to 2.86, as we would expect for observations made during

the froth’s equilibration (See Tables 7 and 8).

We show the same quantities calculated by Glazier et al. (for the air froth
shown in Fig. 17) in Fig. 37. The scatter is larger than in Fig. 36 because
they analyzed only a 30% sample of the total experimental image. The last

few points represent only about six bubbles each. Digitization errors also
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resulted in the creation of some spurious many- and few-sided bubbles. The
distributions were rechecked by hand, but some errors doubtless remained to
contribute to the scatter. We observe the same basic pattern as in Fig. 36.
The initially narrow distribution (small value of u3) widened to a maximum
width of u9 =~ 3.25, then narrowed to a stable value of uy = 1.6 + 0.2, in
agreement with the value of Stavans and Glazier, at the same time as the
rate of area growth rolled over into a power law (=~ 10,000 minutes, see Fig.

17).

The higher moments behaved similarly. We have calculated the evolution
of ug (Fig. 38), ug (Fig. 39) and W (Fig. 40) from the data of Glazier et al..
The thix;d moment, which measures the asymmetry of the distrib‘u'tion, in
this case mostly the strength of the large n tail, began near zero, increased
rapidly to a maximum during equilibration when the frequency of many-
sided bubbles was maximal (14 ~ 4.5), then dropped to a stable value of u3 =
1+0.5. The graph suggests that u3, may have undergone a second oscillation,
undershooting the stable value around 10, 000 minutes and reaching a second
slightly lower maximum of ug =~ 2.5 around 20,000 minutes. If so, it is a
surprising confirmation of the prediction by Beenakker that equilibration
should require multiple oscillations.2> Nothing changes if we look at the
fourth moment which represents the flatness of the distribution, essentially
the relative strength of p(4), p(7), and p(8) versus p(5) and p(6). The initial
value was u4 = 5. It then grew to u4 ~ 40 and decreased, with a possible

oscillation and second peak at 20,000 minutes, to a stable value of ug =
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6 + 3.5. We call the initial maximum in all the distribution functions, the

equilibrating maximum.

We might speculate that the second maximum we observe in the third and
fourth moments represents the decay of next nearest neighbor correlations
while the first peak represents the decay of nearest neighbor correlations.
In that case the time between the peaks would represent the time for an
average bubble to disappear, and hence for disorder to propagate a distance
of one bubble radius. The oscillation might also result from a phase lag
caused by different time constants for area and side equilibration. However,
without experimental values for u3 and u4 from other experimental runs (in
particular those of Stavans and Glazier), we must presumé that the apparent
oscillation is a statistical artifact, which could result if, for example, a single
very many-sided bubble appeared at roughly 15,000 minutes and gradually
began to shed sides after 20,000 minutes. We mention this scenario as an
example only, since we see no single many-sided bubble in the data to throw

off our calculations.

The width (Fig. 40) increased from an initial minimum of W ~ 0.4 to a
stable value (W = 1.1+0.3) at around 10,000 minutes, with a possible weak
maximum of W = 1.3 at 5000 minutes. Any oscillation at 20,000 minutes

was lost in noise.

Returning to our comparison of Glazier et al.’s results to those of Smith
and Aboav: Smith’s original distribution came within one standard deviation

of the Glazier et al. values for all moments, suggesting that he was reasonably
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close to equilibrium.2% The distribution given by Kikuchi, however, gives
unexpectedly low values for all moments, suggesting that it was taken early
in a run before the initial equilibrating maximum. If we look at Aboav’s final
state at ¢ = 105 hours, we find elevated values of all moments as expected

near the equilibration maximum.

In Table 7 we summarize side distributions for the soap froth, several
biological systems, metallic grain growth, rock fracture, and several other
systems, as well as many of the models we have discussed. We give cor-
responding moments in Table 8. We note that in this table we give the
moments exactly as calculated from the published distributions, even when
it is clear that the exact distribution would give infinite values for the higher

moments.

