CHAPTER VII
CORRELATIONS

In this chapter we continue our examination of the experimental results
looking at correlations between area (or radius) and number of sides, “Lewis’
Law,” and correlation’s between the number of sides of neighboring bubbles,

the Aboav-Weaire relation.

VIl.a “Lewis’ Law”

Of the aggregate quantities derivable from the area distribution func-
tions, the average area of an n-sided bubble as a function of n is the most
robust diagnostic. The relationship had been evaluated by Fradkov, Shvin-
dlerman, and Udler, Beenakker, Marder, and others.2”:28,76,77,157 The most
commonly assumed relation is that of Lewis, originally proposed for the ep-
ithelial cells of the cucumber, that the area of a polygonal cell should be a

linear function of its number of sides,14! i.e.,
<ap>=c1+ez-n (VIL1)

at any fixed time, where ¢; and cg are fitting parameters.

Glazier, Gross and Stavans have measured this relation by hand for var-
ious stages in the evolution of a two dimensional helium froth and Glazier et
al. from directly digitized images. The hand measured results cover several
different times during the helium run indicated in Figs. 16 (d) and 9 (a).
The direct digitization results are available for the entire run shown in Fig.
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17 and allow us to calculate an ensemble average of different times to im-
prove our statistics. In their hand measurements Glazier, Gross and Stavans
estimated areas by connecting the vertices and centers of sides of bubbles by
straight lines and measuring the area of the resulting polygon using a digi-
tizing tablet. Since the walls of few-sided bubbles are convex and the walls
of many-sided bubbles concave, this method caused them to systematically
underestimate the area of few-sided bubbles and overestimate the area of
many-sided bubbles by up to a few percent. Glazier et al. measured areas

directly by counting pixels and should thus have achieved better accuracy.

We present experimental measurements of normalized bubble areas (i.e.
An = —<<—‘;ﬂ;>—) as a function of n in Fig. 43 for the hand measured data and
in Fig. 44 for Glazier et al.’s directly digitized data along with their results
of the Potts model simulation starting with identical initial conditions on
the next nearest neighbor square lattice. Beginning with random initial
conditions on the nearest neighbor hexagonal lattice gave identical results.
We observe that the area for few-sided (n = 3, 4) bubbles is larger than that
predicted by Lewis’ hypothesis, in agreement with the models of Fradkov,
Shvindlerman and Udler, Beenakker, Marder, and Weaire and Kermode,
but disagreeing with the predictions of Rivier.198 Lewis’ Law is seen to work
poorly for few-sided bubbles. Indeed, for many runs, a linear fit actually
predicts negative areas for three- and four-sided bubbles. Many-sided (n > 8)

bubbles are smaller than predicted as well, though this discrepancy may

be due to memory of the initial length scale. The correlation seems to be
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independent of the degree of equilibration of the froth and the distributions
of normalized area are constant to within experimental error (typically 5%)
at all times, suggesting that they depend on local rather than long range
equilibration. For example, a very large few-sided bubble can rapidly shed

sides by T'1 processes without having to wait for bubbles to disappear.

In Table 9 we present side-area correlations for a few models and ex-
perimental systems. We normalize Ag to one, which is not ideal (we would
prefer to look at Ay) but is at least consistent and does not require us to know
< a > for all categories. We can easily distinguish the biological patterns
which obey Lewis’ law from the coarsening patterns which do not. The cor-
relationsA for the soap froth and two dimensional grain growth in aluminum
are comparable for large n. For small n, the grains are much larger than
the bubbles, suggesting a mechanism stabilizing small few-sided grains in
the metal. Of the models, the Potts model gives almost identical results to
the froth. The vertex model of Nakashima et al. also does well. The mean
field theories all tend to have both few- and many-sided bubbles too large,
again suggesting a failure to consider an anticorrelation in side redistribu-
tion. Large few-sided bubbles are less likely to lose sides than small few-sided
and large many-sided bubbles, and thus there are fewer large few-sided bub-
bles produced than predicted by the uncorrelated mean field theories. As we
might expect neither the Voronoi construction nor the first model of Almeida
and Iglesias are within range. The second model of Almeida and Iglesias does

better but is still too weakly correlated.



