CHAPTER X
OTHER COARSENING SYSTEMS

In this chapter we briefly consider two two dimensional systems that
coarsen in a manner that appears qualitatively similar to coarsening in the
soap froth and in metals: bubble patterns in the liquid-gas phase transition
in lipid monolayers and in the magnetic domains of doped iron garnets. Both
are distinguished by the presence of long range interactions which lead to a
greater variety of phenomena than observable in normal coarsening. Both are
also only beginning to be studied experimentally, with few hard theoretical
results. Indeed, in the case of the magnetic bubbles it is still not clear what

sort of theory is appropriate.

X.a Lipid Monolayers

If we distribute a small quantity of a lipid surfactant on a water surface,
the polar lipid molecules align with their heads at the surface of the fluid
and their long polymer tails in the air. Depending on the areal density of the
lipid and the temperature, “solid”, liquid or gaseous two-dimensional phases
may form. We can visualize the phase transition if we add a small amount of
a second lipid with a tail marked by a fluorescent dye, the fluorescent group
being active only in the liquid phase regions. Illuminating the liquid surface
with light of the dye excitation frequency then makes it straightforward (with
correct filtering) to observe the patterns of the different phase domains, a
technique pioneered by Losche and Mohwald, and McConnell, Tamm and
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gas condenses and the interface grows. If we assume that the total surface
energy is small compared to bulk energy, then the temperature and pressure
of the lipid remain essentially constant (provided the water temperature is
carefully controlled). Since we remain at the same point in the coéxistence
curve, the total area of liquid and gas remains constant. Since the thermal
diffusion time is long compared to the molecular diffusion time, the patterns
are well equilibrated, with minimal surface (circular) shapes. Thus the basic

mechanisms driving the pattern evolution are similar to those in coarsening.

A fundamental difference from the soap> froth is that , since pressure is
carried by the connected matrix phase as well as by the fragmented bubble
phase, interactions between bubbles can be long range. When the separation
between bubbles is small compared to their size we would expect this effect
to be small. When the bubbles are well separated it should dominate, and

the behavior should be closer to that of Ostwald ripening.

Depending on the point in the coéxistence region chosen, we can obtain
either bubbles of gas in a liquid matrix, bubbles of liquid in a gas matrix, or
mixtures of both (e.g. patterns with regions of both types, or hierarchical
patterns with gas bubbles inside liquid bubbles, inside gas bubbles, etc.).
This range of initial patterns is a fascinating topic in its own right which we
will not discuss here. Moore et al. studied stearic acid monolayers, looking
at gas bubbles in a liquid matrix.1%® They were particularly interested in
the possible analogy with the two dimensional soap froth. Qualitatively

the phenomena they observed seemed very much like those seen in a soap
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froth. The pattern itself looked similar to soap bubbles, with small bubbles
shrinking and large bubbles growing. They observed both T'1 (side swapping)
and T2 processes (bubble disappearance). The overall length scale of the
pattern increased monotonically in time. An obvious difference from the soap
froth was the variable width of the walls. At short times bubbles were more
round than polygonal, becoming progressively more polygonal with time (a
behavior more typical of nucleation than coarsening). Quantitatively, they
measured the side distribution for their patterns and the mean bubble area
versus time. They obtained a growth exponent of & = 1.1+0.1 (See Table 4),
in agreement with the expected value for ideal grain growth. Their measured
distribution function is rather tail heavy including a thirteen-sided bubble
(See Tables 7 and 8), and depends on measurements of only about forty
bubbles. They note that the second moment of the distribution was still
increasing at the end of their run, a sure indication that they had not yet
reached a scaling state. A problem with lipid monolayer patterns is that,
because they form by a nucleation process, they tend to start with many
very small bubbles and very broad area distributions and therefore take a
long time (and a large relative increase in length scale) to equilibrate. The
experiment is much faster than in the soap froth since the typical timescales
are a few hours and the absolute length scales typically 10 um to 100 um.
Even so, maintaining temperature and concentration stability over that time

is difficult.

