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Frontispiece: Giant’s Causeway. Detail of a copperplate engraving
of the Giant’s Causeway, Northern Ireland, a basalt fracture pattern (From

Sir. R. Bulkley 1693).40



Surface tension 18 of... paramount importance.~ Sir D’Arcy Thompson

Like to bubbles that on water swim.— John Dowland

Double double tosl and trouble, Fire Burn and Cauldron Bubble.— William

Shakespeare

Astra ferar nomenque erat tndeltbile nostrum.— Ovid



PREFACE

The following discussion of coarsening is an eclectic summary. In most
respects it makes no attempt at completeness. The discussion of grain growth
in metals, in particular, is cursory and the selection of material arbitrary.
The presentation of coarsening models, however, does attempt to present
at least a few examples of each of the major types. The basic theme of
the whole, for those who get lost among too many examples and too much
detail, is how the interaction of diffusion and geometric constraints leads to
complex patterns. Depending on context the terms grain, cell and bubble
are used more or less interchangeably, as are film, soap film, wall boundary,
and grain boundary; froth, pattern, network, array, lattice, and structure;

and coarsening and grain growth.
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LIST OF SYMBOLS

Published models and experiments use a great variety of inconsistent

notation. While we have tried to reduce our notation to some sort of order,

some multiple usage remains. We give definitions of the most important

symbols below.
Symbol
24

a, B, v

Ap
<ap>,<Ap>
g

¢, €1, €2, d, K1, K2
6

< éa >

AP

At

Meaning

Growth rate exponent. < a >ox t%.
Angles.

Initial average bubble area.

Average bubble area in a pattern.

Total area of experimental cell or pattern.
Contact area between bubbles ¢ and ;.
Area of a single n-sided bubble.

Average area of an n-sided bubble.
Auxiliary growth exponent. a =1/(8 — 1)
Fitting parameters.

Spatial dimension.

Width of area distribution.

Pressure difference across bubble walls.

Time step in simulation.
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LIST OF SYMBOLS, continued

Distance between walls of bubble ¢

and bubble j.

Diffusion constant for probability, Also the

number of disordered bubbles in a pattern.

Disorder parameter.

Average number of faces per polygon.
Force on vertex or boundary.

Free energy of pattern.

Magnetic field.

Hamiltonian.

Indices.

Probability current.

Coupling or interaction strength.
Diffusion constant for area. Units vary
depending on context.

Boltzmann’s constant.

Relative area of an n-sided bubble
An=<apn>/<a>.

Length of curved bubble wall.

Typical length scale.

Boundary or vertex mobility. Units vary

depending on context.
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1o, U3, K4 Moments of side distribution.
m(n) Average number of sides of neighbors to an

n-sided bubble.

M . Magnetization.
n Number of sides of a bubble.
<n> Average number of sides per bubble.
) Local normal to a boundary.
<ng> Average number of edges per face in three
dimensions.
N ' Total number of bubbles in a pattern.
Nedgess Nyerticess €te. Number of edges, vertices, etc.
(0] The number of ordered bubbles in a pattern.
¥ Angle mismatch between spins and lattice.
Q Number of ground state spins in Potts model.
P Radius of curvature in two dimensions.
Pis Pj Principle radii of curvature in three dimensions.
p(n), p(A), p(n, A) Probability that a bubble has
n-sides, area A, n-sides and area A.
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frictional damping force.
< rp> Average radius of an n-sided bubble.
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v Velocity of vertex or boundary.
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CHAPTER 1
INTRODUCTION

I.a Preview

230 physicists

Long before D’Arcy Thompson’s On Growth and Form,
studied the problem of pattern formation, but without much quantitative
success. More recently, a great explosion of interest in non-linear dynam-
ics has lead to new attempts to understand complex spatial patterns. In
some areas these new techniques have lead to qualitatively new nonlinear
approaches, also without too much quantitative success. In others, like those
to be discussed here, the reexamination has resulted in a great increase in
understanding by applying traditional techniques in new ways. The following
pages contain almost no equations that are non-linear in the standard sense.
The patterns to be analyzed are not active and dynamic like the reaction-
diffusion equations of biological morphogenesis. Instead we find relaxation
processes, gradual approaches to statistical equilibria, and almost univer-
sally linear equations. It is worth remembering, at a time when nonlinear
phenomena receive so much attention, that linear problems involving energy
minimization subject to constraints can result in notably complex patterns.
Our success modeling and simulating simple large aspect ratio coarsening of
this type is welcome given our general lack of understanding of large aspect
ratio non-linear systems. Even so, our understanding is far from complete.
As we discuss in later sections of this thesis, there are still many unsolved
and interesting problems in linear pattern formation.

1



I.b Overview

The study of the origin and development of granular materials is a large
and well developed subject, as anyone who tries to survey the daunting quan-
tity of literature presented in the bibliography will agree. Two schemes of
dividing the field seem natural. We can consider the type of material under
study, soap froths in one and two dimensions, fracture structures in basalt,
grains in pure metals and in alloys (again in two or three dimensions) mag-
netic bubble systems, biological aggregates like cucumbers or human skin,
ceramics, lipid monolayers, droplet condensation, etc., etc.. Alternatively
we can characterize by philosophy of approach, mathematical studies of the
topological and geometrical properties of random lattices, applied studies of
real materials, modeling which attempts to mimic the detailed behavior of
coarsening systems, modeling which considers only the basic underlying dy-
namical laws, engineering studies of practical applications, or philosophical

musings on holistic patterns.

We will largely limit ourselves to a study of the coarsening process in
cellular materials, paying particular attention to the way in which an ini-
tially ordered lattice can evolve into a disordered one. I will try to combine
the two strategies mentioned above, to discuss three different systems and
also a set of approaches to them. Only the case of the two dimensional soap
froth is understood well enough at this point to discuss in detail. Its close
cousin, the liquid-gas transition of the lipid monolayer is only now receiving

adequate experimental attention. The realm of pattern formation in mag-
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netic materials is better known, but the emphasis in the published literature
is on device applications and the few studies of the coarsening problem are

not notable for their quality.

I.c Current Literature

Anyone trying to acquaint himself with the problems of coarsening and
grain growth will want to refer to the many excellent review articles. Pre-
eminence goes to Atkinson’s invaluable and up to date “Theories of Normal
Grain Growth in Pure Single Phase Systems,”20 (1988) and to Weaire and
Rivier’s lively and thorough survey, “Soap, Cells and Statistics-Random
patterns in Two Dimensions,”?47 (1984). Both are also notable for their
excellent bibliographies. Another recent review is Nagai, Kawasaki and
Nakamura, “Dynamics of two dimensional cell patterns,” 178 (1988). Cyril
Smith’s long series of reviews are older but full of interesting philosophi-
cal speculation and contain many helpful guides to the early literature on
coarsening (1952-64).206,207,208,209 Of the older papers on metal grains, the
most complete is Beck’s, “Annealing of Cold Worked Metals,”24 (1954). A
more fecent overview of metallic grain growth may be found in Martin and
Doherty’s Stability of Microstructure in Metallic Systems (1976).159 Several
of the recent papers by Anderson et al. also contain reviews of the theory
of grain growth.12:18 Helpful reviews can also be found in several conference
proceedings.192 The popular literature has also given some attention to the
coarsening of froths and metals, with a variety of brief summaries in various

places.21:44,91,153,238 Fyen the artistic world has chipped in.221
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In the biological literature, the papers of Matzke and Lewis are erudite
and contain helpful bibliographies,140:146,161 For ceramics a good starting
point is Brook, Ceramic Fabrication Processes, Treatise on Materials Scs-
ence and Technology (1976).39 For magnetic bubbles Eschenfelder, Magnetic
Bubble Technology (1980), is the most useful, though it concentrates on device
applications rather than disordered patterns.%3 There is no review available
on the coarsening of lipid monolayers. The one published study is by Moore

et al. (1986).16°

I.d What is a Two Dimensional Cellular Pattern?

The bulk of this thesis will be devoted to the study of cellular patterns
of a particular kind, two dimensional networks with coordination number
three, and a dynamics driven by surface tension (or surface energy) forces.
A pattern consists of a network of boundaries on a surface which has the
property that three boundaries meet at every intersecf.ion or vertex. The
topology and dynamics are related since the dominance of three-fold vertices
results from considerations of structural stability in the presence of surface
tension. Four-fold vertices tend to fall apart into pairs of three-fold vertices
since the total length of four lines radiating from a single vertex to connect
four points is almost always larger than the length of five lines radiating from

two vertices (see Fig. 1).87 The domains outlined by these boundaries



Fig. 1 Length Minimization and Coé6rdination Number. The
relative length of sides of four vertices connected by (A) four lines running
to a single 90° vertex (length= 2.828) and (B) five lines running to two 120°
vertices (length= 2.732). Since surface tension tends to minimize side length,

(A) decays into (B).






7
are generally approximately polygonal in shape (though magnetic bubbles
present an extreme case where this observation fails), with more or less
curved boundaries. Curved walls result in energy differences across walls,

‘and hence diffusion and wall motion.

In soap froths, magnetic bubbles and lipid monolayers, the equilibration
time along the boundaries is short compared to the rate at which bubbles
grow or shrink, so we may regard the pattern as fully relaxed, or equili-
brated. In metal grains, the rates of diffusion along and across grain bound-
aries are comparable, but we will usually try to get by with assumptions
of complete relaxation. We therefore tend to find Plateau’s minimal sur-
faces experimentally, vertices of roughly 120°, walls that are nearly circular
arcs, etc.189190 Another difference between these two classes of syétems is
that surface tension in lipids, soap bubbles and some magnetic materials is
isotropic, while that in metal grains and other magnetic materials may be

significantly anisotropic.

While the basic driving force is simply surface tension, it is the compe-
tition between surface minimization and conservation constraints that gives
rise to patterns (we will usually neglect wall breakage in froths, grain coa-

lescence in metals and mitosis in cells).
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Similar rules hold in three dimensions, but vertices are four-fold con-
nected with 109.47° internal angles, and walls take the form of sections of
spheres. We will find however, that some of the geometrical rules that sim-
plify our consideration of two dimensional networks are lost in three dimen-

sions, considerably complicating the problem.



CHAPTER I1
HISTORY

The oldest reference to the behavior of a froth that this author has been
able to find is in Robert Boyle’s New Ezperimcnt8.35 In a discussion of the
effects of a vacuum on a fluid Boyle notes that small bubbles form within
the fluid, rise to the top and clump into bubble rafts. Later on he de-
scribes the bubbling of human urine under vacuum and notes that the froth
coarsens and collapses over time. Doubtless a thorough search in the liter-
ature would reveal other studies. Matzke quotes Hooke, and Lewis quotes

Leeuwenhoek as the first to have considered froth as a model for aggregates
of cells.108,138,140,161

I1.a Basalts

Geology is a generous source of examples of cellular patterns, as two
recent articles in Scientific American pointed out.128:222 Examples range in
scale from millimeters to miles, with a variety of origins, the most common

being convective cells and fracture patterns in rock.

The earliest well known investigations of two dimensional cellular pat-
terns are studies not of froths but of the fracture patterns in basalts, in
particular the large region of fractured basalt known as the Giant’s Cause-
way in northern Ireland (See Frontispiece and Fig. 4 (C)).4%5% The most
significant of these is Reverend Dr. Samuel Foley’s account of 1694.%5 This
works contains, among other things, the first distribution function (albeit

9
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a qualitative one) calculated for a two dimensional network of grains: “We
found none at all Square, but almost all Pentagonal or Hexagonal; only
we observed that a few had seven sides; and many more Pentagons than
Hexagons; but they were all irregular, for none that we could observe had
their sides of equal breadth.”%3 In this short passage, the reverend doctor has
already established two of the most important characteristics of equilibrated
" cellular patterns, that they have more five-sided than six-sided grains and
that they are strongly irregular. In particular that they are not merely a
poor approximation to an hexagonal array. This basic observation would be

neglected for the next few hundred years.

The history of attempts to explain the fracture pattern in basalts is long,
and need not detain us, except to note that the study of the origin of these
patterns continues to the present.214 The other point to note is the apparent
universality of these patterns. Pieri, in his article on the fracture patterns
in the crust of the moon, Europa, presents a helpful summary of the various
types of geological patterns, including basalt fracture, large scale straight

cracks with codrdination number four, and a few models.191

IL.b Biology

A complete survey of the study of polyhedral structures in biology would
take many hundred pages. We can only briefly outline a few of the major
ideas and efforts to connect the soap froth to biological tissues, focusing on

those that emphasize two dimensional patterns.



Fig. 2 Stages in the Development of a Geranium. Various stages
in the development of a geranium embryo showing similarity to a bubble raft

(From Soudges 1923).213
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Fig. 3 Grain Growth in Calcium Carbonate. (A) Early stage
of grain growth, (B) Developed grains (C) Coarsening. (D) Sample of clam
shell showing similar polygonal patterning (Redrawn from D’Arcy Thompson

1942).230
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IL.b.s D’Arcy Thompson

The obvious similarity in appearance between the cells of a soap froth and
the cells in a living organism lead to many attempts to connect the two more
formally. The resemblance may, indeed, be striking, as in the development
of the geranium (Fig. 2) 213 Sir D’Arcy Thompson expressed the analogy
succinctly: ”surface tension is of great, and is probably of paramount impor-
tance” in the determination of the shapes of simple organisms and cells 230
He therefore discussed at length the mathematics of minimal surfaces and -
of surface tension, and catalogued almost every conceivable analogy between
bubbles and living forms. He connected the scission of an isolated bubble or
floating oil drop to the division of cells,23%:233,234 the pattern of two dimen-
sional soap bubbles to the segmenting egg (p. 601), and honeycomb (p. 494),
three dimensional froths to vegetable parenchyma (p. 544), and the tortoise
(p. 518). He addressed in particular the analogy between grain growth in
molluscan shell and a model system of calcium carbonate crystals growing in
albumin (see Fig. 3). The list could be extended to nearly arbitrary length.
The fundamental weakness of Thompson’s approach, which carries over to
later writers as well is an obsession with the crystal, with a regularity and
symmetry which he assumed to be the Platonic form for imperfect natural
structures. Sir D’Arcy had no room for probability in his ordering of the
natural world. For him, disorder was merely a deviation to be characterized

and dealt with as an unavoidable inconvenience, but not of interest in itself.



Fig. 4 Sample Two Dimensional Cellular Patterns. (A) Section of
the epithelium of a cucumber (From Lewis 1925).140 (B) Territorial patterns
of mouthbreeder fish (From Hasegawa and Tanemura 1976).15 (C) Detail
of the fracture pattern of the Giant’s Causeway (From Lewis 1949).147 (D)

Sample of Agfa color film photographic emulsion (From Lewis 1931).“‘2
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TABLE 1
LEWIS’ DISTRIBUTION FUNCTIONS147

#(n) n
System 4 5 ) 7 8 9 10 N
Cucumber
Epithelium 0.02 0.251 0.474 0.224 0.03 0.001 - 1000
Wax
Convection 0.023 0.357 0.377 0.220 0.023 - - 300
Giant’s
Causeway 0.054 0.406 0.464 0.073 0.003 - - 386
Dividing
Cucumber - 0.016 0.255 0.478 0.224 0.026 0.001 1000,
Eupatorium 0.026 0.265 | 0.436 0.238 0.034 0.001 - 1000
TABLE 3
LEWIS’ LAW147
< ap > n
System aq as ae ar ag ag a10 a1 a1z
Cucumber
Epithelium 2.0 3.0 4.0 5.1 5.9 6.4 6.7 - -
Photographic
Emulsion 1.3 8.1 6.6 11.1 16.1 23.1 29.7 35.5 42.7
Eupatorium 2.9 5.9 9.0 18.1 18.2 18.8 - - -

18
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ILb.s¢ Leuns and the Cucumber

One of those heavily influenced by Sir D’Arcy’s program to attempt phys-
ical explanations of biological structure was Frederic T. Lewis, of the Harvard
Medical School. His lifetime study was the analogy between living cells and
soap froths in both two and three dimensions, by means of which he hoped to
demonstrate that surface tension was the chief factor determining the orga-
nization of cellular aggregates.140:141,142,143,144,145,146,147 while mych of his
writing was devoted to three dimensional structures, he recognized that the
two dimensional case was more susceptible to experiment, hence an abiding
interest in two dimensional layers of cells, first in the retina, then in human
epithelium (surface tissue), a variety of plants and finally in the skin of the
cucumber (See Fig. 4 (A)). In approach he followed Sir D’Arcy in positing an
ideal regular lattice, either hexagonal in two dimensions or tetrakaidekahe-
dral in three dimensions and regarding all actual observations as imperfect
realizations of the ideal. Lewis had a strong distaste for disorder, ” Yet,
whether certain cells surpass others by accelerated growth or are reduced in
size by division, the effect upon the uniform hexagonal mosaic is the same;
it becomes a heterogeneous mess.” 144 This obsession with order led to an
emphasis on the geometry of regular polyhedra and a certain tendency to
mysticism, particularly in his later papers. Thus many of his writings are
of more historical than scientific interest today. However, Lewis was also a
careful observer, and his desire for order never prevented him from recording

the real disorder in his samples, nor from attempting to explain the origins
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of that disorder. His calculations of the distribution of areas and number of
sides of the skin of the cucumber were the first real hard data gathered in the
field of cellular patterns, presenting results not only for biological materials
but also Bénard-Marangoni convection, photographic emulsion (Fig. 4 (D))
and basalt fracture. Table 1 summarizes his results for cucumber (Fig. 4
(A)), convection in wax, the Giant’s Causeway (Fig. 4 (C)), and the Eupato-
rium plant. His studies have inspired many investigators, including Occelli,
Guazzelli and Pantaloni who have recently reexamined the cellular patterns

present in Bénard-Marangoni convection.104,185,251

It is important to notice that in all of these systems, the number of six-
sided domains is greater than the number of five-sided domains, and that
the cutoff for both many and few-sided domains is very sharp. We will see
later how these results for patterns in which there are intrinsic limits placed
on the range of areas, e.g. by cell division or wavelength selection in con-
vection, compare to theory and experiment for froths and other unrestricted

coarsening.

Lewis is best remembered for his empirical determination of the relation
between the number of sides of a cell and its area. We summarize his results

in Table 2.

On the basis of this data he concluded that the average area of a cell was

a simple linear function of its number of sides, i.e.:
<ap>=c1+ca*n, (IL.1)

where ay, is the area of an n-sided cell and ¢; and ¢ are fitting parame-
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ters. This relation is known as "Lewis’ Law,” It has been elevated to the

134,198,201 casting unde-

status of a general principle by some later writers,
served opprobrium on Lewis, because it seems to be essentially never true for
coarsening systems, failing for both soap froths and metal grains, (though
it is approximately correct for domains with between five and eight sides).
To be fair to Lewis, he proposed it only for the specific case of cucumber
epithelium, and noted himself that cells with many sides were smaller than

predicted by the linear relation. In this case he was less literal minded than

the majority of his followers.

Another relation first proposed by Lewis is the inverse correlation be-
tween a cell’s number of sides, n, and the number of sides of its neighbors,

m(n).}42 In its basic form his conclusion was that
d
m(n) = c+ 2, (1L2)

where ¢ and d are constants. Aboav discovered independently a slightly more

elaborate version of this harmonic relation in the soap froth, which is usually
known as the Aboav-Weaire Law.?8

Studies continue to the present on the significance of cellular patterns
in the configurations of animal cells, e.g. in the human retina.257 Cellular

patterns have also attracted interest from population biologists, for example

studying the polygonal territories of mouthbreeder fish (see Fig. 4 (C)).1%

Many of the methods we will discuss are also used by sociologists and geog-

raphers interested in the distribution and allocation of resources.39
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II.c Metallurgy

IL.c.s The Classical Model of Grain Grouwth

By far the strongest impetus to the study of soap froths came from the
study of metals. The fundamental analogy between the growth of grains in a
metal and bubbles in a froth was first recognized by Smith.2% In this picture
each separately oriented grain in the metal was considered analogous to one
bubble in the froth and the metal’s grain boundaries to correspond to the
soap films. The growth or shrinkage of a given bubble corresponded to the
growth or shrinkage of the corresponding grain. There are differences, but
the basic analogy between the migration of grain boundaries due to surface
energy in a metal and the growth of bubbles due to surface tension driven
diffusion in a froth is exact (as we discuss in our section on von Neumann’s
Law), and the comparison between the two systems has proved fruitful as a

series of review articles by Smith attest.207,208,209

One basic difference between a two phase bubble system, where the walls
are made of soap fllms, and the diffusing material is a gas, and a one phase
metal system where the grain boundaries are simply collections of defects,
is the rate of grain coalescence. In an ideal froth, walls do not break and
there is no grain coalescence. In some metals, on the other hand, if two
grains with nearly identical crystalline orientation touch, the boundary be-
tween them vanishes. When it occurs, coalescence provides an additional
coarsening mechanism that favors the creation of many sided, large and ir-

regularly shaped grains. Other differences between the froth and the metal



Fig. 5 Bubble Rafts. Regular hexagonal free floating bubble raft.

Bubbles are 1.41mm in diameter (From Bragg and Nye 1947) 38
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Fig. 6 Recrystallization of a Disordered Bubble Raft. The or-
dered raft is first shaken to produce a disordered pattern and then allowed
to recrystallize. Bubbles are 0.60mm in diameter. (A) ¢ = O minutes. (B)
t = 2 minutes. (C) ¢ = 25 minutes. Note the irregular shape of the grain

boundaries (From Bragg and Nye 1947).38
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arise from a consideration of time scales. The soap froth’s films relax very
quickly in comparison to the diffusion time of the gas through the films. The
films themselves adjust nearly instantaneously, and even the creep of the
films on the walls of their container is fast compared to the diffusion time.
Thus soap films always assume their equilibrium shape as minimal surfaces
(circular .a.rcs). In a metal this is not the case. The rate at which a grain
boundary moves and equilibrates are nearly equal, so grain boundaries can be
significantly irregular. Smith’s great leap of faith was to assume that when
the irregularities of the metal grains were averaged over a sufficiently large
population, the differences would average out, and he conducted a series of

experiments to show that this averaging did in fact occur.

