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Frontispiece: Giant’s Causeway. Detail of a copperplate engraving
of the Giant’s Causeway, Northern Ireland, a basalt fracture pattern (From

Sir. R. Bulkley 1693).40



Surface tension 18 of... paramount importance.~ Sir D’Arcy Thompson

Like to bubbles that on water swim.— John Dowland

Double double tosl and trouble, Fire Burn and Cauldron Bubble.— William

Shakespeare

Astra ferar nomenque erat tndeltbile nostrum.— Ovid



PREFACE

The following discussion of coarsening is an eclectic summary. In most
respects it makes no attempt at completeness. The discussion of grain growth
in metals, in particular, is cursory and the selection of material arbitrary.
The presentation of coarsening models, however, does attempt to present
at least a few examples of each of the major types. The basic theme of
the whole, for those who get lost among too many examples and too much
detail, is how the interaction of diffusion and geometric constraints leads to
complex patterns. Depending on context the terms grain, cell and bubble
are used more or less interchangeably, as are film, soap film, wall boundary,
and grain boundary; froth, pattern, network, array, lattice, and structure;

and coarsening and grain growth.
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LIST OF SYMBOLS

Published models and experiments use a great variety of inconsistent

notation. While we have tried to reduce our notation to some sort of order,

some multiple usage remains. We give definitions of the most important

symbols below.
Symbol
24

a, B, v

Ap
<ap>,<Ap>
g

¢, €1, €2, d, K1, K2
6

< éa >

AP

At

Meaning

Growth rate exponent. < a >ox t%.
Angles.

Initial average bubble area.

Average bubble area in a pattern.

Total area of experimental cell or pattern.
Contact area between bubbles ¢ and ;.
Area of a single n-sided bubble.

Average area of an n-sided bubble.
Auxiliary growth exponent. a =1/(8 — 1)
Fitting parameters.

Spatial dimension.

Width of area distribution.

Pressure difference across bubble walls.

Time step in simulation.
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LIST OF SYMBOLS, continued

Distance between walls of bubble ¢

and bubble j.

Diffusion constant for probability, Also the

number of disordered bubbles in a pattern.

Disorder parameter.

Average number of faces per polygon.
Force on vertex or boundary.

Free energy of pattern.

Magnetic field.

Hamiltonian.

Indices.

Probability current.

Coupling or interaction strength.
Diffusion constant for area. Units vary
depending on context.

Boltzmann’s constant.

Relative area of an n-sided bubble
An=<apn>/<a>.

Length of curved bubble wall.

Typical length scale.

Boundary or vertex mobility. Units vary

depending on context.



LIST OF SYMBOLS, continued

1o, U3, K4 Moments of side distribution.
m(n) Average number of sides of neighbors to an

n-sided bubble.

M . Magnetization.
n Number of sides of a bubble.
<n> Average number of sides per bubble.
) Local normal to a boundary.
<ng> Average number of edges per face in three
dimensions.
N ' Total number of bubbles in a pattern.
Nedgess Nyerticess €te. Number of edges, vertices, etc.
(0] The number of ordered bubbles in a pattern.
¥ Angle mismatch between spins and lattice.
Q Number of ground state spins in Potts model.
P Radius of curvature in two dimensions.
Pis Pj Principle radii of curvature in three dimensions.
p(n), p(A), p(n, A) Probability that a bubble has
n-sides, area A, n-sides and area A.
R Ratio between p(5) and p(6). Also
frictional damping force.
< rp> Average radius of an n-sided bubble.



LIST OF SYMBOLS, continued

o Surface tension. Units vary depending on context.
9, 5) Spin at lattice site (¢, j).

S Entropy.

0(n) Average internal angle for an n-sided bubble.

t Time. Units vary depending on context.

T Temperature.

T Topological charge. T =n — 6.

v Velocity of vertex or boundary.

w Width of side distribution.

z, Parameterized positions along bubble walls.
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