Berge et al. have recently extended Moore et al.’s work, studying gas
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bubbles in a liquid matrix using pentadecanoic acid, with a hexadecylamine
label.?? Unfortunately experimental difficulties with image stability and anal-
ysis have so far prevented them from making quantitative measurements, but
they did observe coarsening with well defined T'1 and T2 processes for a wide
range of ratios of matrix area to bubble area. For patterns dominated by
bubbles, the evolution looked very similar to that of the soap froth, with
walls of uniform width and polygonal bubbles (See Fig. 52). For patterns
with more matrix the bubbles were rounder (See Fig. 53) and some ambi-
guity crept in in determining the number of sides (See Fig. 54), though it
is always possible to formally determine nearest neighbors using the Voronoi
construction. In the former case the rates of growth appeared to be close
to von Neumann’s law, in the latter, the rate of shrinkage of small bubbles
appeared to depend on the bubbles’ size as well as their number of sides. In
patterns with extremely narrow walls, wall breakage and grain coalescence
- occured, but were rare otherwise. Glazier has measured side distributions
from ordered (N = 221) and disordered (N = 103) patterns supplied by
Berge (See Tables 7 and 8 and Fig. 55).9 The "disordered” pattern prob-
ably still contained some residual order but its side distribution lay within
the experimental range for the scaling state soap froth. On the basis of
these observations we may tentatively conclude that the narrow matrix lipid
monolayer behaves like an ideal two dimensional coarsening system. The
crucial piece of missing information is the dynamics, a measurement of the

dependence of the growth rate for bubbles on their number of sides and size.



Fig. 52 Lipid Monolayer Bubbles. Pattern of lipid monolayer bub-
bles showing well separated round bubbles (Figure supplied by B. Berge

1989).
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Fig. 53 Lipid Monolayer Bubbles. Pattern of lipid monolayer bub-
bles showing close packed polygonal bubbles (Figure supplied by B. Berge

1989).
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Fig. 564 Ambiguity in Separated Bubbles. (a) A four-sided bubble.
(b) A three-sided bubble. In some situations only the Voronoi construction

can to distinguish the two cases.






Fig. 55 Side Distribution. Side distribution for an ordered and
a disordered lipid monolayer pattern. A typical soap froth distribution is

given as a comparison.
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Based on our concept of the lipid monolayer as intermediate between the
soap froth and Ostwald ripening, we suggest that a reasonable form for the

growth rate should be:

r
<r>

dA(n,r)

i =(1-¢x (n—6)+e (1—

), (X.1)

where ¢ is a fitting parameter that describes the degree of polygonality of
the bubbles, being zero for purely polygonal bubbles, and one for infinitely
separated bubbles. The form of the second term comes from the requirement
that area be conserved. We can easily rewrite any of our mean field and
network models using this sort of a fundamental dynamics. We could also
write a next order theory to include the dependence of a bubble on the
properties of its neighbors, in which we explicitly consider area exchange

between all pairs of bubbles:
i - (1 Onlni— ) + 5 Zf(lz, - z,l)(— -h,

where 1 indexes the bubbles, Z; is the position of the center of the ¢th bubble
and f describes the drop off with distance of the interaction between bubbles.
We might also wish to make € a local function of bubble size and separation.
Without further experimental data we cannot begin to discuss correlations

in side redistribution, local fluctuations, or other second order effects.

X.b Magnetic Bubbles

Throughout our previous discussion we have examined coarsening in

time, the basic mechanism in all cases being diffusion driven by energy gra-
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dients. Magnetic bubble patterns, in contrast, are usually time indepen-
dent, with the control parameter being the strength of an applied magnetic
field. Generally when the applied magnetic field changes, the pattern evolves
rapidly and then reaches a time independent state (sometimes with a few
noise driven adjustments at later times). This difference of control parame-
ter allows a variety of experiments impossible in normal coarsening, since it
allows us to move “backwards in time” towards smaller length scales. Further
complications come in two types. The long range interactions in magnetic
systems are longer range and less intrinsically self averaging and support
larger gradients than in lipid monolayers. They are also fundamentally non-

linear, which makes them harder to model.