In both two and three dimensions, the soap froth offers a number of sig-
nificant advantages over the direct study of metals. The three dimensional
structure of a metal is usually determined by serial sectioning, that is, tak-
ing a series of thin slices and reconstructing the three dimensional structure
from the series of two dimensional images. Attempts at non-destructive mea-
surements have been less successful.252 Destructive measurements, besides
being tedious, prevent the grains from being examined at different stages of
growth, making it difficult to measure the basic dynamical laws governing
grain coarsening. The three dimensional soap froth can, though with diffi-
culty, be observed in situ.18! In the case of the two dimensional froth, direct
observation is trivial, while the surface preparation required to observe grain

growth in metallic thin films or foils, can alter their evolution.
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Another barrier to the understanding of metal evolution is the large range
of secondary effects, orientational anisotropy, defect pinning, zone refining,
vacancy migration, etc., which while interesting in their own right, tend to
obscure the underlying dynamics. In the soap froth, such secondary effects
are fewer in number, gravity driven thinning in three dimensions, wall break-
age, and Plateau border thickening, so they should be easier to control for.
Such are the historical motivations for the study of the soap froth as a model

system.

II.c.ti Bragg’s Model

Bragg put forward an alternative use of bubbles to model two-dimensional
grain growth. Instead of looking at the growth or shrinkage of bubbles, Bragg
used uniformly sized bubbles, free floating in rafts on water. Individual bub-
bles in a raft correspond to the atoms in the metal not to entire metallic
grains. The orientation of the soap bubble grains corresponds precisely to
the crystalline orientation of the corresponding grain. Since floating bubbles
attract each other weakly at long range and repel strongly at short range,

the analogy is reasonably exact.18

A typical experiment consisted of creating a large scale regular hexago-
nal bubble raft (see Fig. 5), shaking it to destroy the crystalline orientation
and then monitoring the regrowth of hexagonal domains (Fig. 6). The ob-
served behavior agreed quite closely with that seen in metals. In particular,
the comparable diffusion times along and across grain boundaries resulted

in much more irregular grain shapes than observed in soap froths (Fig. 6
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(C)). A defect of the model, the absence of a temperature to facilitate the
motion of bubbles from one grain to another, can be simulated by applying
constant small amplitude shaking. Such shaken systems have been stud-
ied by Fukushima and Ookawa, who have also made detailed studies of raft

rheology and defect propagation.66:67,68,69,70,71,177

The chief disadvantage of such experiments is the difficulty of gathering
adequate statistics. To obtain enough grains large compared to the bubble
size requires a bubble raft composed of a prohibitively large number of bub-
bles. Nevertheless this alternative use of bubbles as a microscopic model is

very appealing and deserves to be pursued further.

II.d Other Topics

Before we turn to a detailed description of the coarsening of the soap
froth, we would like to mention two topics departing from the main focus
of this thesis, but which have much intrinsic interest as part of the broader

study of bubbles: the properties of soap films and the rheology of foams.

II.d.s The Properties of Soap Films

Early students of soap bubbles were much more interested in the be-
havior of single films or a few clumped bubbles than in the properties of
froths. Newton was the first in a long chain of researchers who studied
properties of an isolated soap film.182 Plateau, the great master of the soap
bubble, devoted nearly all of his monumental study of the properties of a

weightless fluid to the equilibrium shapes of single films and the interactions
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among a few bubbles.18%19 Even the method of producing a stable soap
film was a subject of debate in the days before modern detergents.36:%6 In
this century, the microscopic structure of films, and macroscopic properties
like film draining, have received particular attention both theoretically and
experimentally.!93 The classic guide to this material (including a complete
bibliography) is Mysels, Shinoda, and Frankel, Soap Films: Studies of their
Thinning.17® We will return to their work when we consider possible expla-
nations for the anomalous behavior observed by Glazier, Gross and Stavans

in the long time evolution of two dimensional froths.

The stabilization of foams is a major industrial problem, and there is
a large literature of engineering studies of foam stability. Since the chief
mechanism for coarsening in three dimensions is gravity induced thinning
and breakage, most of these studies focus on the properties of single films.
Single soap films have been used for a variety of experimental and diagnostic
purposes,®” including recent studies at University of California, San Diego,

on two dimensional shear flows.

We should also not omit to mention the less serious aspects of the 19th
century’s interest in bubbles. Boys’ Soap Bubbles: Thesr Colours and the
Forces which Mold Them,17® in addition to a serious discussion of the prop-
erties of single bubbles, includes numerous party tricks, and even Nature
was not averse to publishing accounts of the wonderful properties of soap

bubbles, as observed at aristocratic soirées.l:91

II.d.ss Foam Rheology
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Another topic of great technological importance is the rheology of foams,
the behavior of foams subject to external forces. The best current review is
Kraynik’s thorough “Foam Flows.”126 Applications where foams are used
industrially in conditions of large stress include for transporting of granular
and high viscosity materials in pipes, as fire suppressants to smother flames,
and in the manufacture of modern nuclear weapons.?! Elucidating the prop-
erties of a true disordered froth subject to stress is difficult. Experimental
results are limited and tend to focus on particular engineering applications
rather than fundamental properties, though the work of Bragg on bubble

rafts is very useful.38

Published theoretical studies of the rheology of foams cover almost as
many methods of modeling as do those for grain growth. Weaire and collab-
orators have developed a small scale simulation of a fully disordered two di-
mensional froth, which shows interesting nonlinear and hysteretic effects, 240,241,243
There are also a number of studies of the principles of defect motion in
froths, which can be compared directly to bubble raft and microsphere
experiments.19171 Finally, Kraynik and his collaborators have developed an
elaborate analytic theory for the properties of a perfect honeycomb with
soap films described by realistic viscous equations.125:129,130 Weaire has also
examined this model.239 They have even produced a movie of the stress
response for different types of films and different lattice orientation, which

exhibits an impressive variety of periodic and quasiperiodic motions.127
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While we would not expect to find such elegant regularity in a real froth,
the potential for complex self organized temporal behavior is an interesting

possibility.

Il.e Conclusion

The intent of this chapter has not been completeness, but an eclectic
sampling of the variety of topics peripheral to our main theme of bubble
growth. We hope that it provides some motivation to the study of the two
dimensional soap froth (both as an unusually simple example of general grain
coarsening and as a material worthy of study in its own right) and to the
extension of the ideas developed working with the froth to more complicated

systems.



CHAPTER III
THE GEOMETRY OF CELLULAR PATTERNS

Before we turn to the physical processes of two dimensional coarsening
we need to discuss a few basic mathematical relations describing general
coordination number three networks. We also present the basic evolution
equation describing bubble growth, (von Neumann’s law), since its derivation
is essentially geometrical and will therefore obtain to any purely diffusive

surface tension driven system.

II1.a Basic Mathematical Relations

The properties of a connected network consisting of vertices, edges, cells
(or faces), and polyhedra (in three dimensions) may be briefly encapsulated

in the Euler Relation,%! which states that

Nyertices — edges + Neeuts — N, polyhedra = 1. (ml)
In two dimensions there are no polyhedra so the Euler Relation reduces to
Nyertices — edges + Neets = 1. (IIIZ)

Another basic relation, the average number of sides per cell, < n >, in an
infinite lattice of coordination number 3 may be derived as follows. Each

vertex is shared by 3 cells and each cell has < n > vertices on average, so

1 )
Nyertices = 3 < n > Nes- (III3)

33



34

Each edge is shared by two cells so

<n>
Nedgea = _2_"Nc¢lla° (I11.4)

Applying Euler’s Relation we obtain that

1 1
3 <n> Neys — 3 <n> Neeps + Neeyts = 1. (IIL.5)

In the limit of a large system,

lim H <n>=1. (I11.6)
Neeyty—00

So the average number of edges per cell < n >= 6.9 In three dimensions
there is an extra degree of freedom, so the equations are underdetermined.
If the average number of faces per grain is < f > and the average number of
sides per face is < ny > then for an infinite froth the quantities are related

as:
12
<f>

<ng>=6- (II1.7)

III.b Von Neumann’s Law

The simplest and most beautiful theoretical result for the dynamics of
the soap froth is due to von Neumann, who, in a comment to a presentation
by Smith argued that the rate of increase or decrease of a bubble’s area

should depend only on the bubble’s number of sides.18!

Let us first discuss the driving force behind cell growth and shrinkage,

pressure driven diffusion. If a film between two bubbles has a radius of
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curvature p, and occupies an angle ¢ its length, £ is, to lowest order, £ = p¢.

For a small change in normal radius, z, g:% = ¢. But ¢ = arcsin £ ~ % to

P
lowest order. So % ~ %. Since the surface tension o is a force per unit length,

the pressure difference required to sustain the curvature is AP = agﬁ- ~ %.

The same basic derivation holds for grain growth in polycrystals and for
similar reasons. We follow the argument given by Plateau.189 A curved film
has a larger surface energy than a flat film, and a curved grain boundary has
a higher surface energy than a flat grain boundary. In a grain there is no
surface tension per se but there is a surface energy— atoms at the surface of
the grain have a higher energy than those in the bulk. An atom sitting in a
convex portion of grain surface is more exposed to defects, and hence has a
higher energy than an atom sitting across the grain boundary in a concave
section of surface. Thus it is energetically favorable for atoms to jump across
the grain boundary from convex to concave surfaces. The energy difference
is proportional to the surface curvature so the basic result is that energy

driven diffusion results in a local boundary velocity, ¥, at a point Z, of

(2 = u(D) 22 (L)

where u(Z) is the local mobility which may depend strongly on time, temper-
ature (activation energy) and boundary orientation (anisotropy), fi(Z) is the
unit normal to the surface, and p(Z) the local curvature.!’? If the tempera-
ture is high enough that kT >> orientational anisotropy, and the boundary
mobility is constant in time (no zone refining effects), then averaging over a

large number of grain orientations reduces the surface energy to an effective



Fig. 7 von Neumann’s Law: Explanatory Diagram. A ﬁve-sidéd
bubble, where a is the average central angle, S half the average internal angle
of a polygonal approximation to the bubble, § the difference between 8 and
60°, £ the length of the side of the bubble, and p the radius of curvature of

the side.
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surface tension and differential pressure, and we can treat grain growth and
soap bubble growth as identical. If kT = orientational anisotropy, certain
grain boundary orientations will be stabilized and grain growth will gradually
slow, and may even stop at a finite grain size. If zone refining reduces
or enhances the average boundary mobility, cessation of grain growth or

explosive anomalous grain growth can result.

The remainder of the argument is purely geometrical and local. Von
Neumann’s derivation is economical and we follow it closely. We make the
following hypotheses. 1) That vertex angles in a froth are 120°. 2) That all
walls are sections of circular arcs. 3) That the pressure difference across a
wall A P is proportional to one over the radius of curvature of the wall. 4)
That the rate of gas diffusion across a wall is equal to its length times the
pressure difference across it. 5) That pressure differences are small so that

diffusion of gas is equivalent to diffusion of area.

We now make the following geometrical observations (See Fig. 7). The
average central angle,a of a triangular wedge of an n-sided polygon is a =

360°/n so the average internal angle, S, is
or. 2
B =90°(1— ;). (IIL.9)

The angle difference between the actual bubble angle and the polygon leaves,

by hypothesis 1, an angle deficit to be made up by curvature:

5=60°—f= 9o°(% - %) (I1L.10)
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to be made up by curvature, which gives, by hypothesis 2, a radius of cur-

vature,
£

"~ 360°(2-1)’

where £ is the length of the circular arc over the side of the polygon. If we

2 (IIL.11)

apply hypothesis 3 we find that

180° ,6 — n

AP 7 (3n )-

(IL.12)

Noting that the diffusion of gas is towards the region with lower pressure,
and applying hypotheses 4 and 5, we multiply by n sides and the length
of each section of circular arc, £, to obtain von Neumann’s law, the rate of

change of area, A,, of an n-sided bubble,

dA,
—dt—' = lC(n - 6), (III.13)
where x is a diffusion constant with the units of é-‘;‘—%.

Note that we have made no assumptions about the regularity of the froth
since the lengths of the circular arcs cancel side by side. Thus the law is both
exact and local for any pure diffusive system obeying our five hypotheses. If
we had assumed an n-dependent typical internal angle, 8(n), for the froth,

the derivation would follow as before to obtain the generalized result:

dAy

22 = K(3n(1 - n)yy ). (IIL.14)

180°
If the average internal angle of an n-sided bubble varies from bubble to
bubble, this revised law provides a mechanism for a variation of growth

rates within the population.
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The only patterns that are stable under von Neumann’s law are the
perfect hexagonal lattice and the empty lattice. Introducing even a single
defect pair into a perfect hexagonal lattice results in the collapse and eventual
disappearance of all the bubbles in the lattice. Thus we know that the only
possible type of equilibrium for the systems is one in which the average length
scale grows continuously in time, but the normalized distribution functions
(p(n), the probability that a given bubble has n sides, A, = %g, the
relative size of n-sided bubbles compared to the total population, etc.) and
local correlations (e.g. m(n), the average number of sides of a bubble next
to an n-sided bubble), remain constant. We call this equilibrium, if it exists,

a scaling state.

Von Neumann’s law predicts that in a scaling state, i.e., when the func-
tions describing the distribution of areas and number of sides are constant
in time, the average area of a bubble, < a > is proportional to the time, .
This result may be argued in several different ways 84:167:172,178 byt we find
it simplest to derive as follows. Let A be the area of the entire system, N
be the total number of bubbles, p(n) and ), as above. Then the number
of bubbles lost per unit time is the area lost by three-, four-, and five-sided

bubbles per unit time divided by their mean areas,

aN __ Y sp(n)N(n — 6) (I1.15)
dt 15 Mm<a> )

Substituting for < a > we obtain

dN kp(n)(n — 6)
- = -N% ) W R (I11.16)

n=3,4,5
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If the distribution functions are time independent, which is what we mean

when we say we are in a scaling state, then the sum is a constant and

dN
?oc—N2 =+ Nxt™! 2 <a>xt. (1m1.17)
The modified version of von Neumann’s law leads to the same result. Thus
by itself, von Neumann’s law predicts the asymptotic linear scaling of the

froth. Alternative derivation of the growth exponent from the hypothesis of

a scaling state have been given by Mullins and Weaire and Kermode.173:242

However, von Neumann’s law is not a complete description of the dynam-
ics of a froth. It describes only the growth of bubbles with fixed numbers of
sides. During the evolution of a froth bubbles typically change their number
of sides many times. In particular, whenever a bubble disappears some of
its neighbors change their number of sides. Since average bubble area can
only increase when bubbles disappear, von Neumann’s law cannot provide
a complete description of the coarsening process. Any complete description
of the evolution of the soap froth must make additional assumptions about
how éide redistribution takes place. Such information can only come from

direct experimental observations of real froths.



CHAPTER IV
BUBBLES-EXPERIMENTAL

IV.a Experimental Procedure

Several groups have collected experimental data on the two dimensional
soap froth. Smith made the first studies using low pressure air in a sealed
cell circular glass cell and applied vigorous shaking to produce an initially
disordered froth with a few hundred bubbles and a bubble diameter of be-
tween one and two millimeters. Coarsening from this length scale to the
size of the container required approximately two hours.2%® He photographed
the cell periodically during coarsening. With this data Smith measured the
rate of area growth with time and Aboav the evolving distribution func-
tions of the froth.® Fisher and Fullman preformed a similar experiment in a
medium pressure sealed container and independently measured the rate of
bubble growth.8¢ More recently Weaire and Fu studied the evolution of a
froth using very small air bubbles in a cell made from microscope slides and
photographed under a microscope.®3 Typical coarsening times for their froth
were four or five hours. They were particularly interested in experimentally
verifying von Neumann’s Law. Glazier, Gross and Stavans collected more

complete data on the soap froth in a series of experiments which we describe

in detail below.93,94,220

Glazier, Gross and Stavans used a series of large rectangular experimental
cells. These were made of plexiglass and sized to be slightly smaller than
either an 8%” x 11” or 8%” x 14” piece of paper. The vertical spacing was

42
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either 1/8” or 1/16”. Catheters inserted through holes drilled in the spacer

allowed filling and draining. A thick coat of epoxy sealed the joints.

They used a soap solution consisting, of water (approximately 85% by
volume), Dawn brand liquid detergent (approximately 10%) and glycerol
(approximately 5%). While they did not attempt to control carefully the
mixing of the fluid, their results were apparently independent of the exact
fluid composition. However, they found that certain solutions (surprisingly
those containing a higher percentage of soap and glycerol) had a higher rate

of side breakage than others.

In different runs they used bubbles either of helium or air, helium froths
evolving roughly five times faster than air froths, but being otherwise similar.
In no case did they observe any evidence of leakage of the working gas from

the cell.

Since they were interested only in the long term behavior of the forth,
neither Smith nor Fullman made any effort to control the uniformity of their
initial bubble pattern. Indeed, the method of froth generation they em-
ployed always resulted in highly irregular patterns with broad area and side
distributions. Glazier, Gross and Stavans, on the other hand were particu-
larly interested in the transition from ordered to disordered patterns. They
therefore developed two basic methods to fill the cell with froth. In the first
method, which they used to obtain very uniform fills of small bubbles, they
completely filled the cell with soap solution, then tipped the cell on its edge

and slowly injected gas bubbles at the bottom of the fluid, draining excess
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fluid through a catheter at the bottom of the cell. The variation in the size
of the injected bubbles determined the initial degree of disorder in the froth.
They found that because of the long fill times (approximately ten minutes),
the top portion of the froth was significantly more developed than the bottom
at the nominal beginning of the experiment, which made early portions of
the time series more difficult to interpret. In the second method, they filled
the cell only about 10% full and injected the gas through one of the filling
catheters just below the surface of the soap solution. This allowed them to
control the size and uniformity of the bubbles both by varying the injection
pressure and the angle of the cell relative to the vertical. The advantage of
this method was that they could fill the cell more quickly, but it was more

difficult to obtain very uniform or very small bubbles.

When necessary they "annealed” the froth by injecting excess fluid and
gently tipping the cell to remove obvious irregularities, then draining the
excess fluid (their failure to measure the volume of fluid remaining in the
cell makes it difficult to provide quantitative estimates of the role of Plateau
border broadening), injected a small amount of ink and sealed the catheters
with corks and vacuum grease. The ink made the Plateau borders, the
thickened region of fluid between the membranes and the walls (see Fig. 8),
easily visible. To make measurements, they placed the prepared cell level on
a photocopier and copied periodically at intervals depending on the rate of
evolution (intervals of 15 minutes at early times and 12 or 24 hours at long

times). The photocopier has several advantages over photographic recording.



Fig. 8 Plateau Border: Top view of the region where three soap films
meet. The films’ top surfaces are in contact with a flat glass plate. The
wetting of the fluid on the glass sucks excess fluid onto the glass, resulting in
the broad lines seen. A similar effect thickens the line where the films meet,
which seen from above produces the central triangle. The films themselves
are thin, and can be seen to be well centered within the Plateau border

(Redrawn from Lewis 1949).147
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It is simple, much less expensive, and has an intrinsically high contrast ratio.

It also produces a large image with correct absolute lengths.

It is important to realize that both photographs and photocopies show
the Plateau borders and not the soap membranes themselves. One cannot
easily observe the actual position of the soap films nor whether they are
curved in the vertical direction. However, examination with a microscope of
untinted soap films suggests that the films are both well centered and flat,

as seen in Fig. 8.

Glazier, Gross and Stavans used a Xerox model 4000 photocopier which
provided relatively low contrast.?4 Stavans and Glazier, and Glazier et al.
employed a Mita Model DC-1255 photocopier,93'22° ‘a scanning type which
provided much better quality copies, but heated the cell signiﬁca.ntlsr during
each copy. While the duration of heating was short, and thus should not have
significantly affected the dynamics of the froth, it did result in occasional wall
breakage. The total number of walls broken during a run represented less
than .1% of the total side redistribution, but nevertheless may have resulted

in slightly greater numbers of very many-sided bubble.

IV.b Digitization

Many of the results described for the soap froth were obtained by direct
hand counting from photocopies or photographs. Fu, and Glazier Gross
and Stavans essentially followed the procedures established by Smith and

Aboav, though for area measurements Glazier Gross and Stavans had the
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advantage of using a digitizing tablet, a technique also employed by Kreines
and Fradkov.13! Problems with hand digitization include its extreme tedium

and large inaccuracies. However, its intrinsic resolution can be very good.

Glazier et al. relied on direct digitization of 30% samples of their photo-
copies using a camera type digitizer with a resolution of 600 x 500 pixels for
much of their Potts model and distribution function analysis, editing the dig-
itize& images by hand to remove obvious defects in the digitization. Raster
images were converted into grains using a standard “worm” technique, each
pixel being assigned to a separately numbered grain for analysis. The image
quality of their camera digitizer was sufficient that it produced very few spu-
rious bubbles or broken lines (fewer than 2%). The resolution of the digitizer
was sufficient to represent a few thousand bubbles with a typical size of 10
x 10 pixels. One advantage of this type of digitization was that the digitized
images could serve directly as initial conditions for Potts model simulations,
one pixel in the image corresponding to one spin in the model. A disadvan-
tage was that the relatively small image area gave rather poor statistics at

long times.
IV.c Basic Experimental Resultis

IV.c.s Qualstative Description of Coarsening

Let us first look at the qualitative features of the evolution of a soap
froth. We distinguish three basic patterns of evolution, that evolving from

an initially well ordered state, that evolving from an initially disordered state,



Fig. 9 Evolution of a Soap Froth: Coarsening of a two dimensional
soap froth. Illustrations show 15% details of the total area of the experimen-
tal cell. (a) The left side shows an initially well ordered run in Helium gas
(initial disorder 8(0) = 0.17). Times for the figures: (A) ¢t = 1 hour, (B)
t = 2.52 hours, (C) t = 4.82 hours, (D) ¢t = 8.63 hours, (E) ¢ = 19.87 hours,
(F) t = 52.33 hours. Letters are keyed to Fig. 16 (d) (b) The right side
shows an initially disordered run in air (initial disorder 8(0) = 0.85. Times
for the figures: (A’) t = 1.95 hours, (C’) ¢t = 21.50 hours, (F’) t = 166.15
hours. Letters are keyed to Fig. 16 (f). The final states are essentially

indistinguishable (From Glazier, Gross and Stavans 1987).94
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Fig. 10 Evolution of a Soap Froth Evolution of an air soap froth
with artificially broadened initial distribution functions. Lettered times cor-
respond to regimes in Fig. 16. The illustrated areas represent 5% of the

total experimental cell area (From Stavans and Glazier 1989).220
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and that evolving from an initial state with an artificially large distribution

of initial sizes.

