CHAPTER IX
THREE DIMENSIONAL FROTHS

IX.a Some Thoughts On Three Dimensional Froths

While we have briefly discussed two dimensional sections of three dimen-
sional materials, our previous discussion has focussed on true two dimen-
sional coarsening, like that found in a flat soap bubble cell or a thin metal
film. For mosi: applications, however, coarsening occurs in an open geometry
in three dimensions and it is the real three dimensional properties, not the
properties of sections which are important. In spite of the importance of the
problem few detailed studies of the development of true three dimensional
structures exist. In the 1940’s Marvin and Matzke did some beautiful work
on the shapes resulting when spherical lead shot is subject to high pressure
and reduced to a dense polygonal mass,158:160 Matzke et al. studied the shape
distribution of carefully stacked regular soap bubbles,161:162 and Lewis stud-
ied the shape distributions of three dimensional biological cells.140:144,147 [,
the first two cases the systems were not allowed to coarsen in time, either
by the nature of the material (lead shot) or the design of the experiment.
In the last, biological constraints on the growth of vegetable cells (mitosis of
large cells) introduced additional processes which are not typical of normal
coarsening. The one complete study of an evolved froth is that of White
and Van Vlack,2%0 who studied the area and side distributions of a slowly
cured polymer foam. Unfortunately, as we mentioned earlier, it appears that
the foam had not reached a true scaling state. In addition, Williams’ and
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Smith measured the shape distribution in A1-1.2%Sn,252 using stereographic
pairs taken with X-rays and viewed under a microscope. Earlier work on
grain shapes was done by Desch in #-brass,’ and Scheil and Wurst in ingot

iron.24 None of these studies examined the dynamics of the pattern evolution.

Theoretical studies of regular and pseudo-regular polyhedral packings are
more common, beginning with Lord Kelvin’s famous paper demonstrating
that a modified tetrakaidekahedron is the minimal regular packing.120 The
distributions produced by plane sections of regular three dimensional pack-
ings have also been extensively studied. Fortes and Ferro have enumerated
the allowed three dimensional polyhedra, in order to define the elementary
three dimensional processes.”’3 Besides the studies of Blanc and Mocellin
and Carnal and Mocellin on two dimensional sections, direct simula.ﬁons of
three din:;ensiona.l coarsening are few. Kurtz and Carpay go to great length
to develop the formalism for a true topological mean field theory, but then
make a variety of ad hoc assumptions that greatly reduce the usefulness of
their model.132 The generality of the various radius based mean field theories
means that their predictions are usually independent of dimension, and so
they may be considered three dimensional models, but the only true three
dimensional models of grain coarsening are the Potts modei simulations of
Anderson et al..12:15 Without more detailed experimental data, it is difficult

to evaluate the accuracy of their results.

Except for the Potts model studies, none of this work is of the sort to

appeal to a physicist. Besides the now discredited idea that a froth was
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an imperfect realization of an optimal regular packing, the work on three
dimensional froths has concentrated on details and special cases with little

effort to elucidate general principles.

IX.b Why is the Three Dimensional Case Difficult?

Why is the three dimensional case so relatively neglected? The basic
problem is experimental. It is much harder to measure a three dimensional
than a two dimensional structure. Just recording the state of the system
in an unambiguous way becomes difficult. Measuring the volume of foam
grains with a syringe or the volumé of metal grains by serial sectioning is
extraordinarily tedious and slow, while the much broader range of shapes
possible in three dimensions means that many more bubbles need to be
analyzed to obtain reasonable statistics. Small wonder that most researchers
. have contented themselves with examining the two dimensional sections of
three dimensional materials. This method has two unfortunate consequences.
First, since sectioning is destructive, it is impossible to follow the evolution of
a pattern. Second, the distribution functions of the two dimensional section
are only second order dependent on the real three dimensional distributions.
For example, a section of a perfectly regular tetrakaidekahedral packing can
result in broad area and number of sides distributions in the section.’3 It is
not surprising therefore, that all the mean field theory models which give (or

assume) log-normal area distributions agree reasonably well with the
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experimental results. They essentially describe the process of taking two
dimensional sections rather than the properties of the materials being mod-

eled.

Besides the virtual absence of good experimental data, any theory of
the three dimensional froth faces an even more serious obstacle. The basic
equations which allow one to write mean field theories for two dimensional
froths, von Neumann’s law, and the rule that < n >= 6, both fail in three
dimensions. In fact, the average number of faces, < f > of bubbles in a three
dimensional froth can vary considerably, though most experiments yield a

value near 14. Instead the relation is

12

<n>=6-—
" <f>’

(IX.1)

which adds an inconvenient level of self consistency to any models. Similarly,
in three dimensions the average surface curvature of a bubble with tetrahe-
dral angles (109.5°), is not determined solely by its number of sides. Rivier

has proposed patching things up with the relation

dA
L =r<f>-1), (X.2)

but his argument is not ent‘irely convincing,198 and at best applies only to
ensembles of bubbles. An additional problem is that the basic scattering pro-
cesses and elementary shapes are much more complicated. There are many
different types of fourteen-sided bubbles, for example. Trying to simulate
two dimensional sections in the manner of Carnal and Mocellin’s and Blanc
and Mocellin’s phenomenological mean field theories, though extremely suc-

cessful at giving distributions does not help us understand the real physics of
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the three dimensional froth. Non 120° angles and spontaneous nucleation of
bubbles at vertices, remove the characteristic geometrical constraints which
are typical of two dimensional froths, without suggesting any way to re-
cover their three dimensional equivalents, and leave us without either von

Neumann’s law or rates for the elementary processes.