The magnetic bubble patterns that we will discuss are regions of partic-
ular spin orientation in thin samples of doped ferri-magnetic iron garnets.
The anisotropy of the material is such that the spins tend to align either up
or down perpendicular to the material. When viewed in a microscope under
crossed polarizers, the Faraday effect makes one spin orientation look light
and the other dark. Since the basic exchange interaction is ferromagnetic,
like spins clump into macroscopically large patches of a given orientation,

and the patterns are easy to visualize.

Because they were once thought to have industrial applications, iron gar-
net magnetic bubble materials have been studied extensively by engineers
and applied physicisf;s.31’45'63'186'224 There have been analytic calculations

of the behavior of isolated bubbles and regular bubble lattices as well as
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pattern instabilities,156:187,212,225,226,235,253 T}ere are a number of interest-
ing questions concerning residual twists in domain walls (Bloch lines), and

various kinds of anisotropy which need not concern us directly here.

While a full Hamiltonian for a magnetic bubble pattern would be difficult
to write down (and even a moderately complete one is complicated) we need
concern ourselves with only a few terms.®® An applied magnetic field will
tend to align spins with it. The domain walls between regions of reversed
spin have an energy associated both with the mismatch between neighboring
spins and with the local spin misalignment relative to the crystal as the
spins rotate (spatially) from one orientation to the other. Finally, regions of
uniform gpin orientation have a dipole energy created by the self-interaction
with the total generated field. In schematic form we may express this as an

Hamiltonian:%3

¥=> |-&-8- D 2755 +J’/A
'

nesghbors ¢

sin?(¢(Z))dZ+2n / M?(Z)dz,
a Area

(X.3)

re

where ¢ indexes the spins, &; is a spin, J is a positive exchange strength, J'
an anisotropy streﬁgth, ¥ the angular mismatch between local spin orienta-
tion and the preferred crystalline orientation, H the applied magnetic field,
and M the local magnetization per unit area. The four terms correspond
respectively to the external field energy, the exchange energy, the anisotropy

energy, and the dipole energy.

The basic mechanism controlling the formation of magnetic bubble pat-

terns is the competition between the wall energy which favors the creation
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of large domains, and the dipole energy which favors the creation of small
domains. Thus the basic dynamics differ from the soap froth in the presence
of long range forces. Also if the size of the domains is very small, the wall
energy per unit area is very large. If the domains are very large, the dipole
energy per unit area is very large. Thus for any given value of the external
magnetic field (and control parameters like temperature) the pattern has a
preferred wavelength which minimizes the sum of the wall and dipole ener-
gies. The wall energy has the additional function of a surface tension, tending
to straighten (or reduce to smooth arcs) the domain walls. Because of the
presence of long range forces we cannot expect rigorous minimal surfaces
however. Recurved walls reminiscent of metal grains are also common. The
applied magnetic field controls the balance between the two spin orientations

and also increases the preferred wavelength.

If the sample is raised above the temperature at which it undergoes its
ferrimagnetic phase transition (the Néel temperature, Ty, is approximately
130° C in Molho et al.’s samples) and is then cooled, it forms at zero field
(depending on the individual sample and the applied field when the Néel
temperature is crossed on cooling) one of two basic types of pattern, a more
or less regular array of bubbles (See Fig. 57 (A)), or a continuous folded
labyrinth (See Fig. 56 (a)).

If we apply a magnetic field to the labyrinth favoring one spin orientation
(by convention we will assume that we favor the white spins in our pictures),

the black regions first narrow and then begin to unwind, keeping close to



Fig. 56 Coarsening of a Labyrinth. Stages in the coarsening of a
magnetic bubble labyrinth subject to an external magnetic field. (a) H= 0
Oe. (b) H= 1470 Oe. (c) H= 2250 Oe. (d) H= 2700 Oe. (e) H= 3080 Oe.
(f) H= 3300 Oe (From Kooy and Enz 1960).124



267



Fig. 57 Coarsening of Magnetic Bubbles. Normal coarsening at
T = 20° C of a magnetic bubble pattern with applied magnetic field. (A)
H= 0 Oe. (B) H= 54.1 Oe. (C) H= 73.8 Oe. (D) H= 85.2 Oe (Figure
supplied by P. Molho 1989).
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both the favored ratio between white and black and the selected wavelength,
until at some critical field, the last black line collapses and the sample has
uniform magnetization. We show an early example of this process by Kooy

and Enz in Fig. 56.