Fig. 43 Lewis’ Law. Normalized average area of an n-sided bubble
versus n for a two dimensional helium froth at four different times during
arun. (a) ¢t = 2.52 hours. (b) t = 8.63 hours. (c) ¢ = 12.45 hours. (d)
t = 64.32 hours. To within experimental error the four correlations are

identical (From Glazier, Gross and Stavans 1987).%4
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Fig. 44 Lewis’ Law. Normalized average area of an n-sided bubble
versus n for a two dimensional air froth (circles), @ = 48 hexagonal lattice
Potts model (triangles), and Q = 48 next nearest neighbor square lattice
Potts model (diamonds). To within experimental error the correlations are

identical (From Glazier et al. 1989).93
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Fig. 45 Radius Law. Normalized average radius of an n-sided bubble
versus n for a two dimensional air froth (circles), @ = 48 hexagonal lattice
Potts model (triangles), and Q = 48 next nearest neighbor square lattice
Potts model (diamonds). To within experimental error the correlations are

identical (From Glazier et al. 1989).%3
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TABLE 9

LEWIS’ LAW
As Ay Ag A Ay As Ao Ao
System [43] (A1) | (A13) | (A1s) | (A1d) | (41s)
Experiment
Soap Froths
Averaged Air®® 0.04 0.18 | 0.56 1.00 1.96 2.84 3.19 3.75
(4.61)
Averaged Helium 005 | 017 | 0.44 1.00 1.78 2.38 2.96
(¢.01)
Metal Grains
Al Foil ® 012 | 037 | 056 | 1.00 1.41 2.12 325 | 3.5
[0.16) : (4.35) | (5.18)
Biologicall4?
Cucumber 100mm - 0.51 0.76 1.00 1.29 1.49 1.60
Cucumber 200mm - 0.52 0.78 1.00 1.21 1.44 1.64
Amnion 042 | o059 | o082 1.00 1.20 1.35 1.59
Other Materials .
Agfa Film14 008 | 020 | oue 1.00 1.68 243 3.49 449
Theory
Waeaire?4¢ - 0.12 | 038 1.00 1.39 1.87 2.87 3.17
Almeida & Iglesias (I)*? 0.68 0.85 | 0.94 1.00 1.02 1.08 1.06 1.07
Almeida & Iglesias (IT)}! 017 | o036 | o.es 1.00 1.40 1.89 2.40 2.99
(3.60) | (4.29)
Marder?s? 0.24 038 | 056 1.00 1.58 2.04 2.49 2.93
(8.18) | (3.60)
Fradkov et &L™® 058 | 053 | 071 | 1.00 1.96 2.80 | 3.95 491
(6.47) (7.n)
Beenakkar™® 038 | 046 | 062 | 100 | 175 | 263 | s49 | 439
(5.38)
Voronoi®? 051 | o6 | 0.2 1.00 1.17 1.38 1.58 1.67
Potts Model®® 0.08 028 | 0.53 1.00 1.83 2.38 3.07 3.53
(437) | (4.70) @ | (537
Nakashima et al.1™ 0.002 | 0.17 | 045 1.00 1.72 2.39 3.06 3.64
(4.36) | (5.13) .
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TABLE 10
RADIUS LAW

rs ¢ rs re ry rs o r10
System (r11) (r12) (r1s) (r14) (r17)
Experiment
T-;B_lm_emiond Growth
Air Froth®3 0.15 | 040 | 0.73 1.00 1.40 1.711 1.82 1.93
(1.96) (2.21)
Al Foil™® : - 0.48 0.72 1.00 1.13 1.58 1.93 2.10

(2.28) | (2.52) ] (2.76)

Two Dimensional Sections of Three Dimensional Grain Growth

Tin%¢ 026 | 049 | 069 | 1.00 1.28 1.68 1.88 2.37
(2.83) | (291) | (3.31) | (3.23) | (3.49)

MgO + LiF® 0.2 047 | 0.72 1.00 127 1.58 1.78 1.96

(2.23) (2.45)
“Theory
Topological”® 057 | 061 | 0.76 1.00 1.38 1.67 1.96 2.13
(2.21)
Vertex Model'™ | 0.15 | 0.36 | 0.6¢ | 1.00 1.56 1.76 1.93 2.15
' (2.40)
Vertext3 016 | 027 | oe¢ | 1.00 1.3¢ 1.59 1.66

Topological?® 0.62 0.60 0.77 1.00 1.37 1.70 1.99 2.23

Potts Model3%® 0.27 0.49 0.73 1.00 1.34 1.60 1.82 1.95
@17) | @222) | (239)
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If we plot instead r, = %“:5_; the graph is significantly more linear, with
just a hint of S-curve rollover for large n. We show Glazier et al.’s result for
an air froth in Fig. 45. In this case because of the scarcity of many-sided
bubbles we may well be observing a subtle selection effect: large many-sided
bubbles are more likely to intersect the frame boundary than small bubbles
and are hence more likely to be excluded from consideration, resulting in a
lower apparent size for large n. Once again we find that the soap froth, the
hexagonal lattice Potts model and the next nearest neighbor square lattice

Potts model give essentially identical results.