Fig. 9 (a) presents details (corresponding to 15% of total area) of photo-
copies taken by Glazier, Gross and Stavans of an initially ordered run (with

initial disorder to be defined later, 8(0) = 0.17)
We may qualitatively distinguish these figures as follows:

(A) The bubble lattice is essentially ordered, being composed of hexag-
onal crystal grains with defects consisting of five- and seven-sided bubbles
at the grain boundaries. All bubbles are essentially the same size. Most are
six-sided. A few are five- or seven-sided. The rate of evolution is slow (See

Fig. 16 (d)).

(B) The grain boundaries become visibly marked as five-sided bubbles
shrink and seven-sided bubbles grow. However six-sided bubbles do not
evolve. The number of bubbles with n # 6 increases, as does the rate of

evolution.

(C) The grain boundaries grow into patches of disorder which eat away at

the ordered regions. The ordered and disordered regions occupy essentially

equal areas. The normalized width of the area distribution ( <<5:>> ) is

maximal. Many-sided bubbles are common as there is a large probability for

a large bubble to be surrounded by much smaller bubbles.

(D) The ordered regions have almost entirely disappeared. The width of

the normalized area distribution and the rate of evolution begin to decrease.
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The number of many-sided bubbles decreases. The fraction of five-sided bub-
bles, p(5), increases monotonically, while the fraction of six-sided bubbles,

p(6), decreases. See Fig. 33.

(E), (F) Long term states. The evolution rate is essentially constant.
There are almost no three-sided bubbles and many-sided bubbles are rare.
However, the fraction of bubbles with more than seven sides, p(n), n > 7,

increases slowly.

For large initial disorder. (89 = 0.85), we observe a simpler pattern of

evolution. We present detail photos of such a run in Fig. 9 (b).

(A’) The lattice is relatively disordered but not in a long term scaling

state. The rate of evolution increases monotonically (See Fig. 16 (f)).

(C’) The lattice coarsens and the width of the distribution functions
first decreases slightly as the system overshoots equilibrium, then increases
to its final equilibrium value. The rate of evolution continues to increase

monotonically to its final value without overshoot.
(F’) Long term state. The state is indistinguishable from (E) and (F).

For an artificially broadened area distribution, including both well or-
dered and completely disordered patches, we again observe a monotonic
equilibration (Fig. 10).

(A”) Initial condition. Many small bubbles with a few very large bubbles

with very many sides.
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(C”) The large bubbles gradually lose sides to the advantage of their

neighbors. The relative area of many sided bubbles decreases.

(F”) Long term states. Except for the presence of one eleven-sided bub-

ble, the state is indistinguishable from (E), (F) and (F’).

IV.c.tt von Neumann’s Law: Ezperiment

Fu, Glazier, Gross and Stavans, and Glazier et al. have made experi-
mental measurements of von Neumann’s law.85:93%4 Fu measured areas by
cutting out the individual bubbles from his photographs and weighing them,
an extremely tedious procedure that limited him to small samples. Glazier,
Gross and Stavans and Glazier et al. made their measurements using a digitiz-
ing tablet (marginally less tedious), following around the edge of the bubble
and selecting a few key points to digitize. For example a seven-sided bubble
might have been digitized as fourteen- or twenty one-sided polygon depend-
ing on the degree of curvature of its sides. The digitization was repeated
either three or six times for each bubble and the results averaged together

to obtain an estimate for the bubble area.

This method had several disadvantages. The most serious problem was
the difficulty of making repeated accurate measurements by hand. The typ-
ical variation in area estimates for a single bubble could be as high as 5%.
Especially for images taken late in a run when the Plateau borders were
broad, it was difficult to find the centers of the Plateau borders to obtain

the correct perimeter. Enlarging the image increased the error from both



TABLE 3
VON NEUMANN'’S LAW

da, /dt System
Helium®¢ Helium® Helium®*

n | 0.817 (hours) 11.1 (hours) | 38.23 (hours)

3 - -8.

4 - -1.21 -1.28 -5.28 -0.41

5 -0.59 -0.50 -0.70 -3.04 -0.41

6 0.00 0.00 0.00 0.08 0.005

7 0.71 0.67 0.47 1.39 0.38

8 0.89 1.28 1.04 4.13 0.74

9 - - 1.82 5.28 1.18
10 - - - 8.42 1.29
11 - - - 24.47 1.88
12 - - - 18.97 -
14 - - - 31.18 -
18 - - - 19.93 -
17 - - - 28.78 -
21 - - - 25.18
22 - - - 47.59 -
24 - - - 37.52 -
25 - - - 35.00 -
36 - - - 23.01 -
66 - - - 46.54 -
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Fig. 11 Von Neumann’s Law. Growth rates for n-sided helium
bubbles at (A) ¢ = 1.82 hours, (B) ¢ = 12.10 hours and (C) t = 39.23 hours,
for the run given in Fig. 16 (d). Results are consistent with von Neumann’s
law with x = 4.57 x 1072+ 3.8 x 1073 %“;;— at all times. Error bars indicate
the variation in x among individual n-sided bubbles at 95% certainty (From

Glazier, Gross and Stavans 1987).%4
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Fig. 12 Von Neumann’s Law. Growth rates for n-sided air bubbles.
The result is consistent with von Neumann’s law for n up to 24. Error bars
show one standard deviation. Single points indicate that only one measure-

ment was made for that number of sides (From Glazier et al. 1989).%3
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effects, and working with larger bubbles made the problem worse, since von
Neumann’s law predicts absolute not relative changes in area. Finally, the
measured area depended on the number of points used in the approximating
polygon and the exact position where they were set down, thus system-
atically underestimating the size of bubbles with fewer than six sides and

overestimating the size of bubbles with more than six sides.

Measurements made over the longest possible time intervals, i.e. mea-
suring the area of a bubble just after (and again just before) it changed its
numbér of sides, minimize these errors. Large statistical samples reduce the
random noise introduced by hand measurement. In the case of bubbles with
three or more than ten sides, however, the rarity of the types limited Glazier
et al.’s sample size to at most a few (sometimes only one) bubbles. Mea-
surements of six-sided bubbles were easier because of the tendency of such
bubbles to clump together at early times during a run. Treating a clump of
six-sided bubbles as one many-sided bubble greatly reduced the measurement
error. The essentially straight walls of six-sided bubbles further improved ac-

curacy in this case.

In Table 3 and Figs. 11 and 12 we present experimental measurements
of von Neumann’s law by Fu, Glazier, Gross and Stavans, and Glazier et al..
Fig. 11 shows a series of measurements made by Glazier, Gross and Stavans
in helium at different times during the same experimental run, and shows
that the area diffusion constant « (the slope of the line through each set of

points) remained constant to within 5% during the period of the measure-
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ments. 12 shows Glazier et al.’s results taken at a single time from an air
system in which a large range of bubbles sizes and hence number of sides were
purposely introduced, providing information on the growth rates of bubbles
with up to twenty sides, although not in a scaling state nor with any great
statistical accuracy. The indicated error bars in the measured values of ‘%ﬂ-
at least partially represent real fluctuations in bubble growth rates. For ex-
ample, some seven-sided bubbles do shrink. However, much of the scatter
is probably due to measurement error rather than intrinsic fluctuations in
growth rates. The calculated value of k depends on the details like the cell
thickness and the amount of fluid in the froth, so we neglect it. What is im-
portant is the linearity of the measured growth rates in n and the constancy

of the diffusion constant in time for a given run.

All three groups obtained the expected linear relation between n and ;‘ftn.
for bubbles with between five and roughly fifteen sides. Three- and four-sided
bubbles shrink slightly more slowly than expected and bubbles with more
than about fifteen sides perhaps grow slightly more slowly than expected.
The deviation for few-sided bubbles may be due to the stabilizing effect of
the Plateau borders on very small bubbles. It may also be due to the devi-
ations observed in the internal angles of few-sided bubbles discussed below.
The slow growth rate of many-sided bubbles may be due partially to angle

- deviations but since this cannot result in a saturation, merely a reduction in

the slope of the n dependence, its origin is not completely explained.

Since it is not possible to produce an experimental cell large enough to
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generate a twenty-sided bubble in a scaling state, Glazier et al. made the ob-
servations quoted above for many-sided bubbles using froths with artificially

introduced many-sided bubbles.

Experimentally Stavans and Glazier observed (Fig. 10) that many-sided
bubbles tend to lose sides continuously in time.220 Mathematically, we may

start from equation III.15:

dN kp(n)N(n — 6)
dat 2 An<a> @ (IIL.13)

n=3,4,6
the number of bubbles lost per unit time. If the total area of the experimental

cell is A, then < a >= A/N so

d<a> _ xp(n)(n — 6)
dt n——;i 5 An ’ )
<a) ( 5 _u(__)) ‘e 0
n=3,4,5 n :

where ag is the average area at the start of the experiment. Substituting

approximate experimental values for p(n) and A, we find
< a >= a9 + 0.8xt. (Iv.3)
On the other hand, an n-sided bubble will have area
Ap = Ay(0) + (n—6)nt (Iv.4)
The ratio is

lim Ap(0) + (n — 6)xt

=1.25-(n —6). V.5
o ap + 0.8kt 25 (n —6) (Iv.5)




Fig. 13 Internal Angles in the Soap Froth. Average internal angles
versus n for n-sided bubbles. Note that angles are smaller than 120° for few-
sided bubbles and larger for many-sided bubbles so that bubbles are more
polygonal than expected. Error bars show one standard deviation of the
measurement. Ten bubbles were measured for small n, fewer for large n

(From Stavans and Glazier 1989).220



6 (n)

130

110

100




Fig. 14 Modified Von Neumann’s Law. Growth rates for n-sided
bubbles predicted by von Neumann’s Law using the measured angle devi-
ations in Fig. 13 (boxes) and ideal von Neumann’s Law (solid line). The
large error in the measured value of 6(3), means that we cannot tell if small

bubbles shrink slower than a liner law would predict.
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Fig. 15 Area Growth in Soap Froths. (A) Average area versus
time in a low pressure two dimensional air froth (From Smith 1952).208 (B)
Number of bubbles (equivalent to normalized average area) versus time in a
medium pressure two dimensional air froth. Circles are experimental data,

x’s Fullman’s vertex model (From Fullman 1952).86
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Fig. 16 Area Growth in Soap Froths. Disorder parameter and
number of bubbles in a fixed area cell (equivalent to average area) versus
time for increasingly disordered initial conditions, (a) 8(0) = 0.04 + 0.02,
a = 0.63 + 0.03 (Helium 1/16” cell thickness), (b) 8(0) = 0.08 +0.01, a =
0.50+0.01 (Heiium 1/8” cell thickness), (c) 8(0) = 0.11+0.02, @ = 0.50+0.04
(Air 1/8” cell thickness), (d) 8(0) = 0.17+0.04, « = 0.68+0.03 (Helium 1/8”
cell thickness), (e) 3(0) = 0.33 +0.01, a = 0.53 + 0.01 (Helium 1/16” cell
thickness), (f) 8(0) = 0.85 +0.05, « = 0.81 + 0.08 (Air 1/8” cell thickness).
Errors are at 90% certainty. Capital letters in (d) and (f) indicate times
referred to in the text and in Fig. 9. Dots are experimental values. Solid lines
and values of  are best fits computed from the phenomenological model of
Glazier, Gross and Stavans.?* Dashed lines are the disorder, 8, as calculated
from the model. Initial times are offset to 1 hour. For initially ordered
conditions the rate of evolution overshoots its long term value, while for
initially disordered conditions, the rate increases monotonically. In both

cases the long term states obey a power law, N o« t~%, where, a = 0.59+0.11

(From Glazier, Gross and Stavans 1987).9¢
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Fig. 17 Area Growth in Soap Froths. Average area (in pixels)
versus time for a two dimensional air froth in a large cell. Dots are experi-
mental data. Circles are values from a Potts model simulation starting from

identical initial conditions (From Glazier et al. 1989) 93
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Thus many-sided bubbles should equilibrate slowly, on a timescale of order

An(0

= In the absence of side shedding this relation would predict that the

average relative areas of n-sided bubbles would be proportional to (n — 6)
which is non-sensical. The equilibration will happen much faster if the rate
of side shedding is large. Unfortunately, no one has ever measured the mean
rate of side shedding to check these hypotheses. Thompson and Frost have

given an alternative argument for the equilibration of a froth.229

Stavans and Glazier also measured the average internal angle of an n-
sided bubble, 8(n) by enlarging each vertex, bisecting the Plateau borders
near the vertex, and measuring the internal angles with a protractor. Once
again, their chief source of error was finding the true position of the centers

of the Plateau borders.

In Fig. 13 we present their measurements of the average internal angles
for the same run shown in the von Neumann’s law calculation in Fig. 13.
They found small but significant deviations from the expected 120° angles.
In particular, the average wall curvature of all bubbles was smaller in mag-
nitude, i.e. bubbles were more polygonal, than expected. In Fig. 14 we
show the modified von Neumann’s law obtained from these values of 6(n)
and the linear predictions of the ordinary von Neumann’s Law. Within the
experimental error we cannot distinguish the two results, though the modi-
fied law predicts a smaller absolute rate of growth than the unmodified. The
apparent rate of shrinkage of few-sided bubbles is smaller than predicted by

a pure linear fit, as observed by Glazier et al.
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IV.c.i18 Quantstative Kinetics

We can begin to make our qualitative ideas about disordering and grain
growth more precise by measuring the average area per bubble as a function
of time, < a > or < A >. Such measurements have been made in two
distinct ways. Fullman, and Glazier Gross and Stavans hand counted the
number of bubbles in the experimental cell which were not in contact with
the cell walls and used the total area of the interior of the froth to obtain the
average bubble size.86:94 Smith, Aboav, and Glazier et al. measured bubble
areas directly, either by weighing cut outs from photographs or by digitizing

the ima.ges.s"‘;’a’zo6

We present results for average bubble area versus time in Fig. 15 (A)
(Smith’s results), Fig. 15 (B) (Fullman’s results), Fig. 16 (Glazier, Gross
and Stavan’s results, converted back into the number of bubbles needed to
cover the experimental cell completely), and Fig. 17. (Glazier et al.’s results
obtained by direct digitization of a 30% sample of an air run). The letters
in Fig. 16 (d) and (f) key to the regimes of evolution presented in Fig. 9. In
Fig. 17 the slight non-monotonicity results from the fact that large bubbles
are more likely to touch the frame boundary and hence to be excluded from

the ensemble.

These quantitative measurements confirm division of the evolution into
distinct regimes. For an initially ordered froth we observe a period of slow
growth, followed by a period of equilibration during which the average area

per bubble increases roughly exponentially, and finally a scaling regime dur-



TABLE 4

GROWTH EXPONENTS

Experiment Two Dim. Three Dim.
Group I System a a
~ Soap Froths
Smith38 Froth 1 -
Fischer®® 1 -
Aboav? 2 -
Glasier and Stavans®* 0.59 +0.11 -
Glasier et al.?3 1 -
Lipid Monolayers
Metal Grains
Moore et al.1%9 stearic acid 1.10£0.10 -
Lead
Bolling and Winegard®3 Pb 10™° Pure - 0.8 + 0.08
Pb + 0.005% Ag - 0.96
Pb + 0.01% Ag - 0.96
Pb + 0.02% Ag - 1.04
Pb + 0.04% Ag - 1.14
Pb + 0.005% Au - 1.12
Pb + 0.02% Au - 1.20
Drolet and Galbois®® Ultra Pure - 0.82
Tin
Holmes and Winegard!?? 10~% Pure - 1.00 £ 0.02
Drolet and Galbois?*® Ultra Pure - 0.86
Aluminum
Gordon?%0 Ultra Pure - 0.5
Beck et al.2%! High Purity
400° C - 0.18
600° C - 0.64
Al + 2% Mg
400° C - 0.34
600° C - 0.90
Al + .6% Mg
550° C - 0.3
650° C - 0.68
Beck3 Pure
350° C - 0.112
600° C - 0.644
® Near Melting” - 1
Fradkov et al.393 Al +10~* Mg Foil 1 -
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TABLE 4, continued
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Experiment Two Dim. Three Dim.
T _—
Group System a a
Metal Grains
a-Brass
Beck and Burke35? 70:30 - 0.4
Beck?* Ultra Pure - 1
Commercial - 0.4
Fullman®® 450° C - 0.42
. 850° C - 0.6
Beck34 High Purity 0.8
Burke?® 500° C - 0.7
850° C - 1
Fullman®® 500° C - 0.70
850° C - 1.2
Iron
Miller?! Carbon Steel
815° C - 0.16
1250° C - 0.44
Hu292 Ultra Pure Fe - 0.80
Ceramics
Dutta and Sprigs3%3 InO - 0.66
Kapadia and Liepold?%¢ MgO - 1
Gordon et al.3%8 - 0.66
Petrovic and Ristic3® Ccdo - 0.66
Tien and Subbaro3%” Ca.16Zr.5401.34 - 0.8
Kingery and Frangois?®® Lifo - 0.66



TABLE 4, continued

Theory Two Dim. Three Dim.
=m—
Group System a o
Mean Field Theories
Burke and Turnbull*3 Radius Based 1 1
Hillert!® 1 1
Feltham35° 1 1
Mulling!73:173 1 1
Rhines and Craig3% - 1
Louat?53 1 -
Novikov!83 0.91 -
Hunderi and Ryum?!!2 1 -
Hunderi and Ryum!4 0.77 £ 0.3 -
Mullins??3 Topological 1 -
Marderi? 1 -
Boundary Models
Frost et al.%3 1 -
Vertex Models
Fullman®® 1 -
Enamoto et al.3%1 1 -
Weaire and Kermode?43,:343 2 -
Network Models
Fradkov et al.”® 1 -
Beenakker37:3¢ 1 -
Potts Models
Anderson et al.1® 0.83 -
Wejchert et al 340 Initial Voronoi 0.84 £ 0.06 -
Initial Hard Sphere 0.98 4 0.06 -
Anderson ¢t al1¢ Q=36 0.87 -
Q=48 0.90 -
Q=64 0.94 -
Anderson et al.13:18 0.98 +0.04 0.96 + 0.12

78



79
ing which < a > increases as a power law. For an initially disordered froth
we find a monotonic increase in growth rate until it reaches the equilibrium
power law. We have not measured growth rates for an artificially broad-
ened initial distribution, but we expect that the growth rate will decrease
monotonically to its equilibrium value, as observed in simulations of Frost
and Thompson.8% Smith and Fullman both begin with disordered states and

obtain < a >~ t at all times.86,206

While finite size effects may well be important in the latter stages of
pattern evolution, the range of rollover points from equilibrating to scaling
behavior observed (ranging from 1000 bubbles for Fig. 16 (a) and (d) to
100 bubbles in Fig. 16 (c)) suggests that the transition between these two
regimes is not an edge effect. To further control for edge effects .Glazier,
Gross and Stavans counted the number of bubbles touching the lateral walls
of the cell (edge bubbles) as a function of time. If the average area of a
bubble in contact with the edge were a constant times the average area of
a bubble in the bulk, we would expect N.4g, x b:ﬁk' This would be the
case if the edge behaved as a non-interacting window on an infinite cell or
as an infinite network of hexagonal bubbles. In either case the result would
suggest that edge effects were insignificant. They found N g4g, o Ng)ﬁg:to.u

which was consistent with either hypothesis.

In the scaling state the coarsening of the froth may be described by a scal-
ing exponent, o, < a(t) >o t*. Smith and Fullman both measured @ = 1 but

with relatively few bubbles. Aboav, reanalyzing Smith’s data found a = 28
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Glazier, Gross and Stavans obtained a value of a = 0.59(1'8:(% , Where the

scaling exponent was determined using an indirect method discussed below.
Finally, Glazier et al., working in a larger experimental cell, obtained results
consistent with, though not conclusively demonstrating, « = 1. Observa-
tions of coarsening in thin film and bulk metals, alloys and ceramics have
yielded a similar variety of exponents, though non-von Neumann factors like
impurity pinning and three dimensional effects complicate the interpretation.
In general we find that higher impurity concentrations lead to lower growth
exponents as impurities zone refine to grain boundaries and act as pinning
centers which eventually reduce boundary mobilities to zero. Some impuri-
ties (e.g. Au in Pb), however, apparently enhance grain boundary mobility
or grain coalescence, and thus increase the growth exponent. Higher tem-
peratures nearly always result in higher growth exponents since they reduce
grain freezing due to anisotropy and other pinning effects. In two dimen-
sions, preferential etching or oxidation at grain boundaries can also reduce
boundary mobilities and growth exponents. Measured exponents in bulk and
thin films, metals, alloys and ceramics are all comparable. We summarize a
few selected experimental measurements and theoretical predictions of the
scaling exponent in Table 4. Where the original result was presented for the
average radius rather than the average area, the quoted value of « is twice
the radius exponent. This approximation is correct in the case of a scaling
state. Three dimensional results are given for two dimensional sections of

three dimensional volumes.
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Summarizing: most experimental coarsening has 0.3 < a < 1 and the
majority of models give a = 1. We observe experimental results close to the
theoretical values for a, only when the experiment is carefully controlled, a
large experimental cell and many bubbles in the soap froth, high tempera-
tures and pure materials in grain growth. At short times and for initially well
ordered conditions the transient during which a soap froth equilibrates re-
sults in a larger apparent exponent measured by Glazier, Gross and Stavans,
hence Aboav’s measurement of a growth exponent of two (we will discuss
later the reasons we believe that Aboav measured an equilibrating rather
than a scaling state). At very long times in the froth, we suspect that the
effective diffusion constant of the soap films decreases due to broadening of
the Plateau borders, hence the smaller apparent exponent. In grain growth
we have mentioned a variety of effects that can lead to smaller long term
exponents and even the complete cessation of coarsening. The most impor-
tant of these mechanisms are impurity segregation due to local zone refining
resulting in pinning of grain boundaries (an effect which can be observed in
a correctly designed soap froth experiment) and pinning of grain boundaries
due to strong orientational anisotropies in surface energies (which can be

duplicated in Potts model simulations).