Computer time is the chief problem for the Potts model simulation (which
is the one true three dimensional model which has been successfully imple-
mented), especially because the fraction of volume affected by edge effects is
much larger in three than in two dimensions. Equilibration times are sim-
ilarly stretched out making very large systems imperative. Unfortunately,
running long time montecarlo simulations on 1000 x 1000 x 1000 lattices is

costly to say the least.

IX.c Existing Results

For detailed distributions broken down by topological categories of bub-

bles, we refer the reader to the papers of Matzke and Fortes and Ferro.72:73,161

Rhines and Craig have measured the steady state face distribution in Aluminum.194
Anderson, Grest and Srolovitz have summarized the existing data on metallic
grain growth and the Potts model.l5 Besides the Potts model work, the only
interesting theory for three dimensional grains is the topological mean field
theory of Kurtz and Carpay.!32 Their comparisons to experiment are elab-
orate but not well chosen from a physicist’s point of view, since they never
really show that the model reproduces the most important characteristics of

a real metal (for example the side distribution).!33
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IX.d Where do we go from here?

Fortunately many of the two dimensional models we have described can
be extended in a straightforward manner to three dimensions. We describe

briefly a few possible methods for extending simulations to three dimensions.

Three dimensional topological network models are no more difficult than
network models in two dimensions, provided that we accept Rivier’s three
dimensional von Neumann’s law. The scattering table is longer, but no more
complicated in principle than in two dimensions, the chief inconvenience
being that there are ten or more types of disappearing bubbles rather than

three.

Three dimensional vertex models are extremely attractive because their
dynamics is identical to that in two dimensions. If we select, for example,
the model of Fullman, 3¢ we may immediately write the three dimensional

equations of motion:

: k4

;=5 =, IX.3
VY e (B-F)-F (X3)
, neighbors
where we define the force on a vertex j by
7= e B (IX.4)
: ,.;,. 1% — %
neighbors

We note again that we have no a priori physical argument to derive these
equations. However, their excellent agreement with two dimensional experi-
ment suggests that if we accept them as phenomenologically correct we will

not be too far wrong, especially since the work of Blanc and Mocellin and



247
Carnal and Mocellin indicates that three dimensional models are less depen-
dent on details than two dimensional models. One minor difficulty in three
dimensions is that it becomes much harder to define the inside and outside
of a bubble. Perimeter tracing no longer works. Thus we need to set the
dynamics on top of a topological network that we can use for bookkeep-
ing purposes. Computationally, the effort goes up linearly in the number
of vertices, allowing us to contemplate extremely large simulations, which
should be able to reach the scaling regime in an unambiguous fashion. We

are currently designing a model along these lines.

Boundary dynamic models also extend well from two to three dimensions
with the added bonus that the underlying physics is correctly expressed. In-
deed, we might hope to measure the three dimensional analogue to von Neu-
mann’s law from such a simulation. Laplace’s law relating pressure differ-
ences to wall curvature is certainly true in three as well as two dimensions so
there should be no surprises in the physics. Fortes and Ferro have described
such a model but apparently never solved it numerically.”® Once again the
main problems are in bookkeeping. We need to maintain a topological net-
work, and keep track of patches of two dimensional bubble walls, resulting
in a computational load proportional to the total surface area of bubble in
the system. Nonetheless, the method should still prove much more practical
than Potts model simulations and should allow an empirical determination

of an extended von Neumann’s law.

Experimentally the picture is less promising. In principle it should be



248
possible to determine the three dimensional structure of a froth using ei-
ther CAT, NMR or optical tomography. Whether the needed accuracy of
resolution is achievable, and if achievable compatible with the timescales of
the coarsening process (true three dimensional imaging still uses the ancient
method of serial sectioning—-though in these cases non-destructive—and there-
fore remains painfully slow), are unsolved questions, because no one has ever
tried the experiments. Clearly, any three dimensional tomographic experi-
ment will generate vast quantities of image data. Nevertheless, the potential
payoff would be large both in applications and in providing hard data to the
theorists, and the experiment is worth trying. The biological possibilities are
even more exciting. One might imagine, in the spirit of Lewis, that cancer
cells with their fast division, would produce aggregates with different side
distributions from normal cells, and hence provide a diagnostic tool. But

such speculations lead us too far from our topic.