In spite of the large scatter in our measurements, the scaling state side
distribution of the soap froth is surprisingly difficult to match theoretically.
As typical froth distributions we take the averaged long time distributions
of Glazier et al. (the first line in the appropriate section of Table 7) and
an average of unpublished data of Glazier and data of Stavans and Glazier
(the last line of the appropriate section in Table 7) . None of the geometri-
cal models is within range, nor are the maximum entropy models of Rivier,
Kikuchi, or Almeida and Iglesias. Among the topological mean field theo-
ries, Marder’s model is generally within range, but gives an excessively high
value of u3 because of its correlated side redistribution which tends to nia.ke

many-sided bubbles gain sides and thus stretches the large n tail. Blanc and
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Mocellin’s model for two dimensional growth (no nucleation of three-sided
bubbles) is equally tail heavy. Fradkov, Shvindlerman and Udler’s network
model has difficulty matching both u9 and ug for a given rate of side swap-
ping, but does a reasonable qualitative job. Kawasaki’s vertex Model II does
reasonably well with the moments but has far too many four-sided bubbles.
Weaire and Kermode’s vertex model never reached equilibrium and Frost and
Thompson never published side distributions for their boundary dynamics
model so we have no data for comparisons from the two most physically
appealing “exact” models. The boundary dynamics model of Soares, Ferro

and Fortes is very tail heavy.

We plot the side distribution for the hexagonal lattice Potts model in
Fig. 35. Referring to Table 7 we find that the predicted values for the p(n)
are within the measured experimental scatter for all n, though the averaged
froth distribution has fewer four- and many-sided bubbles. Looking at the
moments, we find that the Potts model again gave consistently larger values
than the averaged froth, though within the experimental scatter in all cases.
If we compare to the distribution from Glazier et al., the agreement is much
better: exact for us and within 10% for all other moments, with ug a little

high, as we expect from the stretched tail.

If we try to match the froth to other experimental coarsening patterns
the only experiment that provides a reasonable match is Fradkov, Shvindler-
man and Udler’s measurement of two dimensional grain growth in Al +10~4

Mg foil. The side distributions are similar in shape with R = 1.05 for the
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grain growth and R = 1.03 for the froth. The chief difference is the promi-
nence of the tail in the metallic grain growth. Nevertheless, because of the
large scatter in both measurements, the measured range of distributions and
moments overlap in all categories. Unsurprisingly, Fradkov, Shvindlerman
and Udler’s network model with the rate of T'1’s set to be about 5 times the
rate of T'2’s agrees well with their experimental data for the foil. The Potts
model also is within range of the results for the foil for all values, though

consistently on the low side for the moments.

The apparent failure of topological mean field theories and network mod-
els to predict the moments in the soap froth correctly is surprising— but given
the large uncertainties in the experimental distributions hardly conclusive.
There may be an anti many-sided bubble bias built into the soap froth.
Perhaps, we need to include an anticorrelation in side shedding: that many-
sided bubbles preferentially lose sides and few-sided bubbles preferentia}ly
gain sides, a possible source for this anticorrelation being the deviation of
internal angles from the predicted 120°. Another factor may be statistical.
Theoretical distributions are usually calculated for large samples, and thus

avoid the anti many-sided bias that we have noted in the experimental data.

In the case of the Potts model and metallic grain growth the discrepancy
may arise from stiffness caused by anisotropy. The excess curvature which
opposes increases in number of sides for many-sided bubbles is masked in
the presence of anisotropy. In this case we would expect that the third mo-

ment would increase with increasing anisotropy. Unfortunately we have no
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data on the dependence of the distribution functions on the relative orienta-
tional anisotropies of the Potts model and metal films, though it would be
straightforward to design an experiment to test the hypothesis. In particular,
for lower anisotropies and higher temperatures, the frequency of many-sided
bubbles should decrease. An additional factor may come from the relative
rates of diffusion along and across grain boundaries. We expect that the Potts
model and metal grains will be further from equilibrium than a soap froth,
and hence may eliminate many sided bubbles more slowly, since a bubble
may not “know” how many sides it really has. Again, careful measurements
using different materials and temperatures could test the hypothesis. Any
theory must explain why the metal film gives a larger tail than the Potts
model.

We tentatively assert the existence of a universal distribution function for
two dimensional coarsening including the soap froth, two dimensional grain
growth in metals and the Potts model. It seems that the soap froth has a
lower frequency of many-sided bubbles than the Potts model, and the Potts
model than real grain growth. However, with our current data we cannot
really distinguish the three cases. In particular we have no way to determine
whether a larger or smaller frequency of many-sided bubbles is “ideal.” We
cannot tell whether disequilibria or anisotropies in the Potts model cause
a deviation from the ideal coarsening of the soap froth, or whether an anti
many-sided bubble bias causes the soap froth to deviate from the ideal coars-

ening of the Potts model. The mean field and network models may also
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belong to this class if proper side shedding anticorrelations are included. All
our speculation may be premature, however, since our current poor exper-
imental accuracy cannot distinguish any given soap froth distribution from
a Potts model distribution or a metal film distribution. We certainly need
better experimental data, especially scaling states for the soap froth with

many (i.e. thousands) of bubbles.