The essential unanimity of the theoretical predictions of the growth expo-

nent, and the experimental uncertainties in measuring it,



TABLE §
PLATEAU BORDER BROADENING

Time (hours)

0.00
11.08
56.43

139.08
490.45

0.393 £ 0.028
0.430 + 0.027
0.475 £ 0.019
0.512 £+ 0.028
0.590 £ 0.034

Run 2
Time (hours) Width(mm)

0.00 0.309 £ 0.019

2.50 0.313 £ 0.018

18.47 0.312 £ 0.024

42.75 0.313 + 0.024

74.20 0.394 + 0.037

258.08 0.602 + 0.031
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Fig. 18 Plateau Border Broadening. Plateau border widths versus

time for two air runs. Run 1 (circles). Run 2 (squares).
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suggest that a better test of the agreement between theory and experiment is
the theory’s ability to duplicate the observed transient behaviors for initially

ordered and initially disordered patterns.
IV.d Other Topics

IV.d.i Broadening of Plateau Borders

Glazier, Gross and Stavans originally proposed that the anomalous ex-
ponent they observed in the two dimensional soap froth resulted from the
failure of the froth to reach a scaling state.?* Later work has demonstra.téd
that their froths did reach a well behaved scaling state.?3:220 Others have sug-
gested that boundary effects play a role when many bubbles are in contact
with the walls of the experimental cell.137:200 However, the experiments of
Smith, and Fullman showed no such anomalous exponent though they worked
with even fewer bubbles.86:206 The Potts model simulations of Glazier et al.
did show a boundary effect glitch in the long time tail of the simulation (See
Fig. 17), just where the experiment showed a sudden decrease in growth rate,
but this similarity may be fortuitous.?3 One possible source of the difference
is that Glazier, Gross and Stavans used a rectangular cell, while Smith and
Fullman used a round cell. A later experiment by Glazier et al. in a larger
cell where edge effects should have been less important was consistent with

an exponent of a = 1.

The observation of anomalously low growth exponents is common in met-

als, where initially well dispersed impurities gradually segregate to the grain
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boundaries and reduce boundary mobility and hence slow (or even stop)
grain growth. Inversely, the presence of impurities which increase bound-
ary mobility can result in growth exponents larger than 1.24 In a froth the
equivalent to a decreased boundary mobility is a decreased diffusion con-
stant of the soap films. While changes in the chemical structure of the films
as they age are possible, it seems more likely that any decrease in diffusion
constant is due to the increase of the amount of fluid per unit length of soap
film in the sealed cell, as bubbles disappear and the total length of the soap
film -decreases. Film thickening per se is probably not too important since
the thickness of the soap films depends on the competition between van der
Waals attractive forces and electrical double layer forces between the lipid
monolayers on the surface of the film,17% and since the Plateau borders take
up most of the excess fluid.220 However, even a small amount of film thick-

ening would result in a large decrease in diffusion constant.

An additional experimental problem is that we have no techniques to
measure the film thickness directly during a coarsening run. The Plateau
border width can be measured directly. Since we might expect that the
film thickness would increase with the widths of the Plateau borders which
indicate the amount of excess fluid present in the froth, a measurement of
Plateau border broadening cannot hope to separate the two effects defini-
tively. Of course, if we could measure the von Neumann x accurately as
a function of time we could check the constancy of the diffusion constant

directly, and correct our models without recourse to physical explanations.
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Against the diffusion constant explanation lies Glazier, Gross and Sta-
vans’ measurement of the constancy of the von Neumann & discussed in the
previous section. The helium run in question, however, gave a growth expo-
nent of & = 0.68 and would have given a still larger exponent (nearly 1) if the
data had been cut at the time of the last diffusion constant measurement.
There is thus no real evidence for the constancy of x in the tail of the time

evolution where the anomalous growth rates occurred.

Determining the fraction of the soap film obstructed by the Plateau bor-
ders was not straightforward. Glazier could measure only the widths of the
borders, not their vertical extent, and even measuring the widths from the
experimental photocopies proved unreliable, because the changes in width
during the experiment were comparable to the uncertainties in the widths
in the copies. In particular, the photocopier proved to be anisotropic in its
treatment of lines. Some orientations produced smooth well defined lines,
and some irregular lines with great variations in line width. Examination
of an actual froth with a magnifying glass showed that this was indeed an
artifact of the photocopies and not an exotic wetting effect of the plexiglass.
He therefore measured only lines oriented within 30° of the axis giving the
smoothest line profiles. We present the results for two air runs in an %” cell
in Table 5 and Fig. 18. In the first run the width of the Plateau borders

doubled during the run, in the second the increase was approximately 50%.

If we assume that the vertical extent of a Plateau border is roughly one

half its horizontal extent we obtain the following results (A larger wetting



88
angle would result in a relatively larger obstructed area and hence in an effect
of greater magnitude). In the first run the fraction of the film obstructed by
the Plateau Borders ranged from approximately 12.4% at the beginning of
the run to 18.7% at the end. The growth exponent for this run was o = 0.81.
In the second run the obstructed fraction grew from 9.9% at the beginning of
the run to 19.0% at the end. The growth exponent for this run was a = 0.50.
The Plateau border width in the second run did not increase significantly
until the number of bubbles decreased to fewer than two hundred. The
fact that a lower exponent corresponds to a larger percentage increase in
obstructed area is suggestive but hardly conclusive. Even more suggestive
was the exponent of nearly one obtained by Glazier et al. in a much larger cell
which showed little Plateau border broadening. Also favoring Plateau border
broadening 'is the difference in average exponent between cells with a height
of 1/8” (a = 0.71) and 1/16” (o = 0.58). We would expect that Plateau
border broadening, but not film thickening, would have a larger effect in a

thinner cell.

To obtain a definitive measure of the growth exponent in the soap froth,
we need to repeat the grain growth measurement in a drained cell where the

width of the Plateau borders, and hence the film thickness, is held constant.

IV.d.s¢ Disappearance of Four- and Five-Sided Bubbles

Many of the models we will discuss require the enumeration of the differ-
ent fundamental processes by which a bubble can change its number of sides.

In particular, they depend on the rate of side swapping (T'1 processes) and
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the rate at which three-, four- and five-sided bubbles disappear. Smith, in
his original article, claimed that only three-sided bubbles could disappear di-
rectly, and that four- and five-sided bubbles always shed sides as they shrank
to become three-sided when they were very small.2% Glazier, Gross and Sta-
vans, on the other hand, claimed that 50% of four-sided bubbles and 10% of
five-sided bubbles disappeared directly.? Later Stavans and Glazier revised
their estimate for the rate of direct disappearance by five-sided bubbles to
24%.220 Fy also observed direct disappearance, though he did not publish
estimates for the relevant rates.3% A theoretical study by Weaire supports
the contention that arbitrarily small four- and five-sided bubbles may be sta-
ble against side shedding.237 However, the distinction may be more a matter
of deﬁﬁtion than a true physical difference. Very small bubbles are sensi-
tive to the thickness of the cell and are hence no longer two dimensional
in their properties. In particular, when a cylindrical bubble disappears, it
first pinches off on the bottom plate (where the Plateau borders are broader
due to gravity) to form a conical bubble, and then shrinks rapidly before
disappearing on the top plate. Since Smith took his photographs from the
top, he recorded the disappearance of the conical bubble, while Glazier et
al. photocopying from below, recorded the initial separation. Since the con-
ical bubbles behave in a manner qualitatively different from the ensemble of

cylindrical bubbles, the latter definition seems more sensible.



CHAPTER V
THEORY OF COARSENING

The range of model types that have been used to simulate grain growth
is extremely large. Broad categories include pure phenomenological models,
pure statistical models, mean field theories, "exact” vertex and boundary
evolution models, and Potts model simulations. All have been successful to
varying degrees. An important division exists between models that attempt
to predict equilibrium distribution functions based on purely statistical or
geometrical considerations and dynamical models which focus primarily on
grain growth rates, though they may supply information on distribution
functions as well. We will first examine static models and then move on to

the many categories of dynamic simulation.

V.a Static Models

The construction of pure geometric models based on random partitions
of the plane, and attempts to determine their properties analytically, have
amused geometers for at least two hundred years.34:52,90,164,245 T} elegance
of some of the solutions and the complicated analytic geometry of others is
impressive in its own right, but these models also have some claim to be con-
sidered as models for grain growth (in the case of nucleation they can work
very well). In addition, the exact solutions of the properties of these mod-
els provide an extremely useful baseline for comparison to experiment and
less rigorous simulations. Especially for the Voronoi type models there are

90
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many analytic results for area and side distributions and correlations which
are difficult or impossible to obtain for more complicated constructions.164
Perhaps, the simplest approach to modeling the soap froth is to examine the
statistical properties of its long term state considered as a fixed polygonal
lattice. Taking this idea to an extreme we might study the regular hexago-
nal honeycomb as a model of the froth. Such a model is not very useful for

studies of coarsening, but as we noted above, it gives useful results in studies

of foam rheology.

V.a.s Voronot Type Models

Slightly more realistic models must take into account the fundamental
disorder of the froth and attempt to duplicate it geometrically. Most simply
we may throw down a set of points at random locations with some average
density, and assign to each point that subset of the plane which is closer to
it than to any other point, a process known as the Voronoi Construction
(see Fig. 27 (A)).34:52:88,89,90,151,245,254 Thijs construction subdivides the
plane into a unique network of polygons with straight sides and vertices
with codrdination number three, but with a range of vertex angles and a very
broad area distribution. In nucleation, this model corresponds to throwing
down a set of nucleation centers at a fixed time and growing a circular domain
from each at a fixed rate. The area distributions can be regularized by
establishing an excluded volume during seeding, so that the initial particles
are separated by a minimum distance (see Fig. 24 (A)). This narrows both

the area and number-of-sides distributions, and results in angles more nearly



Fig. 19 Glass Models. (A) Triangle raft. (B) Triangle-Line raft (From
Shackelford 1982).204






Fig. 20 Dual Lattice. Sample of a two dimensional soap froth (solid
lines) with the triangular dual lattice (dashed lines) indicated. Points replace
bubbles, and dashed lines between points replace edges between neighbors

(From Kikuchi 1956).121
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120°. The resulting pattern looks more like a real froth but still has non-120°

angles and too narrow a side distribution.30

The fundamental problem with models of this sort is that they freeze
in large scale inhomogeneities present in the seed pattern which would be
rapidly relaxed in a real froth. We can approximate this relaxation geomet-
rically by iteratively performing the Voronoi construction and moving each
nucleation center to a new position at the center of its polygon until we reach

an invariant pattern. This is known as a relaxed Voronoi construction.19

A third approach is to seed continuously but randomly in time in the "un-
crystallized area” while growing uniformly (the Johnson-Mehl model),
again producing a more irregular pattern than that observed in experiments,
but which can be regularized using an excluded volume or relaxation.164
Frost and Thompson have studied extensively,80 the effects of changing the
rates and types of nucleation and relaxation on the final distributions. In no

case do they find the observed experimental dominance of five-sided bubbles,

but the range of distributions they obtain is impressive.

One place where Voronoi networks are useful is to generate initial con-
ditions for sixhulations. In this case, any initial stresses equilibrate quickly,
and the patterns are sufficiently random to converge rapidly to a scaling
state. Both Frost and Thompson and Anderson et al. have discussed the

consequences of the choice of initial conditions.30:15

An additional application of the Voronoi construction in two dimensions

is to determine adjacencies when the widths of the boundaries between
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bubbles are comparable to the bubble size as happens in magnetic and lipid
monolayer froths. In this case the Voronoi construction applied starting with

the centers of each bubble, gives a unique assignment of areas and neighbors.

We also mention briefly a class of glass models originally proposed by
Zachariasen.204:256,258 We place equilateral triangles successively with ver-
tices touching and without overlap, in a clockwise spiral around a seed tri-
angle. At each step we randomly choose a number between four and eight
and attempt to build a closed ring with that number of links. Since not all
target rings sizes are possible at any given time we obtain a nontrivial side
distribution function for the number of triangles per ring (See Tables 7 and
8 and Fig. 19 (A)). Shackelford also proposed an extended model which gave
a narrower side distribution by allowing the use of lines as well as triangles,
a line being inserted if it would a) close a loop with six or more triangles
which had its target number of sides or more, and b) have a length between
one and two times the length of a triangle edge (See Tables 7 and 8 and Fig.
19 (B)).

V.a.&t Mazimum Entropy Models

We may extend our geometrical models a little more (as we did by in-
trodpcing relaxation), by considering the final distribution to be the limit
of a repetitively applied geometrical process. Kikuchi looked for the most
probable network configuration based on independent weighting of configu-
rations in the dual lattice (the pure triangular lattice obtained by replacing

each bubble by a point at its center, and each edge by a line connecting
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the centers of the neighbors (See Fig. 20).!2! In his first model (Kikuchi
I) he assumed that the bubble centers lay on a regular triangular lattice
and calculated the relative frequency of nearest neighbor and next nearest
neighbor links which gave the largest number of possible configurations, i.e.
the highest entropy. Then he calculated the distribution functions for this
most probable state. In his second model (Kikuchi II) he allowed vacancies
in his triangular lattice and third nearest neighbor links, again calculating
the most probable state and its distribution functions (See Tables 7 and 8).
Weaire has used a similar argument employing the probabilities of various
topological transforms on a lattice to obtain the nearest neighbor number of

sides correlation for an equilibrated froth (See Table 11).134:135

We can be slightly more sophisticated and try to guess the constraints on
a topological lattice. If the constraints are correctly chosen, then in statistical
equilibrium, the actual distribution functions should be such as to maximize
the distribution function’s entropy subject to those constraints, for uaﬁple
the first three or four moments of the distribution functions.50:115:116,139 The
difficulty in this ”Maximum Entropy” method is to choose the constraints

correctly.

Rivier has championed maximum entropy models and done extensive
analyses to predict the soap froth’s distribution functions.!%® He solves the
joint distribution function p(n, A) to maximize the entropy,

= - Z p(n, A) log(p(n, 4)) (v.1)

nA
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subject to the constraints that < n >= 6, that < a > is known, and that
that either Lewis’ law for areas, < A, > n, or the radius law, < r, >x n
(where < r, > is the average radius of an n-sided bubble) applies. The
two predictions of interest are that the area distribution function will decay
exponentially,

p(A) o exp 14, (V.2)

where ) is a fitting parameter, or, defining a’ = log(T‘:)-),
p(a") = log(a') exp™® . (V.3)
The number of sides distribution takes the form
p(n) = e(n — ¢;) exp™ ™", ©(Va4)

where 4 and ¢ are fitting parameters, and ¢; is a constant taken from Lewis’

Law (described in section VILa).

Almeida and Iglesias have done the same thing adding a bulk energy,
proportional to bubble area.l0 This has the peculiar effect of making < a,, >
roll over rapidly in n so that many-sided bubbles all have the same area, and
p(n) is monotonically decreasing in n. A later paper by the same authors
instead assumes that the average side length of bubbles is uniform and,
taking the second moment of the side distribution as a parameter, obtains

acceptable results for p(n) and < ay, > (See Tables 7, 8 and 11).11

V.b A Phenomenological Model
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Another approach is to discard microscopic considerations entirely and
to try to model the disordering process directly, considering only its salient
physical features. Such an approach cannot hope to predict the growth
exponent in the scaling regime, but it can provide a check on how well we
understand the froth’s approach to equilibrium. Based on the observations
that disordered regions eat away at islands of hexagons from the edges, and
that the long term rate of area growth is a power law in time, Glazier, Gross

and Stavans wrote the following phenomenological model.%4

They divided the population of bubbles into two classes, the bubbles in
ordered regions and the bubbles in disordered regions, denoting the number
of bubbles in each class by O(t) and D(t) respectively, with the total number
of bubbles, N(t) = O(t) + D(t). They next assumed that ordered bubbles
did not evolve but were converted into disordered bubbles at a rate propor-
tional to the total contact area between order and disorder (making use of
the experimental observation that ordered patches were stable except where
they were eaten away by disorder from their edges). To lowest order, assum-
ing random distributions, contact area is proportional to Do'((t?'-i-%((t't))' which

implies:
i(l(ﬂ _ O(t) - D(¢t)

& - o)+ D) (V.5)

where x; is a constant to be determined and represents the rate at which

disorder diffuses into ordered patches.

They also assumed that the rate of disappearance of bubbles in disordered

regions was independent of O(t) and was uniform in ¢, since experimentally
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they obtained nearly power law behavior for the area atlong times, when the
system appeared completely disordered, i.e., N(t) & t~. These assumptions
yield an equation for D(t) including terms for the conversion of order to

disorder and for power law dissipation:

aD(t) _ . O(t) - D(t)
dt o) +D()
where a = Fé_f While both O(t) and D(t) are abstract quantities, since

— k2 D(t), (V.6)

O(t) in particular is not simple to measure (there are six-sided bubbles in
disordered regions as well as ordered regions), combining them produces a
quantitative measure of the system disorder which we can then compare to

other possible measures, the Disorder
D(t)

°= 6+ DO

(v.7)

The parameter @ runs from zero for a perfect hexagonal lattice, to one for
an equilibrated froth in a power law scaling state. Thus its time evolution
provides information about the transition from order to disorder. It has
significant advantages over most other measures of disorder since it can be
computed from N(t) directly without calculating the distribution functions.
It is also an intrinsically averaged quantity, much less sensitive to small
fluctuations than high order moments and therefore is usable in smaller scale
systems. Glazier, Gross and Stavans calculated 3 by fitting N(0), 8, x1, 2
and 3(0) to give a minimal least squares error against the experimental N(t),
but 8, x; and N(0) can all be measured independently.

We present Glazier, Gross and Stavans’ values for 8@ in Fig. 16 (dashed

lines). For initially ordered runs, Fig. 16 (a)-(e), @ behaved as expected,
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increasing smoothly to 1, and reaching its final value where the experimental
value of N(t) rolled over into a power law. For the initially disordered run
shown in Fig. 16 (f), the rate of conversion from order to disorder was slower
than the rate of loss of disorder, and @ decreased slightly before increasing
to one at the rollover. While Glazier, Gross and Stavans originally dismissed
this decrease as an artifact of the model, Stavans and Glazier have since
shown that it accurately reflects the disordering of the pattern.220 We will
return to this point in our discussion of the moments of the distribution

functions. As expected, & was small for apparently well ordered conditions,

e.g. %g; < 0.1 and large for disordered conditions, e.g. %{%} > 1.0.

In Fig. 16 we also show Glazier, Gross and Stavans’ fits for N (t) (solid
lines). The fits yielded a value of § = 2.7 £ 0.3 corresponding to a =
0.59(1’8:(1);). We believe that their error estimate was rather optimistic be-
cause of the systematic boundary effects we have discussed, but it did ac-
curately reflect the numerical range in the estimate of the exponent. The
typical error of their fits for N(t) was better than 3%, and the maximum
observed error was 5%. In the two runs with the most complete time series,
Fig. 16 (d) and Fig. 16 (f), the apparent power law behavior held over a
full decade, so the deviation in exponent from a = 1 was not due simply
to noisy measurements. The excellent quantitative agreement between the
behavior of the model and the experiment, with a perfect matching of the
transient over a wide range of initial disorders strongly suggests that the

model contains most of the essential physics of the transition.
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V.c Radius Based Mean Field Theories

The term mean field theory is a broad one and we will discuss three sep-
arate categories, roughly in their historical order of development: dynamic
theories based solely on the distribution of grain radii, theories based on
both area and side distributions, and semi-exact models which keep track
of the structure of the topological network defined by the dual lattice. In
our discussion we will examine the predicted growth exponents and ability

to duplicate transients as indicators of the reasonableness of the theory.

Many of the models we present in this section emphasize simplicity at
the expense of much of the basic physics of grain growth. Historically, part
of the difficulty developing an adequate theory of coarsening was the focus
on grain growth in metals, in which it was impossible to measure the key
parameter, namely how the growth rate of a grain depended on its size and
geometry. It was therefore a common practice to start with an experimental
result (like a distribution function) and to work backwards to determine the
basic dynamical laws. In the absence of experimental checks on the dynam-
ics this procedure allowed essentially any result to be obtained. Another
result of the focus on metals was a general neglect of geometrical factors
which were hard to measure. Models tended to assume the proverbial spher-
ical cow, neglecting transients and equilibration processes, and frequently,
for good measure, invoking log-normal area distributions. Since von Neu-
mann showed that it is the number of sides a grain has and not its size that

determines the grain’s growth rate, it is somewhat surprising that radius
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based models work at all. What saves them is the strong correlation be-
tween number of sides and grain (or bubble) area. One decided advantage
of radius based models is that they are independent of dimension, giving
useful results for bulk grain growth, when the absence of an equivalent to
von Neumann’s law in three dimensions makes it difficult to develop more
sophisticated models. Additionally the success of radius based theories in
explaining Ostwald ripening (the growth of widely separated grains interact-
ing with a gas) suggests that these theories may be more relevant to the case

of liquid-gas phase transitions than they are to coarsening of froths.117:231

In our discussion we will consider only the mathematical formalism of
these theories, not the elaborate attempts to evaluate the various physical
parameters such as activation and surface energies and temperature depen-

dencies, which were of specific interest in metallurgical applications.