In the case of a bubble pattern at a temperature much below Ty, the pro-
cess is different (See Fig. 57). Because it takes energy to change the topology
of a three-connected vertex (to break a wall), bubble patterns cannot change
. scale smoothly in the way a labyrinth c@. If we apply an external field to
favor the bubble orientation, the walls initially narrow, but soon reach a size
below which they are unstable. The next stage consists of the shrinking of
few-sided (small bubbles) but the wall energy prevents small bubbles from
shrinking indefinitely. Bubbles that are too small increase in energy when
they shrink (hence the absence of three- and four-sided bubbles). These sta-
ble uniform area five-sided bubbles freeze the pattern evolution (note the
presence of many uniform five-sided bubbles in Fig §7 (A)-(C)). They can
also maintain a size much smaller than the optimal wavelength. For the ratio
of white to black to increase further the small bubbles must collapse entirely
and this is the fundamental mechanism of coarsening in magnetic bubbles.
Because of the long range dipole interaction and the pinning of five-sided
bubblesi which results in large areas having mismatched wavelength, the re-
organization of the pattern tends to happen abruptly, with large patches
reorganizing together rather than continuously with bubble by bubble reor-

ganization as in normal coarsening. In particular, five-sided bubbles near



Fig. 58 Coarsening of Magnetic Bubbles. Number of bubbles in a
fixed area pattern versus applied magnetic field (Figure supplied by P. Molho
1989).
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Fig. 59 Coarsening of Magnetic Bubbles. Average area per bubble
in a bubble pattern versus applied magnetic field (Figure supplied by P.
Molho 1989).
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Fig. 60 Coarsening of Magnetic Bubbles. Moments of the side
distribution in a bubble pattern versus applied magnetic field (A) Second
moment. (B) Third moment. (C) Fourth moment. (D) Width (Calculated

from data supplied by P. Molho 1989)
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Fig. 61 Coarsening of Magnetic Bubbles. Area Distributions. (A)
Total area distribution. (B) Area distribution for five-sided bubbles. (C)
Area distribution for six-sided bubbles. (D) Area distribution for seven-sided

bubbles (Figure supplied by M. Magnasco 1989).
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each other tend to be destabilizing so there is a critical field above which
groups of three five-sided bubbles lose stablity, then a field above which
pairs become unstable, and finally a field above which single five-sided bub-
bles become unstable. At this field there are no more topological structures
to stabilize the pattern and the length scale grows explosively (see Fig. 59).
For high applied fields the size of the reorganizing patches is large and wall
breakage and domain coalescence are common. One way to make the evolu-
tion more like a soap froth is to apply a small alternating bias field on top

of the main field.22

If we calculate our usual quantities using Molho et al.’s measurements
for coarsening magnefic bubbles (< a(H) >, moments, etc.) we see a very
different general pattern from that of the soap froth. The number of bubbles
decreased slightly faster than linearly in H (Fig. 58). On a log-log plot, there
was a clear but smooth rollover around 50 Gauss, where the rate of area
growth suddenly increased (Fig. 59). The monotonic increase of average
area with applied magnetic field at least suggests that we are not too far
wrong to associate field strength with time. As the field increased, p(6)
decreased monotonically and p(5) and p(7) increased monotonically, but the

distributions themselves remained very narrow.

The moments all showed the same behavior, with ug gradually increasing
from 0.29 to 0.39 before taking off (Fig. 60 (a)), us staying constant at 0.008
before increasing (Fig. 60 (b)), u4 staying nearly constant around 0.33 (Fig.