Proceeding down our list of experimental categories we come to two di-
mensional biological systems. Bénard-Marangoni convection patterns in wax
also belong in this group. These have narrow side distributions, tightly and
symmetrically centered around n = 6, with R = 0.45 + 0.2, u3 between 0.35
and 1, u3 < 2, ug < 3 and W between 0.4 and 0.7. The sharp cutoffs in the
distributions at n = 4 and n = 7 are distinctive. The dividing cucumber cells
are a special case since they represent a selection rather than an entire pat-
tern, as the large value for < n > shows. We have no difficulty distinguishing
these distributions from two dimensional coarsening. The models that work
for these systems are the pure geometrical constructions, particularly the
relaxed Voronoi, which gives excellent agreement. The network model of
Fradkov, Shvindlerman and Udler with no T'1’s to redistribute sides is also
not too far off. In both the models and the experiments the basic physics
seems clear. The mobility of cells and territories is small and their area
range limited (if they grow too large they split, if too small they die and dis-
appear). The pattern can readjust locally to eliminate stress, but diffusive

equilibration does not occur.
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Fracture patterns in rock belong to the same non-equilibrating class, with
distributions composed almost entirely of five-, six- and seven-sided bubbles.
R ranges from 0.7 for the Giant’s Causeway to 1.8 for cracks on Europa, but
the moments stay small, with g9 = 0.6 £ 0.2, ug3 = 0+ 0.2, u4 ~ 1.4 £ 0.6
and W = 0.6 = 0.1. Once again we have no trouble distinguishing such pat-
terns from two dimensional coarsening. The models described for biological
systems work for geological as well. A slight complication are the various
coordination number four patterns whose distribution functions are radically
different from the others but which give similar moments to co6rdination
number three fracture, suggesting that the non-relaxational physics is simi-
lar in the two cases. It also serves as a warning not to accept similarity of

moments as definitive without looking at the actual distribution functions.

We next come to two polymer systems. The photo emulsion has frozen
in a broad area distribution generated by a spray from a nozzle. The lipid
monolayer began with a similarly broad area distribution but had time to at
least partially equilibrate diffusively. The emulsion distribution is exheption-
ally broad, with R = 1.5, and p(4) > p(6), with a tail extending to n = 19.
The monolayer is less extreme, with R = 1, p(4) = 0.125, and a cutoff at
n = 13. The moments are correspondingly large and are well separated from
those of two dimensional coarsening. We are clearly in a regime where side
exchange is a dominant process, and our best agreement with models comes
from Fradkov, Shvindlerman and Udler’s high T'1 rate network model (oo or

10 T'1’s per T2), or the mean ﬁeld theory of Blanc and Mocellin in the same
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limit (8 = 0 or § = 2). Again, the physical motivation seems clear. The well
separated drops can move freely, and easily slide past one another to reduce
stress. However their large separation results in slow diffusion rates, hence
the failure to reach equilibrium. We will discuss the equilibration of lipid

monolayers in a later chapter.

Finally we consider two dimensional sections of three dimensional sys-
tems. If we neglect Smiths’s measurements for a-iron, a reasonably consistent
picture emerges for grain coarsening. The constancy of Beck’s measurements
of the distributions in aluminum as a function of time suggests that we are
safe to assume that the all metallic distribution functions are in scaling states.
Taking a rough average over the various metals and ceramics we obtain a
?typical” three dimensional coarsening distribution with R = 1, p(3) =~ 0.04,
with a relatively long tail, p(9) = 0.05 and p(10) ~ 0.02. The moments are
quite consistent, with ug ~ 2.6 £ 0.2, ug ~ 3.5+ 1.5, ug ~ 25+ 5, and
W =~ 1.3+ 0.2. The moments for the polyurethane foam are slightly smaller,
probably because its initial condition consisted of nearly uniform volumes
and it cured before reaching equilibrium. The vegetable cells, where, as we
have discussed, both areas and mobility are constrained, also show lower
moments. The poor value of < n >= 5 warns us to be cautious in in-
terpreting the vegetable cell data, but both the froth and the cells are in
reasonable agreement with the sectioning of a regular array of tetrakaideka-
hedra or dodecahedra, which is reasonable if they are relaxed close packings

of nearly equal volume bubbles. The agreement between random and regular
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structures also reminds us just how much information is lost taking a two

dimensional section of a three dimensional structure.