V.c.t Burke and Turnbull: a Zeroth Order Model

In a long review, primarily concerned with microscopic properties of
metal grains, Burke and Turnbull,#? discussed the coarsening dynamics of
metal grains, drawing a specific analogy to the evolution of a soap froth.
Their analysis neglected all interactions between grains which they consid-
ered as circular or spherical, so it certainly qualifies as a mean field theory.
They assumed, based on both microscopic energy considerations and surface
tension arguments, that for any grain, the rate of boundary migration was,

|4
v= lw';a (V.8)
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where p is a temperature dependent mobility, o a surface energy, p the
integrated radius of curvature, and V the atomic volume. This is just a
scalar form of equation (III.8). Assuming that all these constants were indeed
constant, that the radius of curvature was proportional to the grain radius,
r, and that the change in average grain diameter was proportional to the

rate of boundary migration, they obtained

dr &
—_——=— V.9

d r’ (V-9)
where « is a diffusion constant. Integrating this differential equation (which
is essentially equivalent to the second term in the phenomenological model

presented previously), produced

< a(t) >= /rt + ag. (V.10)

So for long times a = 1. The analysis is completely independent of whether
the grain growth occurs in two or three dimensions. Burke and Turnbull
noted agreement with scaling measurements in a two dimensional soap fréth
by Fullman,8® and rather optimistically concluded ?The fact that < r >«
t1/2 indicates that the geometrical analysis is essentially correct.” They then
suggested several mechanisms to explain the observed deviations from this
scaling law in real metal systems. Unfortunately, as shown in the section on
von Neumann’s law, any mean field theory must yield a long term scaling

exponent of one, so the agreement with experiment was fortuitous.173:174

Rhines and Craig took a view similar to that presented in the phenomeno-

logical model above,1%4 looking at coarsening as the progressive elimination
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of individual grains with average area < a >. They derived the dynamics of

their equation by assuming a bubble like diffusive motion of grain boundaries,
1 1

v =pAP = p(— + —), (V.11)
p1 P2

which meant that the change in volume per unit time of a grain was

av
- = V.
i uMS, (V.12)

where, M is the grain’s integrated curvature and S the grain’s surface area.
They next cited as an experimental fact that the product, MS = X, was pro-
portional to the length scale in any given experiment, and defined a sweep
constant, ©, the number of grains lost per unit distance of boundary mo-
tion. There has been some debate as to whether this choice of sweep constant
was correct, but for our purpose we need only note that in a scaling state it
must scale inversely with length scale.58:111:195 Swallowing ©, x and T into
a single rate constant x they concluded that the number of grains in a given

volume goes as
d1

1

putting in the initial condition N(0) = Ny. Again we obtain a = 1 at long

times in three dimensions.

V.c.ss Diffusional Radial Mean Field Theorses

The most obvious defect with the Burke and Turnbull and Rhines and
Craig models is their inability to predict radius or area distribution functions.

Several authors have proposed models which address directly the mean field
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evolution of the area distribution. The basic formalism of these models is
the same. Consider the distribution function of radii, p(r). The evolution of

this function may be described in terms of a probability current,

dp(r)
or

j(r)=-D + p(r)v(r), (V.14)

where the first term describes diffusional processes tending to broaden the
distribution function and the second deterministic evolution, D being a dif-
fusion constant and v(r) the growth rate as a function of radius. As we shall
see later, when applied to a distribution function including number of sides
as well as areas, this probability current formalism is completely appropriate
to a correct mean field theory of froth coarsening. The difficulty in this case
is that there is no simple way to reduce diffusion in the number of sides distri-
bution to diffusion in area distribution. Assuming the appropriateness of this
current, the continuity equation gives the time evolution of the distribution

as:

a,;(tr) - _32(:) - % (D%(:)_) - %(p(r)v(r)). (V.15)

We are now free to speculate on various values for D and v(r). We note that

this is the basic structure of the famous Lifschitz-Slyozov model for Ostwald

ripening. 148,149

V.c.t58 Deterministic Models

We first consider models that neglect the diffusive term in the evolution
equation (i.e. set D = 0). In essence these models neglect the possibility that

a grain can gain or lose sides in time. One can either hypothesize a form for
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v(r) and solve for the area distribution or vice versa. Feltham hypothesized

a log normal limiting distribution of areas

2

"'} (V.16)

<r>

1 1
== —]—=1
p(r) = —exp{-| iy
and applied an areal approximation to von Neumann’s law to obtain the

result that for a given grain:

). (V.17)

Assuming self similar distributions, he then obtained the unsurprising re-
sult that < @ >o ¢.%4 Hunderi and Ryum solved v(r) for several different

proposed area distributions.112:113,114

" Hillert began with our equation (II.8), assuming the basic relation that

interface velocity is proportional to the curvature driven pressure difference:106

v=puAP = ua(-l— + -1—), (V.18)
1 P2

where the p; are the principle radii of curvature. He then assumed that
small grains shrink and large grains grow. Since many sided grains tend
to be large this was not too unreasonable an assumption. In this case he

proposed a specific relation between grain curvature and grain size, of

v(r) « (;c%;t- - -}‘-), (V.19)

where r.,; is the average radius of a grain in two dimensions (derived by
working backwards from von Neumann’s Law!) and an experimentally de-

termined parameter in three dimensions. Substituting he obtained

dr 1 1
—pefm = V.20
L o) (v.20)
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which, assuming equilibrated distribution functions yielded the expected <
a >o t. He also made a detailed prediction for the area distributions using
the Lifschitz-Slyozov method. Letting r' = ;:T‘ he found

ér' —26

o) = (20 - e P (V.21)

where § is the dimension.

Kirchner has applied a similar argument to obtain the size distribution

function for lens shaped (two-sided) grains growing in grain boundaries.122

Thompson has also extended the model to include anisotropy and pinning

effects to study the growth of free grains in a medium.227

Hunderi and Ryum set up a radius based model of this sort in three

dimensions, which explicitly considered grain-grain interactions.112114 where
dr; K 1 1
=D Y 4y, (v.22)
dt r;2 'm,nz , g r;

where A;; = 7rmin(r,-2,r_,-2) is the contact area between grains. They as-
signed grain contacts by position in the index list rather than by looking at
a neﬁork topology, so this is a pure mean field theory rather than a network
model. In their first paper they obtained a scaling exponent of a = 1 but

later revised their figure to a = 0.76 & 0.04.
Novikov produced a closely related interaction model.183 He discretized
the radius distributions (bin width A, r; = A - {, N; =number of grains

in bin 1), and assumed completely random attachments and constant grain
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boundary mobility. As before

1 1
AP;j = 20(;’; - p_.')' (V.23)

However, he used a different, nonsymmetric contact area:

N/ V.24
Aij = 4(ri +1r;)% (V24

So the change in radius from any one contact between class ¢ and class j

was:
dr; 211
—=2a—————§———. V.25
dt 4(r; + r_.’-) (pj p,') ( )

As in the phenomenological model, the number of contacts between class ¢

and class j is

N7 = "'"—;v L (V.26)
where k; is a normalization to make the total areas come out consistent.
This yields

(V.27)

where k, is the averaged renormalization constant. Finally, summing over

classes, yields a master equation:

—1 . =2 ;
dN; — dN;? dN;_{’
i Sk e (V-28)
j=1 j=1

—[outscatter down] + [inscatter up]

& = dt
I=1+1 =142

—|outscatter up) + [inscatter down].
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Novikov solved the master equation using a montecarlo method and deleting
downscattered grains in class 1. Depending on the absolute length scale of
his initial conditions he obtained either a = 0.792 + 0.016 or & = 0.720 +
0.01, suggesting some problems in reaching complete convergence. Using the
same model with two values of grain boundary mobility he has measured
the distribution functions and exponents for anomalous grain growth, and
he has also studied boundary pinning using a damped equation for boundary
motion:
dr; 1 1

where F is a pinning force.184

Abbruzzese and Liicke have examined the effects of defect pinning®?®
and anisotropy* on models of this type. For normal grain growth they have
compared the theoretical predictions for experimental values obtained in thin

sheets of iron alloy, with reasonable success.

Beenakker has also written a radius based mean field theory, which began
with von Neumann’s law,2% but then made an ad hoc assumption that the
free energies of individual grains were minimized, resulting in a nonlinearly
increasing dependence of < a,, > on n. The model has the peculiar property
that the area distribution broadens to a width of 3.2 and then narrows again

to a width of 0.25. The long term growth exponent is o = 1.

V.c.tv Diffusive Models

An alternative approach is due to Louat, whose two dimensional analysis
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began by noticing that von Neumann’s law held only on average experimentally.1%2
He proposed that the rate of side swapping could be regarded as so large
that the von Neumann’s law component of the distribution function evolu-

tion could be completely neglected. He therefore wrote the basic evolution

equation as:

dp(r) _ 8%(r)
o = D= (V.30)

Assuming that there are no zero sized or infinite sized grains, the resulting
evolution is:

__r2/4Dt)’ (V.31)

p(r,t) = crexp (W
where ¢ fixed the mean area at the starting time. As expected, a = 1.
A time or scale dependent diffusion constant (like that hypothesised for the
soap froth, and observed in impure metals) leads to a variety of other growth

laws.

V.d Topological Mean Field Theories

The simplest approach to a model which includes topological transfor-
mations as well as von Neumann’s law, is to neglect spatial structure entirely
and treat the system as homogeneous and completely described by its dis-
tribution functions. Hillert proposed a model basically of this type looking
at the spread of topological charge as a series of defect climbs, but he did
not develop the model to any great extent nor did he derive equilibrium

distribution functions.43:108



Fig. 21 Elementary Topological Processes. (a) Side Swapping or
T1 process. (b) Disappearance of a three-sided bubble or T'2(3) process. (c)
Disappearance of a four-sided bubble or T'2(4) process. (d) Disappearance
of a five-sided bubble or T'2(5) process. (e) Wall breakage next to an n-sided
bubble, Break(n). Numbers are keyed to Table 6.



2
T
4
IS
3

123
4

o
k)
2
4

T2(4) )

A
bexe

—
{ et
e
-
L=
(M
S
a

114



TABLE 6
SCATTERING PROCESSES

Change Bubble Number
Process 1 2 3 4
T1 +1 -1 +1 -1
T2(3) -1 -1 | -1 | -
T2(4) -1 0 | -1 o
T2(5) -1 1| -1 | o
Break(n) +n—4 -1 -1 -

115
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Blanc, Carnal and Mocellin appear to have been the first to apply a topo-
logical mean field theory (they used only the number of side distribution) to
grain growth.30:48 We originally attempted such a mean field theory approach
using separate distribution functions for the number of sides and areas with
some qualitative but little quantitative success. This model was later refined

157

by Marder who employed a joint probability distribution p(n, A),"®’ and by

Beenakker.26:27,28

Any topological mean field theory for the soap froth starts with two
basic components, the dynamics given by von Neumann’s law, and a list
of fundamental processes, scattering processes if you like, which describe
the allowed changes in the distribution function. In general there can be
an arbitrary number of different scattering processes, but all the possible
behaviors of the soap froth can be described by five fundamental processes,

of which only four enter into the models we will discuss.

When shear stresses are present in the froth, a pair of adjacent bubbles
can be squeezed apart by another pair, as shown in Fig. 21 (a). This is
known as a T'1 process or side swappihg. In this case the two bubbles that
were neighbors each lose a side and the new adjacent bubbles each gain a
side. Topological charge, T = (n — 6) is conserved since the total number of

sides of the four bubbles before and after the swap is the same.

The disappearance of a bubble, a T2 process, also results in changes
to its neighbors’ number of sides. Topological charge is conserved in all

disappearances so once again the results depend only on the number of sides
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of the disappearing bubble. When a three-sided bubble disappears (Fig. 21
(b)) each of its neighbors loses a side. The equation for topological charge
is T = —8 = 3 x —~1. When a four-sided bubble disappears (Fig. 21 (c))
two of its neighbors stay the same and two lose a side. The equation for
topological chargeis T = —2 = 2 X —1 + 2 x 0. Finally, when a five-
sided bubble disappears (Fig. 21 (d)), one of its neighbors gains a side, two
stay the same and two lose sides. The equation for topological charge is

T=-1=1x14+2x0+2x—1.

Wall breakage (Fig. 21 (e)) is only a slightly different problem. When
a wall between an n-sided bubble and an m-sided bubble breaks, the result-
ing bubble has n + m — 4 sides and the two common neighbors each lose a
side. Thus there is a total loss of 6 sides and 1 bubble, preserving topolog-
ical charge. Note that wall breakage is the only mechanism that favors the
creation of many-sided bubbles. The T'1 process by itself is in equilibrium
with a slowly decreasing p(n) (See Table 7 under Fradkov oo) and bubble
disappearance results in exponential cutoff for large n. We may represent all
these relationships conveniently in a table (Table 6) which encodes all the
basic topological information about scattering in a connection number three

lattice.

While the rates for disappearances of bubbles are fixed by the distribution
functions and von Neumann’s law, side swapping and wall breakage depend
on different mechanisms and thus have rates independent of the basic froth

evolution. Experimentally we observe little side swapping at long times since
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the soap froth is soft and tends to eliminate stresses quickly and over short
range. Some side swapping does occur, however, in the immediate vicinity
of disappearing bubbles. Therefore some of the models discussed include
side swapping as an external parameter. None of the models considers wall
breakage, but that rate too could easily be included. One peculiarity of three
dimensional models that examine two dimensional sections is that they must
iﬁclude the creation of three-sided grains caused by the growth of a previously

unseen grain into the plane being examined.

V.d.i Pure Topological Theories

Blanc, Carnal and Mocellin have solved the equilibrium distribution func-
tion p(n) subject to three scattering processes, side swapping, three-sided

80,46 The presence of

bubble disappearance and three-sided bubble creation.
three-sided bubble creation makes this model appropriate to three dimen-
sions where three-sided bubbles can “nucleate” in a planar section as grow-
ing bubblesv come to intersect the section. They require two parameters to
specify their model, the proportion of three-sided bubbles p(3), and the rate
of side swapping. In their first paper they fixed the rate of three-sided bubble
creation and adjusted the rate of side swapping to achieve a target p(3). In
their second paper they kept the rate of side swapping as a free parameter

and adjusted the rate of three-sided bubble creation to achieve the target

p(3). The probability that a given T'1 process affects an n-sided grain (n
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restricted to be > 3) is just

(V.32)

The probability that a three-sided grain appears or disappears next to an

n-sided grain is not a priors defined. They choose to use the value

_ _n7(n)
'/’n == Zn n,y"_p(n) ’ (V'33)

where 4 is rather arbitrarily defined to be the solution to

o0 [o o] 1 (>}
+1 _ 2
E nT" p(n) = Z n7p(n) [7 + 3 Z(n -~ 6) p(n)] . (V.34)
n=3 n=3 n=3
They then solved for the equilibrium of the system using montecarlo tech-

niques. We present their results for no swapping and for a fixed rate of side
swapping in Tables 7 and 8. The parameter f is approximately the reciprocal

of the rate of T'1’s.

Kurtz and Carpay, in a paper chiefly devoted to three dimensional grain
growth considered a two dimensional topological mean field theory subject
to von Neumann’s Law.132 They took the distribution of grain areas in each

topological class to be a fixed log normal distribution,

'n— 'n 2
Plre) = oz, P (-fmogm2), vay

where < ry >= cln(25). This distribution is approximately correct for a

two dimensional section of a three dimensional froth, but is not a very good
description of a true two dimensional froth. They assumed everything else
was random and solved by montecarlo as above. We present their results
in Tables 7 and 8. They have also performed the entire calculation in three

dimensions.



Fig. 22 Average Area versus Time. (A) For Marder’s mean field
theory (From Marder 1987).157 (B) From Fradkov, Shvindlerman and Udler’s
network model (From Fradkov, Shvindlerman and Udler 1985).281 (C) Av-
erage radius versus time for Beenakker’s network model for ordered (O) and

disordered (D) initial conditions (From Beenakker 1988).262
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V.d.ss A Complete Mean Field Theory

Marder attempted a true mean field theory depending only on the evolu-
tion of the distribution functions. He built his model as follows: Let p(n, A4, 1)
be the joint distribution function, and g(n, A,t) = N(t) * p(n, 4,t). At any
given time each n-sided bubbles obeys von Neumann’s law, so it shifts the
distribution per unit time as

dg(na A) — %
d 8t

k(6 — n)g(n, A,t), (V.36)
where the diffusion constant « is now dimensionless. The change in number
of bubbles with area A and n sides is now just the result of von Neumann’s
law plus the probability that a bubble with area A and n+1 sides loses a side

or a bubble with area A and n — 1 sides gains a side minus the probability

that a bubble with area A and n sides either loses or gains a side, i.e.,

g?g(n, A) = 5825'-(6 - n)g(n) A, t)

n+1
S

—[u(4) + d(4)|5o(n, 4),

n—1

+u(A) g(n + 1, A) (v.37)

g(n - I:A) + d(A)

where S is the total number of sides (a bubble with more sides is more likely
to be chosen at random), u(A) is the probability that a bubble of area A

gains a side, and d(A) is the probability that a bubble of area A loses a side.

Marder next assumed that the smallest bubbles neighboring a disappear-

ing bubble tend to lose a side and the largest to gain a side. In this case

d(A) = d5(A) + dg(A) + d3(4), (V.38)
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where:

45(4) = wo(5, 051 A + 1 p)ZA)) (v

is the probability to be next to a disappearing five-sided bubble and smallest

or next smallest among the bubble’s neighbors.

14(4) = rg(6,041S2 1 (1 - p(a)

2
p*(4)
= (V.40)
is the probability to be next to a disappearing four-sided bubble and smallest

or next smallest among the bubble’s neighbors.
d3(A) = kg(3,0)3! (V.41)

is the probability to be next to a disappearing three-sided bubble. Similarly,

[1 - p(4)]*

u(A) = xg(5,0)5! 2l

(V.42),

is the probability that a bubble is next to a disappearing five-sided bubble
and is the largest. We present results from Marder’s direct solution of the
model in Table 7. Impressively for a model with no free parameters, Marder
obtained quite good quantitative agreement with actual experimental time
series for < a(t) > (see Fig. 22 (A)), including the correct transient behavior

for two different initially well ordered experimental runs.

If we assume that there is no correlation in side shedding we instead

obtain

3
u(4) = xg(5, o)szg +9(4, 0)4!§ +9(3,0)3!7 (V.43)

and

u(4) = fcg(S,O)S!-;-. (V.44)
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This last is essentially a discretized version of the equations used in early
work by Beenakker.28 Fradkov has also taken this approach and solved for

the equilibrium distributions retaining the rate of T'1’s as a free parameter.’4

V.e Evolution on a Network

Conceptually, the most satisfying approach to a mean field theory is
that of the topological network. This was originally described by Frad-
kov, Shvindlerman and Udler, and apparently rediscovered independently
by Beenakker?”:’® They model the froth as a connected network of bubbles
where each bubble is completely described by its area, number of sides and
list of neighbors. The mean field theory assumption is that side redistribu-
tion occurs randomly upon the disappearance of a bubble. The simulation
is then straightforward. Von Neumann’s law is applied to each bubble in
the network, and the first time at which any bubble disappears, calculated.
Next, the areas of all bubbles in the network are recalculated. The disap-
pearing bubble is then deleted, its neighbors have their numbers of sides
updated according to Table 6 and the list of neighbor connections is cor-
rected according to Fig. 21. Almost any function of interest, < a(t) >, side
and area distributions and correlations, etc., can be directly calculated from
the state of the network as it evolves in time. The only aspect of the froth
abandoned by the model is the deterministic redistribution of sides upon
bubble disappearance. We may also include wall breakage processes without

any detailed modifications.

Fradkov, Shvindlerman and Udler assumed direct disappearance of
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three-, four- and five-sided bubbles with no redistribution correlations and
included the rate of T'1 processes as an adjustable parameter to obtain a
family of side distributions.”®77 For non-zero rates of side swapping they
allowed the creation of two-sided bubbles. The greater the rate of T1’s the
lower the value of n at which the distribution peaked and the larger the value
of p(3) (See Table 7). They also observed the expected monotonic increase

in growth rate to equilibrium for initially disordered states (See Fig. 22 (B)).

Beenakker employed the same model setting the rate of T1’s to zero and
assuming no redistribution correlations. He obtained excellent results for
An and the area distributions (See Table 7). Particularly striking was his
observation of the characteristic features of both initially ordered growth
(slow, fast, equilibrium) and initially disordered growth (monotonic increase
to equilibrium rate), as well as the broadening and subsequent narrowing of

the side distribution for initially well ordered distributions (See Fig. 22 (C)).

V.f “Exact Models”

As we shall see in the next chapter, mean field theories can predict well
experimentally observed distribution functions. What they cannot do is
generate an actual image of an evolving froth. To produce such a real space
picture we must simulate the behavior of the froth directly as a combination
of soap films and diffusing gas (or in the next section, as an array of hopping
atoms). For want of a better term we call these “exact” models, though
they are by no means always exact. “Exact” models come in two types.

They either move the films and then adjust the vertex positions (boundary
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dynamic models), or adjust the position of the vertices and then recalculate
the positions of the soap films (vertex models). We begin by examining

boundary dynamic models.