60 (c)), and W increasing in step with the area from about 0.30 to 0.38
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over the same range (Fig. 60 (d)). If we wanted to identify any of these
patterns as a scaling state we would have to choose those at low magnetic
field, but this seems unsatisfactory. Instead it seems more reasonable to
accept that magnetic patterns never find an equilibrium. At all applied
magnetic fields six-sided bubbles dominated (except perhaps at very high
fields where our statistics are abysmal), there were no three- or four-sided
bubbles. Bubbles with more than eight sides were extremely rare and the
moments were much smaller than observed in normal coarsening systems,
resembling much more the distribution functions we associate with biological
materials or basalt fracture. The basic reason is the same in both cases.
Wavelength or area selection results in strong limitations on the possible
width of the side distributions. The total area distribution (Fig. 61 (A))
resembled that of the soap froth with a few significant differences. As in
the soap froth, p(A) decreased with increasing area for large areas, but more
rapidly as befits a wavelength selected distribution. Unlike the soap froth,
the number of very small bubbles was small. Five-sided bubbles (Fig. 61 (B))
formed a well defined class with a well defined non-zero most probable area.
Six- and seven-sided bubbles, which do not feel the constraint on minimum
bubble size, showed distributions close to those found in the soap froth (Fig.
61 (C) and (D)). To the extent that such a measurement is meaningful for a
distribution in which only five- though nine-sided bubbles occur, the patterns

appeared to follow the Aboav-Weaire law.

In spite of these differences between magnetic bubbles and our other
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coarsening patterns, we can still approximate our coarsening as a competi-
tion between surface tension energy minimization and topological constrains.
We have already noted the stabilizing effect of five-sided bubbles. In fact, any
three-connected vertex is stabilizing in the same way because (at least at tem-
peratures well below the Néel temperature) breaking a wall costs energy.168
We see this most clearly when we perform the experiment impossible in nor-
mal coarsening of increasing and then decreasing the magnetic field. We
show Molho et al.’s example in Fig. 62. He began with an initial bubble
pattern at moderate field and temperature (Fig. 62 (A)) and reduced the
magnetic field. Since the pattern could not nucleate new bubbles it adjusted
to its smaller optimal wavelength by having its walls buckle and stretch (Fig.
62 (B)). Where the presence of pinned five-sided bubbles resulted in a local
wavelength smaller than the optimal, the five-sided bubbles grew but the
walls remained smooth (e.g. in the lower middle left of Fig. 62 (B)). De-
creasing the applied field to near zero resulted in a labyrinth with almost
uniform areas of black and white (Fig. 62 (C)). Looking carefully at Figs.
62 (B) and (C) shows that the three-connected vertices moved slightly but
did not disappear. Increasing the field back to its original value restored a
pattern topologically close to the original (Fig. 62 (D)). While the sizes of
the bubbles changed slightly, most of the vertices remained unchanged. In a

few places, bubbles which were much smaller than the optimal wavelength
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disappeared. Presumably the changes in pattern detail affected the stabil-
ity of nearly unstable bubbles as the field was increased, resulting in the

disappearance of a few additional bubbles.

For the sake of the pictures and to stimulate further thought on the sig-
nificance of anisotropy and long range interactions we include a few examples
of exotic coarsening behavior for which we do not yet have quantitative anal-

yses.

Near the Néel temperature the presence of a defect in the sample crystal
can allow the nucleation of labyrinth at no energy cost. Molho et al. began
with a pattern at T = Ty — 5° C (Fig. 63 (A)), indistinguishable from that
shown in Fig. 56 (a). As they increased the applied field a region of labyrinth
nucleated from a defect (Fig. 63 (B)). At higher fields weaker defect centers
also began to nucleate labyrinth (Fig. 63 (C)). Finally the labyrinth pushed
aside the bubbles to dominate bthe pattern (Fig. 63 (D)). The wavelength of
the labyrinth was substantially larger than the wavelength of the bubbles.
It is also interesting to note that this entire evolution took place at fields
too small to cause the collapse of bubbles. One could scarcely ask for a
clearer demonstration that the labyrinth pattern has a lower energy than
the bubble pattern, and that the energy advantage increases with field. The
only thing that kept the labyrinth from swallowing the bubbles completely
was the boundary of stretched bubbles (looking rather like the epithelium of