Two dimensional coarsening distributions and three dimensional coars-
ening distributions are clearly distinct. The best results for the three dimen-
sional distributions come from the mean field theories of Blanc and Mocellin
and Carnal and Mocellin which were designed precisely for this purpose.30:46
Interpolating for p(3) = 0.04 and f = 3 respectively fits the distribution and
all the moments to well within the experimental error. The actual distribu-
tion function of the Carnal and Mocellin model is particularly impressive.
The three dimensional Potts model gives values of moments much too large
and a tail much more extended than our hypothetical “typical coarsening.”
Whether this disagreement results from finite size or anisotropy effects, or
the particular choice of comparisons (we note that the comparisons given in
the paper of Anderson, Grest and Srolovitz fit only marginally bettet),15 is

unclear.

There does seem to be a typical side distribution for two dimensional
sections of three dimensional grain growth (and hence, presumably for three
dimensional grain growth itself). It is striking that the simplest of topo-
logical mean field theories, which assumes no side shedding correlations and
independent creation and destruction of three-sided bubbles, and which re-
quires only one rate constant, seems perfectly adequate to describe all of
the measured patterns in three dimensions. In two dimensions, on the other

hand, none of our theories is entirely satisfactory, and the one that works the
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best is also the most complicated and microscopically detailed. As in two
dimensions, structures with limited area distribuitions have distinctly differ-
ent side distributions. The range of scatter in the distributions is narrower
in three dimensions than in two, as if the details of what was coarsening
mattered less (this is partly an effect of the loss of information from taking
a section, but we are still perfectly able to distinguish coarsening from non-
equilibrating cellular aggregates and foams). The extra dimension seems to
reduce the effects of topological constraints, anisotropy, etc., and paradoxi-

cally to simplify the physics, while making exact modeling more difficult.

VI1.b Area Distributions

Because we have much less reliable data on the equilibrium area distribu-
tion of the soap froth, we will treat the topic of area distributions more briefly
than the side distributions, focusing on comparisons to the Potts model sim-
ulation. In particular we lack the distributions of bubble radii which are
the probabilities calculated by most models. We will not quote the many
distribution functions available for metals. We refer the interested reader to

the papers of Beck or Anderson et al..15:24

If we examine the time evolution of Glazier et al.’s area histograms (Fig.
41) for the two dimensional soap froth, p(A/ < a >), we find roughly the
same scenario that we found for side distributions. At short times the dis-
tribution peaks sharply around the average area (corresponding to a pattern
composed primarily of uniform sized six-sided bubbles). In time, the most

probable size gradually decreases to zero while the large area tail of the dis-



Fig. 41 Area Distribution versus Time. Evolution of the area
distribution for an initially ordered two dimensional air froth. Times are:
(a) t = O minutes. (b) t = 545 minutes. (c) t = 1124 minutes. (d) ¢t = 1565
minutes. (e) ¢ = 2044 minutes. (f) ¢ = 3163 minutes (From Glazier et
al.1989).93
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Fig. 42 Correlated Area Distributions. Area distributions for
five-, six-, seven- and eight-sided bubbles in the scaling state. Measurements
in air froth (solid line) and Potts model with identical starting conditions
(heavy dashed line). Total area distributions are shown for reference for the
soap froth (dotted line) and Potts model (light dashed line) (From Glazier

et al. 1989).9
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tribution gradually lengthens. This broadening comes about because the
fraction of shrinking small bubbles with near zero absolute area remains es-
sentially constant, while their relative size decreases as the total length scale

increases. Eventually the distribution reaches a time invariant scaling state.

We next examine the scaling state distributions more closely. In Fig. 42
we plot Glazier et al.’s area distributions for five-, six-, seven-, and eight-
sided bubbles and compare them to the total distribution functions and the
equivalent results from the Potts model simulation. As we might expect
for bubbles which shrink, the most probable area for a five-sided bubble is
zero, agreeing with the Potts model result. Six-sided bubbles have a rela-
tively narrow width around the average area, with good agreement between
the experiment and the Potts model. Both seven- and eight-sided bubbles
are larger, with broader distributions than the six-sided bubbles. The Potts
model seems to give a higher third moment than the actual froth for these
types (again we may suppose that this is an anisotropy effect), but the dif-

ference is statistically significant only for seven-sided bubbles.

Comparing to other models we find comparable distributions from the
various mean field theories, network models and boundary dynamic models.
Unfortunately, the error in our measurement of the area distribution and
the aiﬁculty of determining exactly how the histograms were constructed,

makes the area distribution useless as a diagnostic.