We have fewer examples where radius correlations are quoted than we
have area correlations. We summarize the available data in Table 10. Once
again we have used the normalization, rg¢ = 1. The agreement between the
soap froth and the aluminum foil is reasonable, though the foil has slightly
larger many-sided grains. Surprisingly, the two dimensional sections of three
dimensional grains give results essentially indistinguishable from true two
dimensional coarsening. As we would expect, the Potts model and the vertex
model of Nakashima et al. give the best agreement with experiment. The
uncorrelated mean field theories predict excessively large few-sided bubbles.

In all cases the overall linearity of the correlation is good, and the radius law
<rp>=cy+e-n (VIL2)

seems verified for both two and three dimensional grain growth, at least for

n small enough that we are able to obtain reasonable statistics.

Our conclusion is twofold. First: the radius law seems to work for grain
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growth while Lewis’ law fails (though the latter works for biological aggre-
gates with constrained area distributions). Second: all of the models that
seem physically reasonable give good agreement with experiment, the models
that we think of as coming closest to the actual physics, like the Potts model
giving the best results. The agreement also provides added evidence for the
existence of an anticorrelation in side redistribution, which is apparent in

the mean field theory’s predictions of larger size few-sided bubbles.

VII.b Aboav-Weaire Law

The simplest side correlation function to measure (and the only one that
can be reliably calculated given the available statistics) is the average number
of sides of the neighbors of an n-sided bubble, m(n). Assuming sta.tistical
equilibrium and short range interactions, Rivier and Weaire have both pro-

vided arguments for the form of this function.134:135,199,236

Rivier’s argument is particularly elegant. In this case nm(n) is the av-
erage total number of sides of the neighbors of an n-sided bubble. Consider
a bubble with n sides next to a three-sided bubble, and the two common

neighbors, a and b. Then
nm("’) = g + np + 3 + Nothers (VIL3)

where nyy,, is the number of sides of the remaining grains adjacent to the
bubble. If the three-sided bubble disappears, the original bubble and its

neighbors each lose a side, and the total number of sides of the remaining
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neighbors decreases by 2, so
(n—1)m(n—1) =ng +ny — 2+ nygpey- (VIL4)

Assuming that m(n) is unchanged by the disappearance as it must be in a

scaling state yields a recursion relation
(n —1)m(n — 1) + 5 = nm(n), (VIL5)

which is solved by
m(n) =5+ %, (VILS)

where ¢ is an arbitrary constant.

We may argue even more simply as follows. Assume that there are no
long range correlations or stresses in the lattice. Then topological charge
(which represents residual stress) should be locally screened. Consider an n-
sided bubble. Its topological charge is T = n—6. Therefore nearest neighbor
charge screening requires that the bubble’s nearest neighbors must have a
total topological charge of T = 6 — n. Thus the average topological charge

of each neighboris T = 9—;—”, 80

m(n) = 6 — 9—;-'-‘ =5+ %‘ (VIL7)

A longer range interaction with weak local correlation will change the con-

stants, but we expect a general form:

m(n) = Ky + % (VILS)
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Weaire has argued on physical grounds that the correct form of the relation
is
6a + uz
n ]

m(n) =6—a+ (VILY9)

where pu9 is the second moment of the side distribution and a is a constant

of order one.134:13% This relation is known as the Aboav-Weaire Law.

In Fig. 46 we present experimental results for nm(n), measured by Sta-
vans and Glazier for a scaling state of a two dimensional helium froth. They
found excellent agreement with the Aboav-Weaire law with the second mo-
ment of the distribution u2 = 1.4 and @ = 1. Aboav also obtained good
agreement for soap froth patterns with us ranging from 0.24 to 2.86 during
the initial transient, using @ = 1.2. It is reasonable to expect that longer
range correlations (i.e. larger values of a) would obtain during a transient
which retains some residual order. Similar results also obtain in metal films,
and two dimensional sections of three dimensional polycrystals. Since the
Aboav-Weaire law depends on the ability of the froth to equilibrate stress
locally, it is not surprising that it does not apply to either the Voronoi or
Johnson-Mehl models. It does apply to almost all the other models we have

discussed. We present a summary of Aboav’s Law results in Table 11.