V.e.t Boundary Dynamic Models

47,48 assumed a radius based dynamics, v = £, where

Ceppi and Nasello =

v is the velocity of a given boundary, and p its averaged curvature. They

then discretized to a lattice and defined the function

Fi®) = /C gy SN (V.45)

where f;(Z) is one inside the sth bubble and zero outside, and C(Z,a) is
a circle of radius a (in their paper, six lattice constants) centered at Z.
The boundary between bubble ¢ and bubble 7 was then given by solving
implicitly for the position that yielded F;(Z) = F;(Z). They claimed that
this evolution law was equivalent to the velocity relation with a time step
of At = a? /6u. Disappearing grains were eliminated from the list, and
boundary reconnection was taken care of automatically by the definition. We
show a typical example of the evolution they obtained in Fig. 23. Taking

iterations of the algorithm as equivalent to time, they obtained a = 1.

Frost, Thompson and their collaborators, in a long series of articles,’9:81,82,83,84,109,229

tried to duplicate the physical situation more realistically. They took equa-
tion (IIL8):

() = (@, (V.46)
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as their basic dynamics, and discretized by segmenting the boundary into
short, nearly flat sections represented by a point. The boundary segments
were then moved perpendicular to the boundary a distance vAt, to obey
the dynamical law. Vertices were separately adjusted to give 120° angles,
and radii of curvature calculated by local fitting of circular arcs. Boundary
points were added or removed as needed to minimize errors in the curvature
calculations., Side readjustments were made locally when vertices moved
too close together. In spite of the numerous opportunities for error in the
various discretizations, the model satisfied von Neumann’s law to within
3%, convincing evidence that it captured the basic dynamics correctly.80
It was straightforward to measure distribution functions and growth rates.
We present a typical pattern evolution from their model in Fig. 24. Since
the model stored only information describing the positions of boundaries
they could run extremely large simulations, to obtain @ = 1 over three
full decades for a variety of initial conditions. Unfortunately all of their
initial conditions were fully disordered so they were not able to observe the
disordering transient. One particularly attractive feature of this model is
that it is simple to include a whole variety of evolution equations once the
basic structure of the model has been established. Frost and Thompson
have considered anomalous grain growth (by locally increasing the boundary
mobility, ), continuous nucleation of new grains, and non-linear curvature

dependence ainong many other effects.



Fig. 23 Boundary Dynamic Grain Growth. (A) Initial Condition.
(B) After 5 iterations of the algorithm. (C) After 20 iterations. (D) After

40 iterations (From Ceppi and Nasello 1984).47
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Fig. 24 Boundary Dynamic Grain Growth. Grain growth in the
boundary dynamic model of Frost et al.. (A) Initial excluded volume Voronoi
construction. (B) ¢ = 0.5 diffusion times. (C) ¢ = 1.0 diffusion times. (D)
t = 3.0 diffusion times. (E) ¢t = 10.0 diffusion times. (F) ¢t = 30.0 diffusion

times (From Frost and Thompson 1988).260
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Fig. 25 Vertex Dynamic Grain Growth. Left hand side of each
column shows the evolution of an experimental two dimensional soap froth,
right hand side shows the evolution of a vertex model starting from identical
initial conditions. (A) (left) ¢ = 990 minutes. (A) (right) ¢ = 820 minutes.
(B) (left) ¢t = 1319 minutes. (B) (right) ¢ = 1236 minutes. (C) (left) ¢ =
1620 minutes. (C) (right) ¢ = 1652 minutes. (D) (left) ¢ = 2040 minutes.
(D) (right) ¢t = 2068 minutes. (E) (left) ¢ = 2690 minutes. (E) (right)
t = 2692 minutes. (F) (left) ¢ = 3525 minutes. (F) (right) ¢ = 3525 minutes.
Theoretical times were assigned by fitting N(¢t = 0) and N(tfina) (From

Fullman 1952).86
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Fig. 26 Vertex Dynamic Grain Growth. (A) Voronoi network
initial condition. (B) ¢t = 50 time steps. (C) t = 156 time steps. (D) ¢ = 300

time steps. (E) ¢ = 500 time steps (From Soares, Ferro and Fortes, 1985).210
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Fig. 27 Vertex Dynamic Grain Growth. Small samples of grain
growth in the vertex model of Kawasaki, Nagai and Nakashima. They begin
with a Voronoi lattice, N = 48,000. (A) ¢ = 5.0 montecarlo steps (MCS).
(B) t = 20 MCS. (C) t = 50 MCS (From Kawasaki, Nagai and Nakashima
1988).259 |
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V.e.is Vertex Dynamics

One appealing way to simplify the computatién of bubble evolution is to
treat the vertices as particles pulled by the grain boundaries. Such models
have the advantage of extreme simplicity, but are not in any obvious way
dependent on the real physics. We might expect them to work best in a
different limit, when the diffusion rate across the grain boundaries was large
compared to the rate of boundary motion. However, by choosing correctly
the dependence of the vertex motion on applied force, we can obtain reason-

able agreement with experiment.

The earliest example of a vertex model is that of Fullman (largely for-
gotten by later re:searchers).86 He treated interfaces as flat and defined the

force on a vertex j by

F; = e (V.47)
! ,;s lfi - Ejl’
neighbors

and the resulting velocity of the vertex by
|l
T e - F)F,

neighbors

- —
v; = F;

(V.48).

This effective mobility is a pretty good method to absorb an integrated wall
curvature into an angle deviation at the vertex. Fullman did not discuss his
tréa.tment of bubble disappearance or side swapping (he did all his calcula-
tions by hand! which limited the number of bubbles he could work with),
but it appears that he removed zero area bubbles directly, and swapped sides

whenever vertex pairs overlapped. With this model, starting with an actual
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soap bubble configuration, he was able to obtain good agreement both for the
rate of area growth (Fig. 15 (B)) and for the detailed geometrical evolution

of the froth (Fig. 25).

Soares, Ferro and Fortes also assumed that the froth behaves like a
damped network of springs, and that pressure and diffusion could be ne-
glected entirely.210 That is, they assumed that wall mobilities were much
greater than vertex mobilities. There is no reason a priors to expect that
this should be true in the soap froth. They further assumed that boundary

walls were flat, and the velocity of the tth vertex in the network given by

-

v; = uF; (V.49)

where u is the mobility of the vertex, and F; is the force on the vertex from
equation (V.47). They performed side swaps whenever a given line con-
necting vertices shrank below a cutoff length ly. Triangular cells with sides
smaller than lg were deleted and replaced with a single vertex at the mid
point of the triangle’s shortest edge. As with all "exact” models, calculat-
ing distribution functions, etc. was straightforward. We show their sample
evolution in Fig. 26, beginning with a Voronoi network and employing pe-
riodic boundary conditions. They obtained a value of o = 1.04 for the area
exponent.

Kawasaki, Nagai and Nakashima have developed a series of vertex based
models that include a realistic description of the energetics of the soap
films 82:118,119,179 yngtead of merely assuming a constant force dependent

velocity, they included an explicit velocity dependent damping term. Let
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7; be the position of the sth vertex and o be the surface tension. The free

energy of the whole network then is :
F=o) |-l (V.50)
1,J

7=

If v; is the velocity of the ith vertex and #i;; = F-?"T is the normal between
i1

vertex ¢ and vertex j, the dissipation is:

g - a - A — A
R=ct 2 Z (5 - A45)® + E (% - Ag5) (%5 - 45) |
¢ Mighl’zon(i) (covmu:t'a,i pairs)
(V.51)
where L sets the length scale of the pattern relative to the typical velocity.

In terms of ¥ and R the equation of motion for the sth vertex is given by:

¥ oOR
-3-7':,'. + -3_17_, =0. (V.52)

These equations are not soluble for large numbers of bubbles. They may,
however, be reduced to a soluble form by neglecting any anisotropy in the

dissipation to obtain a simplified equation for the motion of a vertex

1 — - | = F‘ - ;‘.
o X R-hli=- X = Medd (V)
j .
neighbora(s) neiahzoro(l')

Averaging over the nearest neighbor lengths on the left hand side reduces

the equation to an even simpler form:

=

1., i — 7y
A Z =1 Model II (V.54)

s —f
7, neighbors(s) I73

equivalent to the model of Soares, Fero and Fortes. Kawasaki, Nagai and

Nakashima treated swapping by setting any two vertices within a critical
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distance to be equivalent, and replacing small triangles with a single vertex
at the midpoint of the shortest side. They solved the equations by direct
integration. We show the typical evolution of their Model II in Fig. 27
in a configuration beginning with a 48,000 bubble Voronoi lattice. The
distributions were clearly much broader than in a real froth. Neither model
obeyed von Neumann’s law, with six-sided bubbles shrinking and few sided
bubbles shrinking much slower than expected. In later papers they drew on

the work of Fullman,!19 substituting the velocity dependence:

F; - /(5]
;= — V.55
! 2”:;1.3 , ?}:si;" 0,-1-’ ( )

where ;; is the angle to the jth vertex. They also tried a local vertex

)N A N
g s( """"’"gz , (V.56)

which gave more attractive distribution functions, with @ = 1, and obeyed

mobility®2

both the Aboav-Weaire Law, and the radius law that < r,, > n.

V.f.5t{ Other

Weaire and Kermode wrote a hybrid between a vertex and a boundary
dynamic model.?43:244 They used von Neumann’s law to adjust cell areas and
then relaxed the positions of the vertices to produce 120° angles connected
by minimal length circular arcs. They performed T'1’s whenever vertex re-
laxation would have caused crossings in the boundaries and deleted very

small three-, four-, and five-sided bubbles. They started their model with a
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randomized lattice using periodic boundary conditions. Unfortunately lim-
itations on the availability of computer time limited them to two hundred
initial bubbles. Probably because of the small size of the simulation, they
never seem to have reached a scaling state (their side distribution widened
continuously), and they observed a growth exponent of a = 2, typical of high
growth rate equilibration. It is difficult to believe that they would not have
obtained a = 1 for a larger system. They did obtain good fits to experimen-
tal correlation functions and were able to perform a variety of rheological

simulations.

V.g Potts Model

The vertex and boundary dynamic models we have been discussing arise
naturally from a consideration of the basic physics of a soap froth, in which
gas diffuses across well defined soap films. In a metal the grain boundaries
are just regions of high concentrations of defects and move by the hopping of
atoms between regions of different crystalline orientation. The Potts model
simulation takes a quasi-microscopic view of froth evolution. It was devel-
oped by metallurgists who found it natural to think of the interior of a grain
as being composed of a lattice of "atoms,” and the grain boundaries, as the
interface between different types (or orientations) of those "atoms.” Philo-
sophically this is as far as one can get from a mean field theory, but the
starting point is not too different. The mean field theories begin with von
Neumann'’s law, the Potts models with surface tension. The chief exponents

of the Potts model approach have been the Exxon group of Anderson, Grest,
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Sahni and Srolovitz who have published a monumental series of papers in-

vestigating every aspect of the model.12:15,16,93,99,100,202,215,216,217,218,219

We have mentioned in our discussion of von Neumann’s Law that the
basic driving force in a coarsening system is surface tension (or more gen-
erally surface energy) which creates pressure differences which result in gas
diffusion. The Potts model puts surface tension on a lattice by defining an
energy which is proportional to the total length of grain boundary in the

system.

Mathema.tica.lly we may do this by defining on each site of our lattice,
a spin O(i.5)» where all the lattice points lying within a given grain in our
initial configuration are assigned the same value of spin, with a different
spin for each grain. In practice to increase computational efficiency, we may
reuse spins, using a finite number Q of spins, but taking enough that the
probability of two grains with like spins coming in contact and coalescing
is small. will discuss below. The energy of interaction between like spins is
defined to be zero, and between unlike spins to be one. We may thus write
the total Hamiltonian for our spin system as:

=3 Y Soupomm—1s (V.57)

t,7 neighbors
N

where the range of the second sum will affect the nature of the interaction.
The spins are flipped using a montecarlo selection, where a spin is chosen
at random and flipped only if the flip would lower system energy. This

corresponds to the zero temperature limit, which is appropriate if we



Fig. 28 Potts Model Grain Boundary Migration. (A) Flat bound-
ary, second nearest neighbor interaction. All boundary spins have energy 3,
flips would increase energy to 5. (B) Curved boundary. Circled spins lose
energy by flipping (6 — 3). The 2 grain will grow at the expense of the 1

grain.
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Fig. 29 Potts Model Anisotropies. Energy per unit surface length as
a function of surface angle. (a) For nearest neighbor hexagonal lattice (From
Srolovitz et al. 1983).218 (b) For nearest neighbor square lattice. (c) For next
nearest neighbor square lattice. Labelled arrows show energy extrema and

values.






Fig. 30 Potts Model Anisotropy. Shrinking of an initially circular
grain in an hexagonal nearest neighbor Potts model simulation. Times from
outermost contour moving inwards are, t = 0, ¢ = 1200, ¢ = 2100, and
t = 3000 montecarlo steps. Some hexagonal anisotropy is evident at later

times (From Srolovitz et al. 1983).216
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Fig. 31 Potts Model Grain Growth. Grain Growth in the next near-
est neighbor Q = 48 Potts model starting with random initial conditions on a
periodic lattice. (A) ¢t = 4,000 montecarlo steps. (B) ¢t = 8,000 montecarlo
steps (C) ¢t = 12,000 montecarlo steps. (D) ¢ = 20,000 montecarlo steps

(Figure supplied by G. S. Grest 1989).
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Fig. 32 Potts Model Grain Growth. Comparison of two dimen-
sional soap froth (left) and next nearest neighbor square lattice Potts model
simulation starting from identical initial conditions (right). Areas shown are
30% details of the soap froth and the entire 600 x 500 Potts model simu-
lation. Note the missing walls along the lower boundary in the ¢ = 1640
minute image and the spurious two-sided bubbles in the ¢ = 559 minute and

t = 1119 minute images (From Glazier et al. 1989).93
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want to study relaxation processes rather than phase transitions (The tem-
perature remains a useful control parameter, however, for the analysis of

conditions where fluctuations are significant).

We may understand why this surface energy results in a von Neumann
like diffusion if we look closely at a region of grain boundary (Fig. 28). If
the boundary is straight (Fig. 28 (A)) there is no tendency for spins to flip,
since all spins border more of their own kind than of others. If a boundary
is curved (Fig. 28 (B)), however, spins on the convex side will tend to see
more of the opposing type and thus to flip. The result is that the boundary
recedes at a rate proportional to its curvature. The original version of this
argument was given by Plateau in his study of soap bubbles.189190 gince
the system attempts to minimize surface length the same factors that favor
120° angles at vertices are at work, so the rest of the von Neumann’s law
derivation follows. One difficulty with this argument is that a simple near-
est neighbor interaction on a square lattice results in a strongly anisotropic
surface energy (the ratio of lowest to highest surface energies as a function
of orientation is 1.41) which allows stable vertices deviating from the 120°
rule (See Fig. 29 (b)). As a result grain growth in a nearest neighbor square
lattice Potts model tends to gradually slow and finally stop altogether (as ob-
served in many real metals with a high anisotropy), rather than coarsening
continuously. One way to treat this problem is to work at a higher tem-

perature where fluctuations overcome anisotropy pinning (experimentally in

metals, higher temperatures result in larger growth exponents so this choice
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is reasonable in simulations of grain growth). However, the soap froth is
essentially fluctuation free, and therefore should be simulated in the zero
temperature limit. A better solution is to use a nearest neighbor hexagonal
lattice (Fig. 29 (a), energy ratio 1.15) or a next nearest neighbor square
lattice (Fig. 29 (c), energy ratio 1.13), to reduce pinning. There is still some
preferred boundary alignment in both cases, but no evidence of freezing.
Anderson et al. have checked the anisotropy effect in the hexagonal lattice
by tracking the evolution of an initially round grain (Fig. 30). It becomes

slightly hexagonal, but continues to shrink essentially uniformly.

A second difficulty with the Potts model grain growth simulation is the
range of length scales it requires. To successfully measure the scaling expo-
nent for the growth of average grain area, for example, the following relation

must hold:

Lpattice Spacing << LGrain Initial << LGrain Final << LLattice Sizes
(V.58)

i.e. each grain must contain many spins, the grains must grow a substantial
amount, and the final configuration must have many grains. This means
that for truly reliable results the lattice needs to be at least 1000 spins per
side. An insufficient appreciation of this problem lead to some confusion over
the actual scaling exponent of the model.18:83 In their most recent paper the
Exxon group obtained good agreement with von Neumann’s Law. While
they originally obtained a growth exponent of a = 0.76 possibly due to non-

equilibrium and anisotropy effects,202 they have since revised their estimate
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up to a = 0.98 +0.04.1% In the same paper they obtained a growth exponent

in three dimensions of a = 0.96 £+ 0.11.

It is, perhaps, not too surprising that the Potts model shows excellent
qualitative agreement with the coarsening of a soap froth. We show a simu-
lated evolution of an initially random distribution of 48 different spin types

(Q = 48) in Fig. 31.

In the case of the Potts model, we had the advantage of doing the simu-
lations ourselves and could therefore match the conditions of the experiment
and simulation more closely. We ran the simulation using a 600 x 500 square
lattice with open boundary conditions (in which spins on the boundary wére
assumed to interact with frozen impurities) employing the digitized image
at t = 2044 minutes as the initial state. As seen in Fig. 32, this time was
late enough that there were few islands of six-sided bubbles remaining from
the initial fill. We used a value of Q = 48 to minimize wall breakage without
unreasonably increasing the time required for the computation. To prevent
freezing of the domain boundaries at long times, we set the nearest and next
nearest neighbor coupling constants equal. The resulting anisotropy appears
as a preferential alignment of grain boundaries along 45° and 90° angles,
which does not appear in the triangle lattice. However, grain areas and
topological distribution functions appear to be independent of the lattice

type, for simulations in which the boundaries do not freeze.

In Fig. 32 we show the soap froth (30% detail) and the Potts model

at various stages of evolution, beginning with identical initial patterns. The
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qualitative features of the disordering are similar, though the differing bound-
ary conditions (the sample of the froth is taken from the bulk whereas the
simulation has open boundary conditions) result in a rapid divergence be-
tween the actual patterns. A clear example of the difference in boundary
conditions is the contact angle between the domain walls and the edges of
the cell. In the experiment, the boundary of the viewing window does not
affect the froth and the films can cross the boundary at an arbitrary angle.
In the simulation (and adjacent to the cell walls in the experiment) the an-
gle of contact is always close to 90°. The digitization can also result in the
appearance of spurious small bubbles near the image boundaries and occa~
sional wall breakage that they attempt to correct for in calculations. The
disappearance of residual order occurs in both systems at comparable length
scales (after approximately an one order of magnitude increase), and the
qualitative patterns remain comparable. At long times in the Potts model
grain boundaries appear to lie preferentially along 45° angles. This effect is
not seen in simulations on the triangular lattice and presumably reflects the

anisotropy remaining in the second nearest neighbor Hamiltonian.

In Fig. 17 we compare the average bubble size versus time for the froth
and the model. Since the initial condition of the model was taken from
the same digitized image used to measure the areas of the bubbles in the
froth, there was no freedom in assigning areas to bubbles. The multiplicative
constant relating real time to montecarlo steps is a free parameter, however.

If we believe the result that the soap froth does show a growth in average area
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slower than t at long times, we obtain from a least squares fit, ¢ (minutes)
= tm * .32 + 2044, where t,, is the number of montecarlo steps. In this
case we have essentially exact agreement between the froth and the model
up to 20,000 minutes where the statistics are best, after which the rate of
evolution of the soap froth slows noticeably. If we neglect the long term effect,
we obtain a best fit with ¢ (minutes) = t,, * .38, which gives agreement over
the whole time period within approximately 20%. In both cases the typical
dynamics for an initially ordered froth appear, slow initial evolution, followed
by rapid growth during which any residual order disappears, and a long term
tail with slower, approximately power law growth. We even obtain a purely
fortuitous agreement in the long time tails of the two areas, where the soap
froth and simulation both show non-monotonic changes in average area (at
the same time) due to the contact with the cell boundary (and hence loss

from the ensemble) of a large bubble.

Wejchert, Weaire and Kermode modeled the froth using a slightly dif-
ferent Potts model technique. They included von Neumann’s law explicitly
to control the dynamics in their calculations and used the hexagonal lat-
tice Potts model only to relax the grain boundaries. They therefore used a

different Hamiltonian,

1 A )
A= 2N E Z 6"(;'.:’):0(.-1,5:) -1+ I E (ax — ak)z, (V.59)
4y M“:"f"" cells k

where k indexes the bubbles, &; is the von Neumann'’s law determined target
area for the kth bubble, and X specifies the strength of the area constraint.

This Hamiltonian relaxes to the surface tension case with the constraint that
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each bubble has a fixed target area d;. The target areas were updated ac-
cording to von Neumann'’s law, %ﬁ = Kk(ny —6), at each time step. This had
the advantage over the Exxon model that even bubbles small relative to the
lattice constant properly obey von Neumann’s law, since they are not depen-
dent on statistical averaging along their walls, but the basic requirement of

a large lattice remains.