a tree) which apparently add an extra “domain energy” to the labyrinthine



Fig. 62 Pattern Conservation in Magnetic Bubbles. (A) A bubble
pattern at a fixed field, T = 20° C. (B) The field is decreased and the
walls buckle. (C) At small fields a nearly symmetric labyrinth forms. (D)
Returning the field to its initial value restores the topology of the original

pattern with minor changes (Figure supplied by P. Molho 1989).
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Fig. 63 Nucleation of Labyrinth. Nucleation of labyrinth from a
defect with applied magnetic field, T' = Ty — 5° C. (A) H= 0 Oe. (B) H=17
Oe, beginning of nucleation. (C) H= 19.1 Oe, labyrinth begins to nucleate
at additional locations. (D) H= 19.4 Oe, Labyrinth grows rapidly at the

expense of bubbles (Figure supplied by P. Molho 1989).



286



Fig. 64 Anisotropic Coarsening of Bubbles. Effect of anisotropy
on bubble growth near Tyy. T = Ty — 1° C. (A) H=16.5 Oe. (B) H=17.5
Oe, bubbles begin to stretch. (C) H=19.0 Oe, growth of elongated bubbles.
(D) H=21.5 Oe, bubbles grow by the motion of three-connected vertices to
lower left (Figure supplied by P. Molho 1989).
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Fig. 65 Anomalous Bubble Growth in Magnetic Bubbles. Anoma-
lous bubble growth in a magnetic bubble pattern near Ty, T = Ty — 4° C.
(A) H= 0 Oe. (B) H= 28 Oe, a few bubbles grow bigger as the field in-
creases. (C) H= 30 Oe. (D) H= 31 Oe, THe larger bubbles grow rapidly.
(E) H= 32.1 Oe, the large bubbles dominate the pattern. (F) H= 36 Oe, the
initial length scale has disappeared and the pattern resembles that produced
by normal bubble growth (Figure supplied by P. Molho 1989).
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Fig. 66 Coarsening of Magnetic Bubbles. Bubble growth for the
ensemble of n-sided bubbles as a function of applied magnetic field. Note
that this is not the same as von Neumann’s law (Figure supplied by M.

Magnasco 1989).
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patch. However, besides retarding the growth of the labyrinth, these bubbles
also facilitate the collapse of the original bubble pattern. In their absence
the nucleated pattern cannot grow.18”7 The temperature determines whether

the labyrinth is energetically favorable enough to cause wall breakage.

Anisotropy can also have a decisive effect on coarsening. In Fig. 64 we
show Molho et al.’s observation of coarsening in a material at T = Ty — 1°
C, which allowed walls with a particular orientation to break more easily
(ranging from east-west at the right of the picture to northwest -southeast
at the upper left). Because this type of anisotropy is small the effect occurs
only near T)y where the wall breakage energy is very small. Once again the
zero field pattern (Fig. 64 (A) was indistinguishable from Fig. 56 (a). As the
field was increased however, bubbles with borders aligned along easy breaking
directions began to coalesce (Fig. 64 (B)), producing a pattern of elongated
bubbles reminiscent of cloth stretched near the point of failure. For larger
fields the coalescence perpendicular to the preferred direction continued (Fig.
64 (C)), eventually producing a strongly grained pattern which grew by the
sliding of three-fold vertices (Fig. 64 (D)). The final pattern was nearly as

well behaved as one composed of well ordered parallel stripes.

Finally we show Molho et al.’s example of orientationally isotropic but
spatially varying rates of bubble growth, analogous to the case of anomalous
grain growth in metals. Again, working near T is crucial since the small
anisotropy can only have an effect when it is comparable to the wall breakage

energy. A sample that exhibits anomalous bubble growth near Ty will show
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normal bubble growth at lower temperatures. They began with the usual
zero field bubbles at T' = Ty — 4° C (Fig. 61 (A)). For small fields they
observed normal grain growth with a few bubbles slightly larger than their
neighbors (Fig. 61 (B)). As the field increased further these larger bubbles
grew explosively at the expense of their neighbors (Fig. 61 (C)-(E)) produc-
ing the characteristic bark-like pattern of elongated bubbles lying along the
surface of the growing bubbles which we noted in Fig. 11 (D). Finally the
anomalously growing bubbles swallowed all the small length scale pattern
and returned to a situation indistinguishable from that produced by normal
bubble growth (Fig. 61 (F) compare Fig. 56 (d)). This return to a normal
looking scaling pattern is also observed in metals. Of course if we were to
look at fhe distribution functions for this pattern as a function of field they
would be bimodal, and vastly broader than the corresponding stages in nor-
mal growth. The energy to drive this anomalous grain growth presumably
comes from the mismatch between the wavelength of the bubble pattern and
the optimal wavelength, but the mechanism which selects the anomalously

growing grains is unclear.