Since the Aboav-Weaire law has two fitting parameters, a and uj, the
best we can hope for is a general agreement in form among the data pre-
sented. In Fig. 47 we show Glazier et al.’s comparison between m(n) for

the



TABLE 11
ABOAV’s LAW

m(3) m(4) m(8) m6) | m(7) | m(8) | m(9) | m(10)
System (m(11)) | (m(12)) | (m(18))
Experiment
Soap Froth
Aboav?
v/1 - - 6.20 608 | 5.84
IvV/1 - 6.68 6.33 600 | 591 | 576
v/2 7.49 6.82 644 611 | 593 | 580
v/s 7.86 6.96 6.49 619 | 59 | 587 | 576
IV/e 797 7.09 6.59 628 | 610 | 595 | 578
Iv/s 8.4 T4 6.7 64 632 6.1 6.0
Glasier et al%® 8.13 7.31 6.65 63¢ | 610 | 607 | 604 | 5.7
(5.90)
+ 2.43 2.00 1.58 1.58 158 | 172 | 211 | 201
(1.88) -) )
Grain Growth
AL,O4% 8.08 7.06 6.55 637 | 633 | 597 | 599 | 604
(5.76)
+ 0.34 0.17 0.08 008 | oos | oos | o011.| o028
(0.17)
Al Foil™? 6.99 6.78 6.60 645 | 630 | 622 | 617 | 6.2
6.06 ) (6.03)
+ 0.13 - - - - - - 0.10
(0.10) () (0.10)
Biological
Cucumber'4? - 6.67 6.50 6.18 8.82 5.78 8.79
Theory
Network™ 7.1 7.21 6.69 639 | 62¢ | 614 | 597 | 578
(5.75) (5.80) (5.75)
Vertex ModeP'™ | 851 734 6.64 642 | 6322 | 612 | 596 | 5s8
(5.83) 6.04
Potts Model®® 8.28 7.23 6.65 63¢ | 619 | 607 | 604 | 587
(5.82) (5.08) (5.70) - | (5.63)
+ 2.00 177 1.88 185 155 | 1855 | 118 1.65
(1.84) (1.78) (178) | (1.78)
Static3¢
Voronoi 6.96 6.68 6.44 626 | 610 | 605 | 581 | 574
Johnson-Mehl 714 6.60 6.36 621 | 613 | 600 | 595 | 6.02
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Fig. 46 Aboav-Weaire Law. Correlation between the number of
sides of neighboring bubbles. m(n) is the average number of sides of a bub-
ble next to an n-sided bubble. The dots are taken from an equilibrated
two dimensional helium froth. The dashed line shows the prediction of the
Aboav-Weaire law using a = 1 and the measured value of ug = 1.4 (From

Stavans and Glazier, 1989).220
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Fig. 47 Nearest Neighbor Side Correlations. Correlation between
the number of sides of neighboring bubbles. m(n) is the average number of
sides of a bubble next to an n-sided bubble. The upper points show the value
of m(n), the lower points the standard deviation, for a two dimensional air
froth (circles), the Q = 48 hexagonal lattice Potts model (triangles), and the
Q@ = 48 next nearest neighbor square lattice Potts model (diamonds). To
within experimental error the correlations are identical (From Glazier et al.

1989).93
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Fig. 48 Correlated Side Distributions. Side distributions of bubbles
next to m-~sided bubbles in the scaling state. Solid lines show distributions
for a two dimensional air froth, heavy dashed lines for Potts model. The
total distribution function, p(n), is given for reference, dotted lines for the
air froth and light dashed lines for the Potts model (From Glazier et al.
1989).93
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soap froth and the Potts model. The results are essentially identical with
no free parameters. We can extend the comparison by plotting pp,m(n) the
probability that a bubble next to an m-sided bubble has n sides. We present
Glazier et al.’s results in Fig. 48 for the soap froth and the Potts model
starting with identical initial conditions. As expected we find that few-sided
bubble tend to be near many-sided bubbles. The converse does not hold,
however. Six-sided bubbles like to cluster together, and seven-sided bubbles
attract six-sided bubbles. Even more surprising, the distribution of neighbors
of eight-sided bubbles is essentially the total distribution. Discounting the
bias towards many- and few-sided bubbles that we have noted in the Potts
model, the behavior of the distributions as a function of m is identical for the
model and the froth. Of the remaining models for which data are available,
only the vertex model of Nakashima et al. comes close to reproducing the

soap bubble correlation.