The Potts model has several significant points in its favor. First is sim-
plicity. Its one assumption is that wall energy is the only mechanism driving
coarsening. Redistribution of sides occurs automatically without making
further assumptions. T'1 processes are also automatically included with the
correct rate. Second, it can be easily extended to include grain coalescence
and wall breakage. If, instead of assigning a different spin to each grain, a
fixed number, @, of spins are used, then the probability of a broken wall
between two grains meeting as a result of a reorganization of the lattice is
just % Thus one can study in detail the effects of wall breakage on froth
evolution.}®217 Other straightforward extensions include three dimensional
lattices (limited by the availability of computer time to do 1000° monte-

8

carlo calculations),!® the consideration of pinning centers,1® orientational

anisotropies,1%0 and anomalous grain growth in which volume dependent

terms are added to the surface energy in the Hamiltonian.219

V.h Summary

We have examined seven basic types of models for coarsening in two

dimensions: static models, phenomenological models, radius based mean
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field theories, topological mean field and network models, boundary dynamic
models, vertex dynamic models, and the Potts model. We draw the follow-
ing conclusions about the physics of two dimensional coarsening. The phe-
nomenological model’s success shows that we understand the basic mech-
anism of disordering, that regions of homogeneous, unstable disorder eat
away at regions of stable order along the boundaries between the regions.
The ability of network models to reproduce the dependence of disordering
on initial disorder confirms our basic statistical assumption, that the dy-
namics is independent of any correlations in side shedding. The ability of
boundary dynamic models to predict both pattern evolution and dynam-
ics goes a step further, demonstrating that local wall length minimization
and the Ageometrica.l constraints of a codrdination number three network can
provide a complete description of two dimensional coarsening. Finally, the
Potts model extends our understanding to the microscopic level, proving that
purely local energy considerations at the “atomic” level can give rise to the

correct diffusive and geometrical laws.

In this limited respect our underst;nding of the universal dynamics of
two dimensional coarsening is complete. We have only hinted at the many
types of non-universal behavior, which would be of paramount importance in
any real application, because they are still poorly understood. We have also
neglected three dimensional coarsening, another problem of great practical

importance.



CHAPTER VI
DISTRIBUTION FUNCTIONS

In the next two chapters we examine in more detail the agreement be-
tween experiment and the predictions of the models discussed previously. We
focus on those properties which should distinguish among different classes of
systems. We examine, in particular, the distributions of number of sides and
area, and the correlation between area and number of sides and between the
number of sides of neighboring bubbles. Because of the large uncertainties
in the experimental measurements our conclusions will be indicative rather

than definitive.

Besides the mean bubble area, the two basic measures of the state of
a froth are the distribution of the number of sides, p(n), the probability a
randomly selected bubble has n sides, and the normalized area distribution,
p(A/ < a >), the probability that a bubble has an area which is a given
fraction of the mean bubble area. Such measurements have been made even
in systems for which the dynamics are not well studied. A typical example
is three dimensional grain growth in a metal, where measurement of the size
distribution usually involves sectioning and hence precludes measurements
in time.

A basic problem with any distribution function measured in a finite area
is that large bubbles are more likely to touch the area’s boundary (and hence
to be excluded from the statistics) than are small bubbles. We therefore have
a systematic bias against large (and many-sided) bubbles in our distribution

161
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functions and their moments. To the accuracies that we are able to measure,
this error is not significant, but we have given two examples of corrected
distributions in Table 7 and 8. For the second moment, the effective cor-
rection is of the order of 5%. It is relatively smaller for higher moments.
The mathematics of distribution function correction is discussed in detail in

Miles, Lantuejoul and Blanc and Mocellin.30:137:168

V1.a Side Distributions

We define the mth moment of the side distribution as:

o o]
b = Z p(n)(n— < n >)™, VL1
n=2
and the width of the distribution,
[~ <}
W= Ep(n)ln— <n>| VI.2
n=2

For experimental distributions, < n > may differ from six so our calculated
values for the moments may differ slightly from those given elsewhere. The
larger the difference between < n > and six, the less reliable the distribution
and the larger the error in the moment estimate. Moments higher than u2
are sensitive to the large n tail of the distribution, which is hard to measure,
and thus are frequently only useful as qualitative indicators. W is useful
because it is much less sensitive to small counting error fluctuations for large
n than are the higher moments. We will also refer to the ratio R = %%-,

another simple reduction of the distribution.

While there are no general rules for correcting for statistical errors, we

find that small sample sizes tend to reduce average moments. For example, if
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there is a nominal 1% probability for twelve-sided bubbles, the contribution
to ug should be 0.36, which we shall see is a large effect. With a typical
sample of thirty bubbles, however, we will usually not see any twelve-sided
bubbles, and our estimate of uy will be correspondingly low. The problem is
worse for higher moments. Occasionally we will attempt to correct for this
bias by averaging several distributions, but most of the time we do not have

multiple samples to average.

Let us begin our discussion by examining the typical evolution of the
side distribution for two dimensional soap bubble coarsening. In Fig. 33
we plot Glazier et al.’s data for the directly digitized air froth shown in
Fig. 17, which began a well ordered pattern with a side distribution sharply
peaked at six. As a function of time, they observed a monotonic decrease
in the fraction of six-sided bubbles p(6) and a monotonic increase in the
fraction of five-sided bubbles, p(5). The large n tail of the distribution first
broadened, then narrowed to an equilibrium width. At long times, just'af-
ter the rate of evolution rolled over to a power law (¢ > 10,000 minutes)
they observed an essentially time independent distribution function, with
R = 1.03, implying the existence of a scaling state. We may see this scaling
state more clearly in Fig. 34 (from Stavans and Glazier, taken from the
helium froth shown in Figs. 16 (d) and 9 (left)). In this figure, Glazier and

Stavans have superimposed the side distributions for three different times



Fig. 33 p(n) versus Time. Side distribution versus time for an initially
ordered air froth. In order of decreasing p(6), measurement times were: ¢ =0
minutes, ¢ = 545 minutes, t = 1124 minutes, ¢ = 1565 minutes, ¢ = 2044
minutes, and ¢ = 3163 minutes. Note that the distribution first broadens

and then narrows to its equilibrium shape (From Glazier et al. 1989).93
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Fig. 34 p(n) versus Time. Side distribution versus time for an initially
ordered two dimensional helium froth. Taken at three different times in the
scaling regime: ¢t = 15.25 hours (open circles), ¢ = 29.48 hours (solid circles),

and t = 32.9 hours (crosses). Number of bubbles ranges from a few hundred

to about sixty (From Stavans and Glazier 1989).220
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Fig. 35 Side Distributions. Side distribution for the scaling state of
an initially disordered two dimensional air froth (solid) and for the Q = 48
hexagonal lattice, nearest neighbor Potts model (dashed) (From Glazier et

al. 1989).93
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Fig. 36 ps versus Time. Second moment of the side distribution
versus time for an initially ordered helium froth (dots), and an initially dis-
ordered air froth (circles). The time scale of the initially ordered run has

been multiplied by three (From Stavans and Glazier 1989).220
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Fig. 37 u; versus Time. Second moment of the side distribution
versus time for two dimensional initially ordered air froth (From Glazier et

al. 1989).93
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Fig. 38 pu3 versus Time. Third moment of the side distribution ver-
sus time for two dimensional initially ordered air froth (From Glazier et al.

1989).93
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Fig. 89 p4 versus Time. Fourth moment of the side distribution
versus time for two dimensional initially ordered air froth (From Glazier et

al. 1989).93
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Fig. 40 W versus Time. Width of the side distribution versus time

for two dimensional initially ordered air froth (From Glazier et al. 1989).%3
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TABLE 7

SIDE DISTRIBUTION FUNCTIONS

o(3) p(4) p(5) r(6) p(7) p(8) »(9)
System (p(10) | (p(11)) | (p(22) | (o(18)) | (p(14)) | (o(15)) | (e(16))
Experiment
T Two D Soap Froth
Smith?%
Air?0e 1 0.01 0.08 0.27 0.35 0.18 0.11
Airt#31 0.018 0.006 0.282 0.318 0.161 0.083 0.031
(0.009) | (0.0006)
% 0.009 0.043 0.032 0.036 0.025 0.025 0.021
(0.009) | (0.00006)
Aboav®
t=0h - - 0.126 0.781 0.112 0.001
N = 4612
t=0h 0.002 0.022 0.212 0.537 0.204 0.022 0.001
N = 5687
t=15h 0.012 0.050 0.217 0.461 0.206 0.050 0.004
N =3550 | (0.0003) | (0.0003) :
t = 30h 0.011 0.059 0.265 0.378 0.198 0.074 0.018
N =3623 | (0.001) | (0.0006) -) (0.0003)
t=T75h 0.026 0.080 0.284 0.308 0.174 0.077 0.035
N=1372 | (0.011) (0.004) | (0.0007) | (0.0007)
t = 105h 0.034 0.111 0.291 0.262 0.149 0.077 0.033
p(18)]
N =584 (0.017) (0.010) (0.010) (0.008) [0.002]
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TABLE 7, continued

»(3) o(4) »(5) »(6) (7) p(8 #(9)
System (p(10)) | (p(11)) ((12)) ((18)) (o(14)) (»(15)) (o(16))
Experiment
Two D Soap Froth
Glasier et al.
Air®® 0.032 0.093 0.292 0.285 0.159 0.072 0.032
(0.018) | (0.018) (0.002)
Air® 0.003 0.102 0.277 0.329 0.201 0.073 0.009
N =343 (0.009) | (0.003)
N=111 0.000 0.090 0.333 0.315 0.144 0.072 0.045
Helium® 0.004 0.101 0.321 0.314 0.137 0058 | 0.041
N = 1696 (0.017) | (0.008) (0.008) (0.002)
N =428 0.000 0.071 0.383 0.208 0.187 0.073 0.038
0.008 0.090 0.325 0.289 0.198 0.064 0.032
N =311 (0.003) .
Average of 0.010 0.091 0.314 0.305 0.170 0.069 0.033
Above (0.008) | (0.008) | (0.0008) | (0.0003)
+ 0.013 0.011 0.023 0.017 0.027 0.006 0.013
(0.008) | (0.007) (0.001) (0.0007)
Metal Grains ___
Al +10~* Mg .22mm Foil™®
T=0 0.031 0.153 0.252 0.252 0.156 0.078 0.044
(0.016) (0.012) {0.002) (0.0083) -) (0.003)
T = 1.5h 0.034 0.153 0.274 0.254 0.161 0.090 0.033
[o(2)]
(0.0185) | (0.006) [0.003]
T = 3.25h 0.031 0.134 0.278 0.241 0.161 0.078 0.037
(0.022) | (0.008) :
T =425 0.045 0.120 0.236 0.236 0.152 0.084 0.032
(0.026) | (0.009) | (0.006) (0.007) (0.008) (0.003) {0.003]
Averaged 0.035 0.140 0.259 0.246 0.157 0.082 0.036
(0.020) | (0.009) (0.002) (0.0025) | (0.0012) | (0.0013) | [0.0016]
+ 0.002 0.007 0.016 0.019 0.009 0.005 0.006
(0.005) | (0.003) (0.003) (0.008) (0.002) (0.002) [0.002]
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TABLE 7, continued

e(3) p(4) #(5) »(6) p(7) (8) (9)
System (p(10)) | (p(11)) | (p(12)) | (o(13)) | (p(14)) | (p(15)) | (n(18))
Experiment
Biological
Cucumber!43 - 0.023 0.265 0.445 0.281 0.035 0.003
Dividing!4” - - 0.016 0.255 0.478 0.224 0.026
(0.001)
Eupatorium®4? - 0.026 0.265 0.436 0.238 0.034 0.001
Human Amnionl4? 0.004 0.054 0.248 0.397 0.241 0.049 0.007
Mouthbreeder - - 0.214 0.643 0.143
Fish‘“
Rock Fracture
Pieri“'
Basalts
Giant’s Causeway - 0.040 0.347 0.507 0.081 0.024
Devil’s Postpile 0.025 0.091 0.368 0.440 0.076
Mt. Rodeix - 0.148 0.499 0.328 0.024
Devil’s Tower - 0.169 0.422 0.354 0.055
Europa Type 1,2 0.038 0.171 0.4623 0.2517 0.078
Coodrd # 4
Circle Cliffs 0.329 0.624 0.048
Zendan, Iran 0.406 0.52¢4 0.061 0.008
Colorado 0.324 0.656 0.020
Europa Type 3 0.404 0.463 0.124 0.008
Europa Mixed 0.182 0.491 0.243 0.074 0.002 0.007
Other 2 D
Photo 0.031 0.222 0.253 0.171 0.129 0.070 0.053
Emulsion!2 [o(17)] | [p(19)]
N = 1000 (0.034) | (0.019) | (0.009) | (0.004) | (0.001) | [o.002] | [0.001]
Lipid Monolayers
Stearic Acidl® 0.071 0.128 0.269 0.269 0.125 0.089 -
(0.035) -) ) (0.018)
Pentadecanoic
Ordered®? - 0.054 0.258 0.462 0.140 0.077 0.009
Disordered®? - 0.097 0.340 0.262 0.233 0.039 0.010
(0.010)
Wax Convect.147 - 0.023 0.357 0.377 0.220 0.023
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TABLE 7, continued

p(8) p(4) (5) »(6) e(7) »(8) e(9)
System (p(10)) (p(12)) | (p(12)) | (p(13)) | (p(14)) | (e(15)) | (o(16))
Experiment
Two D Sections of 3 D Mateﬂ'
Froths
Polyurethane 0.049 0.145 0.229 0.318 0.175 0.067 0.016
Foam3%0 (0.002)
Metal Grains
Tin ’
Champur®* 0.100 0.227 0.290 0.206 0.097 0.043 0.019
(0.008) (0.008) (0.003) (0.001)
Aluminum
High Purity 0.038 0.161 0.256 0.250 0.148 0.076 0.039
(0.019) (0.009) | (0.005)
Pure 500° C3¢
im 0.014 0.152 0.261 0.267 0.156 0.074 0.047
(0.020) (0.009) | (0.001) _
25m 0.028 0.167 0.257 0.253 0.149 0.096 0.035
(0.012) (0.008) | (0.005)
125m 0.073 0.198 0.286 0.230 0.114 0.048 0.034
(0.008) (0.005) (0.0085) :
625m 0.029 0.146 0.251 0.228 0.174 0.071 0.053
(0.081) (0.012) | (0.009)
Average 0.035 0.166 0.264 0.244 0.148 0.072 0.042
(0.018) (0.008) | (0.008)
+ 0.026 0.028 0.015 0.019 0.028 0.019 0.009
. (0.010) (0.008) | (0.008)
a kroa2%¢ 0.063 0.083 0.104 0.396 0.271 0.063 0.021
-Brass?®® 0.025 0.202 0.436 0.287 0.046 0.007
—__ Ceramias
Blanc et &l.%
AL Os 0.04 0.17 0.29 0.21 0.12 0.10 0.04
Uncorrected (0.02) (0.01)
Corrected 0.036 0.158 0.276 0.213 0.127 0.108 0.045
(0.02¢) (0.018)
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TABLE 7, continued

p(3) p(4) o(5) p(6) o(7) o(8) (9)
System (»(10)) (»(11)) (p(12)) (p(13)) [ (o(14)) | (p(15)) | (e(18))
Experiment
Two D Sectns of 3 D Mats
Ceramics
Sintered 0.021 0.153 0.258 0.281 0.131 0.131 0.100
Alumina?®? (0.009) (0.007) (0.001)
Corrected 0.018 0.141 0.246 0.281 0.140 0.111 0.044
(0.010) (0.008) (0.001)
MgO + LiF® 0.024 0.160 0.279 - 0.248 0.155 0.081 0.034
N = 9906 (0.018) (0.008) | (0.0013)
Biological Materials
Vegetable Cells?® |  0.051 0.273 0.397 0.254 0063 | o008 | o0.001
Theory
Geometrical Models
Pure Geometrical
Voronoi** 0.012 0.108 0.264 0.295 0.197 0.088 0.031
N =1377 (0.008) | (0.0007) | (0.0007) _
N = 57,0003 0.0110 0.1078 0.2594 0.2952 0.1984 0.0896 0.0296
(0.0075) | (0.0014) | (.00018) | (.00005)
Clumped 0.013 0.108 0.266 0.289 0.192 0.079 0.041
Relaxed1%® - 0.022 0.258 0.467 0.211 0.037 0.008
N = 1366 (0.011) | (0.0007) | (0.0007)
Glass Models?%¢
Triangle Raft - 0.062 0.256 0.392 0.196 0.095
Triangle-Line 0.009 0.078 0.245 0.363 0.183 0.107 0.010
Raft (0.004)
2 D Sectas of 3 D Arrays®®®
Pentagonal 0.089 0.128 0.212 0.293 0.204 0.061 0.007
Dodecahedra (0.008)
Tetrakaidecahedra 0.073 0.134 0.118 0.3144 0.185 0.130 0.037
(0.011)
Coordination # 4
Poisson!?! | 0.354 0.377 0.191 0.059 0.009
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TABLE 7, continued

o(3) s(4) o(5) »(8) p(7) (8) p(9)
System l (p(10)) | (p(11)) | (p(12)) (’(IM (p(14)) | (p(15)) | (p(16))
Theory
Maximum Entropy
Kikuchi [131 0.035 0.141 0.233 0.238 0.185 0.107 0.045
(0.015) | (0.001)
Kikuchi II 0.025 0.107 0.243 0.274 0.189 0.109 0.042
(0.009) | (0.001)
Almeida et al.1° 0.210 0.195 0.159 0.118 0.086 0.063 0.047
0.035 0.025 0.018 0.013 0.009 0.007
Vertex Models
Weaire ¢t al.
» Exact® 3¢ - 0.145 0.251 0.261 0.194 0.103 0.038
(0.008)
* Exact®343 0.003 0.078 0.259 0.358 0.200 0.091 0.008
(0.003)
Soares et al.310 0.027 0.149 0.229 0.228 0.198 0.125 0.040
Straight Sides (0.009)
Kawasaki et al.3%
Model I 0.054 0.153 0.236 0.216 0.151 0.091 0.055
(0.027) | (0.010) | (0.005) (0.002)
Model I 0.031 0.141 0.253 0.237 0.173 0.094 0.045
(0.019) | (0.008) (0.002)
Enomoto et al.%3 0.068 0.134 0.255 0.213 0.147 0.082 0.053
(0.023) | (0.014) | (0.005) - (0.005)
Mean Field Theories_
Marder!s? 0011 | 0.076 0.263 0.414 0.123 0.056 0.029
(0.015) | (0.008) | (0.006)

185




TABLE 7, continued

p(3) p(4) p(5) »(6 (7 p(8 (9)
System (p(10)) | (p(11)) | (p(12)) | (p(13)) | (o(14)) | (p(15)) | (p(18))
Theory
Network Models
Fradkov et al.”®
T1’s per T2 0.002 0.046 0.288 0.390 0.193 0.064 0.016
0 (0.002)
1 0.018 0.115 0.262 0.273 0.184 0.089 0.033
(0.010) | (0.003)
2 0.048 0.145 0.224 0.222 0.158 0.099 0.046
[#(2)]
(0.022) | (0.009) [0.010]
10 0.127 0.145 0.145 0.135 0.110 0.080 0.046
0033 | 0.022 [0.073]
) 0.127 0.107 0.093 0.077 0.085 0.053 0.049
(0.038) (0.032) [0.152]
Potts Model
Potts Model®® 0.025 0.128 0.271 0.253 0.161 0.084 0.039
Triangle Lattice | (0.019) (0.008) (0.003)
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TABLE 7, continued

(3) s(4) »(5) »(8) o(7) p(8) -1 p(9)
System (p(10)) | (p(11)) | (p(12)) (p(13)) | (p(14)) | (p(15)) | (o(186))
Theory '
Two D Sect of 3 D Mat
Carnal & Mocellin4®
=0 0.297 0.190 0.129 0.092 0.087 0.050 0.038
(0.029) | (0.022) | (0.018) | (0.014) | (0.011)
=2 0.085 0.174 0.222 0.205 0.138 0.086 0.050
(0.028) | (0.015) | (0.008) | (0.004) | (0.002)
B=4 0.011 0.118 0.264 0.297 0.171 0.083 0.035
(0.013) | (0.005) | (0.002) | (0.001) :
=6 0.002 0.070 0.273 0.373 0.184 0.069 0.021
(T1 rate) (0.008) | (0.001)
Blanc & Mocellin®®
0.036 0.173 0.231 0.215 0.154 0.099 0.054
(0.025) | (0.009) | (0.008) | (0.0008)
Depends on 0.100 0.146 0.194 0.194 0.151 0.101 0.064
2(3) as (0033) | (0.013) | (0.00) | (0.001)
a parameter 0.050 0.169 0.227 0.212 0.155 0.104 0.056
no T1’s (0.026) | (0.009) (0.008) (0.0006)
- 0.190 0.259 0.230 0.160 0.094 0.050
(0.021) | (0.006) | (0.0009)
Kurts & Carpay'¥?
Potts Model!®
0.076 0.185 0.230 0.212 0.121 0.082 0.046
(0027) | (0.010) | (0.008) | (0.004) | (0.002) | (0.001)
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TABLE 8
SIDE DISTRIBUTION MOMENTS

System <n> 77 U3 by w
Experiment
2-D Soap Froth
Smith121 5.928 1.759 1.148 10.21 1.005
Smith259 5.94 1.296 0.114 4.30 0.877
Aboav®
t = 0 hours N = 4612 5.988 0.242 0.003 0.26 0.249
t = 0 hours N = 5687 5.990 0.620 | -0.011 1.38 0.519
t = 15 hours N = 3550 5.968 0.976 | -0.068 3.56 0.687
t = 30 hours N = 3623 5.993 1.30 0.486 6.00 0.827
t = 75 hours N = 1372 5.982 1.98 1.763 15.62 1.028
t = 105 hours N = 584 6.010 2.86 8.153 76.10 1.247
Glazier et al. ‘
Air® 5.999 2.490 2.490 26.66 1.144
Air N = 343% 5.935 1.492 1.090 8.623 925
Air N=111 5.910 1.523 1.295 7.113 951
Helium N = 1696 5.983 2.151 3.933 24.29 1.045
Helium N = 423 5.972 1.437 1.017 6.01 0.927
Helium N = 311 5.915 1.491 1.017 6.87 0.958
Average of Above 5.952 1.764 1.980 13.26 0.992
+ 0.037 0.445 1.366 9.53 0.0087
Metal Grains
Al + 104 Mg .22mm Foil’® .
t = O hours 5.975 2.993 5.824 49.58 | 1.277
t = 1.5 hours 5.835 2.353 1.921 18.24 1.210
¢t = 3.25 hours 5.916 2.465 2.644 20.97 1.214
t = 4.25 hours 6.091 3.791 9.257 84.07 1.414
Average of Above 5.952 2.900 5.013 43.90 1.269
Biological Systems
Cucumberl4? 5.998 0.748 0.137 1.62 0.619
Dividing Cucumberl47 6992 | 0.656 | 0.092 1.23 0.570
Eupatorium!47 5.992 0.752 0.082 1.55 0.629
Human Amnion!42 5.087 1.00 0.068 3.02 0.734
Mouthbreeder Fish195 5929 | 0.352 | 0.004 0.35 0.398
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TABLE 8, continued