Existing theories of magnetic bubbles treat either regular arrays or iso-
lated bubbles. There have also been a few attempts to deduce large scale
statistical properties of random lattices. The difficulties are several. Since
bubbles evolve in patches and wall breakage is a dominant mechanism in
some types of coarsening, we do not expect a simple description like our

network models to suffice. In extreme cases the growth or shrinkage of an
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individual bubble becomes an ill defined concept. Surprisingly if we take the
naive zeroth order approximation to measuring von Neuann’s law we obtain
a sensible result. In Fig. 66 we plot Molho et al.’s measurement for the
average total area of n-sided bubbles as a function of applied external field.
This measurement is not equivalent to von Neumann’s law because bubbles
can change their number of sides. If we note that < Ay >= A\, < a > we

obtain simply:

d<Apn> | d<a> dAy
ai = An 7l +<a> d—H—. (X.4)
In a scaling state soap froth it would show that all bubbles grow with a

rate d%‘iﬂ?— = KkAp. For the magnetic bubbles the result is rather different.

Average bubble areas, < A,, >, do depend linearly on applied magnetic field
(which we might not have predicted looking at the nonlinear dependence of
total area), but five- and six-sided bubbles shrink and seven- and eight-sided
bubbles grow, showing that the distributions continue to evolve. This gives

us a relation between < a > and Ap:

dln<a> + dinln _ K
dH dH ~ la<a>’
but tells us nothing about the evolution of individual bubbles. Whether this

(X.5)

relation will prbve useful in developing a theory for magnetic bubble growth
remains to be seen. It may prove more helpful as a way to test theories than

to create them.

Magnasco has written an interaction model mean field theory for the
rapid equilibration of a bubble pattern after a field change and during nu-

cleation at the Néel temperature, taking into account both separations and
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radii of the form and assuming nearly circular bubbles.!5¢ He defined the

mean field distance between the surfaces of two bubbles to be
d.'j = |.’l-:; - fjl —r— rJ-, (X6)
where Z; is the position of the center of the ith bubble and r; its radius.

Then he took the movement of the centers of the bubbles to be the effect of

the dipole repulsion by the remaining bubbles,

dz; z; - Ij
T oM E a. (X.7)
jFW
and the change in radius to be pressure driven by the same dipole force,
dr; 1
5 =2 1- ) (X.8)
I# iy

where 2 controls the equilibrium width of the area distribution, small k2
resulting in broad distributions and large x2 in narrow distributions. Note
the nonlinearity in both terms of the equation. He obtained good agreement
with experiment for the qualitative equilibration but has not yet measured
the distribution functions. In principle k3 should be a decreasing function of
the applied magnetic field, and Magnasco is currently developing a model for
the field evolution of magnetic bubble patterns using an extended model of
this type. The difficulty is in understanding why a model that should work
well for Bragg’s bubble rafts should also be appropriate in a case where wall

breakage and patch rearrangement are important mechanisms.

We could also write a boundary dynamic model along the lines of Frost
and Thompson, adding either an exact integrated form for the local magneti-

zation or the mean field version given in equation X.7. It should be possible
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to include wall breakage and the stabilization of five-sided bubbles with an
auxiliary field. The collapse of finite size bubbles can also be included by
increasing the length scale for bubble removal to a larger value. While the
Potts model seems like the natural type of model for a magnetic system, the
calculation of the local magnetization seems guaranteed to be computation-
ally prohibitive. Perhaps, it would be possible to used a mixed model like
that of Weaire and Kermode with Potts model calculations layered on top

of a mean field calculation of the local magnetization.