189

System <n> "2 U3 ' w
Experiment
Rock Fracture!9!
Giant’s Causeway 5.702 0.596 0.165 1.33 0.624
Devil’s Postpile 5.448 0.733 -0.325 1.80 0.719
Mt. Rodeix 5.228 0.522 0.005 0.69 0.592
Devil’s Tower 5.206 | 0.657 0.019 1.03 0.687
Europa Type 1,2 5.161 0.858 | -0.018 2.14 0.708
Codrdination # 4 Rock Fracture!®!
Circle Cliffs 3.720 | 0.297 | -0.008 0.22 | 0.473
Zendan, Iran 3.671 0.392 0.144 0.52 0.545
Colorado 3696 | 0.252 | -0.046 0.14 0.451
Europa Type 3 3.739 | 0.495 0.198 0.67 0.596
.Europa Mixed 4.243 0.791 0.553 2.69 0.692
Other 2-D Systems
Photo Emulsion N = 1000142 6.00 4.344 | 12402 | 111.66 | 1.580
Lipid Monolayers
Stearic Acid16? 5.836 3.309 7.705 66.37 1.313
Ordered®? 5.955 1.001 0.444 3.29 0.704
Disordered®? 5.874 1.432 1.125 7.28 0.958
Wax Convection4? 5.863 0.742 0.171 1.32 0.702
Two D Sections of 3 D Materials
Froths
Polyurethane Foam®Y | 5.607 1.771 0.172 8.70 1.076
Metal Grains
Champur Tin% 5.278 5.278 4.074 30.62 1.200
High Purity Aluminum®%¢ 5.877 2.746 3.739 29.40 1.271
Pure Aluminum at 500° C24
1 minute 5.967 2.445 3.047 21.68 1.188
25 minutes 5.883 2.440 2.849 22.48 1.216
125 minutes 5.500 2.534 3.779 28.64 1.243
625 minutes 6.081 3.118 4.534 35.33 1.362
a Iron206 6.000 1.708 | -1.125 9.46 0.917
(-Brass207 5.148 0.812 | 0.781 2.03 0.698



TABLE 8, continued

System r<n>l Bl l bs J He l w

Experiment
Ceramics
Blanc and Mocellin Al;043%°
Uncorrected 5.82 2.748 3.290 24.41 1.32
Corrected 5.939 2.901 3.386 26.25 1.343
Sintered Alumina uncorrected!3? 5.895 2.278 2.269 18.02 1.164
Sintered Alumina corrected!3? 5.098 2.348 2.226 18.31 1.162
MgO + LiF flux N = 9906° 5.835 2.279 2.415 18.51 1.188
Biological Materials
Vegetable Cells3%¢ | 5032 | 1022 | 0244 3.07 0.760
Theory
Geometrical Models
Pure Geometrical
Voronoi N = 137734 6.00 1.79 1.089 10.41 1.014
Voronoi N = 57,000°3 5.997 1.717 1.026 10.68 1.013
Negative Binomial Voronoi** 6.00 1.91 1.367 11.97 1.047
Relaxed Voronoil®® 6.000 0.754 0.222 1.858 0.603
Codrd. # 4 Poisson!®! 3.981 0.869 | 0.604 2.28 0.702
Glass Models3%4
Triangle Raft 6.007 1.079 | 0.185 2.95 0.768
Triangle-Line Raft 6.015 1409 | 0.400 6.01 0.879
2-D Sections of 3-D Arrays
Pentagonal Dodecahedra2®® 5.646 2.032 | -0032 | 1161 1.162
Tetrakaidekahedra 5.9938 2.506 | -0.212 | 16.08 1.202
Topological Transforms
Kikuchi '3 5.082 2.399 1.208 15.51 1.223
Kikuchi I 6.041 2.072 0.876 12.22 1.120
Maximum Entropy Models
Almeida et al.1° [ 598 o o oo 2.130(?)
Vertex Models
* Exact®344 6.005 1.907 1.116 9.516 1.089
» Exact?34 5.996 1.286 0.403 4.86 0.844
-Soares et al.310 5.997 2.273 0.740 12.63 1.213
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TABLE 8, continued

System <n> w2 U3 ™ w
Theory
Vertex Models
Kawasaki et al.259
Model I 5.993 3.277 4.085 36.41 1.401
Model II 5.979 2.544 2.288 20.75 1.239
Enomoto et al.%2 5.980 3.609 6.390 57.50 1.437
Mean Field Theories
Marder157 6.005 1.909 3.287 21.57 | 0.905
Network Models :
Fradkov et al.’®
T1’s per T2
o 5.991 1.111 0.560 4.14 0.765
1 5.554 2.758 0.983 20.36 1.358
2 5.929 2.984 2.089 26.56 1.357
10 5.502 5.170 5.129 66.72 1.886
(e ) 5.159 7.136 11.168 114.65 2.254
Beenakker?® 6.00 max=3.2
final=0.25
Potts Model
Potts Model®® 5.978 2.490 2.971 23.22 1.196
__Two D Sections of 3 D Mater.
Blanc and Mocellin%°
p(3) = 0.036 5.264 3.969 5.172 44 .41 1.654
p(3) = 0.100 5.984 3.839 3.660 41.45 1.558
p(3) = 0.050 5.989 3.174 3.300 30.78 1.403
- p(8) = 0.000 5.976 2.489 2.881 19.18 1.244
Carnal and Mocellin*®
B=0 5.37 7.156 24.918 206.69 2.120
B=2 597 3.881 6.921 59.42 1.510
B=4 6.005 2.107 2.475 18.77 1.073
=6 5.995 1.342 0.946 6.73 0.835
Kurtz and Carpay2%0
5.748 2.308 0.992 12.91 1.253
3 D Potts Model!®
5.830 3.736 7.189 61.80 1.492
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and found them identical within experimental error, thus showing that the
distribution was indeed time invariant. We give Glazier et al.’s measurement

for the scaling distribution in Fig. 35.

Smith’s data for the two dimensional froth had R < 1 (See Table 7), sug-
gesting that he never saw a fully equilibrated froth. His actual distributions
were not too different from those of Stavans and Glazier, however, considering
the large counting error in his small sample. His measured growth exponent
of a = 1, on the other hand, suggests that he did observe a scaling state. If
his side distribution came from early in the run (he never indicates when he
made the measurement), it would resolve the apparent contradiction. Aboav
observed the same sequence of events, with R increasing monotonically, and
the large n tail of the distribution broadening (See Table 7), but, as we noted
in discussing his value for the growth exponent, stopped his measurement
just before the froth reached its scaling state (only his last data point had
R > 1) so he did not observe the subsequent narrowing and equilibration of

the distribution.

In Fig. 36 we show evidence from Stavans and Glazier, that the scaling
state is universal for the soap froth. They measured the second moment
versus time for an initially ordered helium froth (that shown in Fig. 16 (d)
and 9 (a)) and an initially disordered air froth (that shown in Fig. 16 (f) and 9
(b)). The initially ordered froth started with a very small u which increased
rapidly to a maximum value of up = 2.65, (at about 9 hours, corresponding

to Fig. 16 (d) point D and Fig. 9 (D)) at the time when the rate of area
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increase was maximal. us then dropped rapidly, reaching a constant value of
p2 = 1.4 £ 0.1, at around 15 hours when the rate of growth rolled over into
a power law (Fig. 16 (d) point E and Fig. 9 (E)). In the initially disordered
froth the value of uy first dropped for about five hours (thus confirming the
initial drop in @ shown in Fig. 16 (f)). At these early times there were
many bubbles and the moment estimates were sufficiently accurate that the
drop cannot be a counting error fluctuation. ug then recovered, reaching a
constant value of g = 1.4%£0.1, at around 50 hours when the rate of growth
rolled over into a power law (Fig. 16 (f) point C’ and Fig. 9 (C’)). Thus
the final value of ug was independent of the diffusing gas and of the initial
configuration of the froth. In both cases the scatter increased as the number
of bubbles decreased at long times. There was no evidence of any significant
trend at long times, the slight decrease in the last few values of u3 apparently
occurring when the expected number of nine-sided bubbles dropped below
one. If we reject these points, our estimate of the equilibrium value of u2
would increase slightly to uz = 1.45 £ 0.1 for both the initially ordered and
initially disordered froths. In contrast, Aboav observed a monotonic increase
in uq from 0.242 to 2.86, as we would expect for observations made during

the froth’s equilibration (See Tables 7 and 8).

We show the same quantities calculated by Glazier et al. (for the air froth
shown in Fig. 17) in Fig. 37. The scatter is larger than in Fig. 36 because
they analyzed only a 30% sample of the total experimental image. The last

few points represent only about six bubbles each. Digitization errors also
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resulted in the creation of some spurious many- and few-sided bubbles. The
distributions were rechecked by hand, but some errors doubtless remained to
contribute to the scatter. We observe the same basic pattern as in Fig. 36.
The initially narrow distribution (small value of u3) widened to a maximum
width of u9 =~ 3.25, then narrowed to a stable value of uy = 1.6 + 0.2, in
agreement with the value of Stavans and Glazier, at the same time as the
rate of area growth rolled over into a power law (=~ 10,000 minutes, see Fig.

17).

The higher moments behaved similarly. We have calculated the evolution
of ug (Fig. 38), ug (Fig. 39) and W (Fig. 40) from the data of Glazier et al..
The thix;d moment, which measures the asymmetry of the distrib‘u'tion, in
this case mostly the strength of the large n tail, began near zero, increased
rapidly to a maximum during equilibration when the frequency of many-
sided bubbles was maximal (14 ~ 4.5), then dropped to a stable value of u3 =
1+0.5. The graph suggests that u3, may have undergone a second oscillation,
undershooting the stable value around 10, 000 minutes and reaching a second
slightly lower maximum of ug =~ 2.5 around 20,000 minutes. If so, it is a
surprising confirmation of the prediction by Beenakker that equilibration
should require multiple oscillations.2> Nothing changes if we look at the
fourth moment which represents the flatness of the distribution, essentially
the relative strength of p(4), p(7), and p(8) versus p(5) and p(6). The initial
value was u4 = 5. It then grew to u4 ~ 40 and decreased, with a possible

oscillation and second peak at 20,000 minutes, to a stable value of ug =
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6 + 3.5. We call the initial maximum in all the distribution functions, the

equilibrating maximum.

We might speculate that the second maximum we observe in the third and
fourth moments represents the decay of next nearest neighbor correlations
while the first peak represents the decay of nearest neighbor correlations.
In that case the time between the peaks would represent the time for an
average bubble to disappear, and hence for disorder to propagate a distance
of one bubble radius. The oscillation might also result from a phase lag
caused by different time constants for area and side equilibration. However,
without experimental values for u3 and u4 from other experimental runs (in
particular those of Stavans and Glazier), we must presumé that the apparent
oscillation is a statistical artifact, which could result if, for example, a single
very many-sided bubble appeared at roughly 15,000 minutes and gradually
began to shed sides after 20,000 minutes. We mention this scenario as an
example only, since we see no single many-sided bubble in the data to throw

off our calculations.

The width (Fig. 40) increased from an initial minimum of W ~ 0.4 to a
stable value (W = 1.1+0.3) at around 10,000 minutes, with a possible weak
maximum of W = 1.3 at 5000 minutes. Any oscillation at 20,000 minutes

was lost in noise.

Returning to our comparison of Glazier et al.’s results to those of Smith
and Aboav: Smith’s original distribution came within one standard deviation

of the Glazier et al. values for all moments, suggesting that he was reasonably
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close to equilibrium.2% The distribution given by Kikuchi, however, gives
unexpectedly low values for all moments, suggesting that it was taken early
in a run before the initial equilibrating maximum. If we look at Aboav’s final
state at ¢ = 105 hours, we find elevated values of all moments as expected

near the equilibration maximum.

In Table 7 we summarize side distributions for the soap froth, several
biological systems, metallic grain growth, rock fracture, and several other
systems, as well as many of the models we have discussed. We give cor-
responding moments in Table 8. We note that in this table we give the
moments exactly as calculated from the published distributions, even when
it is clear that the exact distribution would give infinite values for the higher

moments.

In spite of the large scatter in our measurements, the scaling state side
distribution of the soap froth is surprisingly difficult to match theoretically.
As typical froth distributions we take the averaged long time distributions
of Glazier et al. (the first line in the appropriate section of Table 7) and
an average of unpublished data of Glazier and data of Stavans and Glazier
(the last line of the appropriate section in Table 7) . None of the geometri-
cal models is within range, nor are the maximum entropy models of Rivier,
Kikuchi, or Almeida and Iglesias. Among the topological mean field theo-
ries, Marder’s model is generally within range, but gives an excessively high
value of u3 because of its correlated side redistribution which tends to nia.ke

many-sided bubbles gain sides and thus stretches the large n tail. Blanc and
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Mocellin’s model for two dimensional growth (no nucleation of three-sided
bubbles) is equally tail heavy. Fradkov, Shvindlerman and Udler’s network
model has difficulty matching both u9 and ug for a given rate of side swap-
ping, but does a reasonable qualitative job. Kawasaki’s vertex Model II does
reasonably well with the moments but has far too many four-sided bubbles.
Weaire and Kermode’s vertex model never reached equilibrium and Frost and
Thompson never published side distributions for their boundary dynamics
model so we have no data for comparisons from the two most physically
appealing “exact” models. The boundary dynamics model of Soares, Ferro

and Fortes is very tail heavy.

We plot the side distribution for the hexagonal lattice Potts model in
Fig. 35. Referring to Table 7 we find that the predicted values for the p(n)
are within the measured experimental scatter for all n, though the averaged
froth distribution has fewer four- and many-sided bubbles. Looking at the
moments, we find that the Potts model again gave consistently larger values
than the averaged froth, though within the experimental scatter in all cases.
If we compare to the distribution from Glazier et al., the agreement is much
better: exact for us and within 10% for all other moments, with ug a little

high, as we expect from the stretched tail.

If we try to match the froth to other experimental coarsening patterns
the only experiment that provides a reasonable match is Fradkov, Shvindler-
man and Udler’s measurement of two dimensional grain growth in Al +10~4

Mg foil. The side distributions are similar in shape with R = 1.05 for the
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grain growth and R = 1.03 for the froth. The chief difference is the promi-
nence of the tail in the metallic grain growth. Nevertheless, because of the
large scatter in both measurements, the measured range of distributions and
moments overlap in all categories. Unsurprisingly, Fradkov, Shvindlerman
and Udler’s network model with the rate of T'1’s set to be about 5 times the
rate of T'2’s agrees well with their experimental data for the foil. The Potts
model also is within range of the results for the foil for all values, though

consistently on the low side for the moments.

The apparent failure of topological mean field theories and network mod-
els to predict the moments in the soap froth correctly is surprising— but given
the large uncertainties in the experimental distributions hardly conclusive.
There may be an anti many-sided bubble bias built into the soap froth.
Perhaps, we need to include an anticorrelation in side shedding: that many-
sided bubbles preferentially lose sides and few-sided bubbles preferentia}ly
gain sides, a possible source for this anticorrelation being the deviation of
internal angles from the predicted 120°. Another factor may be statistical.
Theoretical distributions are usually calculated for large samples, and thus

avoid the anti many-sided bias that we have noted in the experimental data.

In the case of the Potts model and metallic grain growth the discrepancy
may arise from stiffness caused by anisotropy. The excess curvature which
opposes increases in number of sides for many-sided bubbles is masked in
the presence of anisotropy. In this case we would expect that the third mo-

ment would increase with increasing anisotropy. Unfortunately we have no
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data on the dependence of the distribution functions on the relative orienta-
tional anisotropies of the Potts model and metal films, though it would be
straightforward to design an experiment to test the hypothesis. In particular,
for lower anisotropies and higher temperatures, the frequency of many-sided
bubbles should decrease. An additional factor may come from the relative
rates of diffusion along and across grain boundaries. We expect that the Potts
model and metal grains will be further from equilibrium than a soap froth,
and hence may eliminate many sided bubbles more slowly, since a bubble
may not “know” how many sides it really has. Again, careful measurements
using different materials and temperatures could test the hypothesis. Any
theory must explain why the metal film gives a larger tail than the Potts
model.

We tentatively assert the existence of a universal distribution function for
two dimensional coarsening including the soap froth, two dimensional grain
growth in metals and the Potts model. It seems that the soap froth has a
lower frequency of many-sided bubbles than the Potts model, and the Potts
model than real grain growth. However, with our current data we cannot
really distinguish the three cases. In particular we have no way to determine
whether a larger or smaller frequency of many-sided bubbles is “ideal.” We
cannot tell whether disequilibria or anisotropies in the Potts model cause
a deviation from the ideal coarsening of the soap froth, or whether an anti
many-sided bubble bias causes the soap froth to deviate from the ideal coars-

ening of the Potts model. The mean field and network models may also
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belong to this class if proper side shedding anticorrelations are included. All
our speculation may be premature, however, since our current poor exper-
imental accuracy cannot distinguish any given soap froth distribution from
a Potts model distribution or a metal film distribution. We certainly need
better experimental data, especially scaling states for the soap froth with

many (i.e. thousands) of bubbles.

Proceeding down our list of experimental categories we come to two di-
mensional biological systems. Bénard-Marangoni convection patterns in wax
also belong in this group. These have narrow side distributions, tightly and
symmetrically centered around n = 6, with R = 0.45 + 0.2, u3 between 0.35
and 1, u3 < 2, ug < 3 and W between 0.4 and 0.7. The sharp cutoffs in the
distributions at n = 4 and n = 7 are distinctive. The dividing cucumber cells
are a special case since they represent a selection rather than an entire pat-
tern, as the large value for < n > shows. We have no difficulty distinguishing
these distributions from two dimensional coarsening. The models that work
for these systems are the pure geometrical constructions, particularly the
relaxed Voronoi, which gives excellent agreement. The network model of
Fradkov, Shvindlerman and Udler with no T'1’s to redistribute sides is also
not too far off. In both the models and the experiments the basic physics
seems clear. The mobility of cells and territories is small and their area
range limited (if they grow too large they split, if too small they die and dis-
appear). The pattern can readjust locally to eliminate stress, but diffusive

equilibration does not occur.
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Fracture patterns in rock belong to the same non-equilibrating class, with
distributions composed almost entirely of five-, six- and seven-sided bubbles.
R ranges from 0.7 for the Giant’s Causeway to 1.8 for cracks on Europa, but
the moments stay small, with g9 = 0.6 £ 0.2, ug3 = 0+ 0.2, u4 ~ 1.4 £ 0.6
and W = 0.6 = 0.1. Once again we have no trouble distinguishing such pat-
terns from two dimensional coarsening. The models described for biological
systems work for geological as well. A slight complication are the various
coordination number four patterns whose distribution functions are radically
different from the others but which give similar moments to co6rdination
number three fracture, suggesting that the non-relaxational physics is simi-
lar in the two cases. It also serves as a warning not to accept similarity of

moments as definitive without looking at the actual distribution functions.

We next come to two polymer systems. The photo emulsion has frozen
in a broad area distribution generated by a spray from a nozzle. The lipid
monolayer began with a similarly broad area distribution but had time to at
least partially equilibrate diffusively. The emulsion distribution is exheption-
ally broad, with R = 1.5, and p(4) > p(6), with a tail extending to n = 19.
The monolayer is less extreme, with R = 1, p(4) = 0.125, and a cutoff at
n = 13. The moments are correspondingly large and are well separated from
those of two dimensional coarsening. We are clearly in a regime where side
exchange is a dominant process, and our best agreement with models comes
from Fradkov, Shvindlerman and Udler’s high T'1 rate network model (oo or

10 T'1’s per T2), or the mean ﬁeld theory of Blanc and Mocellin in the same
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limit (8 = 0 or § = 2). Again, the physical motivation seems clear. The well
separated drops can move freely, and easily slide past one another to reduce
stress. However their large separation results in slow diffusion rates, hence
the failure to reach equilibrium. We will discuss the equilibration of lipid

monolayers in a later chapter.

Finally we consider two dimensional sections of three dimensional sys-
tems. If we neglect Smiths’s measurements for a-iron, a reasonably consistent
picture emerges for grain coarsening. The constancy of Beck’s measurements
of the distributions in aluminum as a function of time suggests that we are
safe to assume that the all metallic distribution functions are in scaling states.
Taking a rough average over the various metals and ceramics we obtain a
?typical” three dimensional coarsening distribution with R = 1, p(3) =~ 0.04,
with a relatively long tail, p(9) = 0.05 and p(10) ~ 0.02. The moments are
quite consistent, with ug ~ 2.6 £ 0.2, ug ~ 3.5+ 1.5, ug ~ 25+ 5, and
W =~ 1.3+ 0.2. The moments for the polyurethane foam are slightly smaller,
probably because its initial condition consisted of nearly uniform volumes
and it cured before reaching equilibrium. The vegetable cells, where, as we
have discussed, both areas and mobility are constrained, also show lower
moments. The poor value of < n >= 5 warns us to be cautious in in-
terpreting the vegetable cell data, but both the froth and the cells are in
reasonable agreement with the sectioning of a regular array of tetrakaideka-
hedra or dodecahedra, which is reasonable if they are relaxed close packings

of nearly equal volume bubbles. The agreement between random and regular
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structures also reminds us just how much information is lost taking a two

dimensional section of a three dimensional structure.

Two dimensional coarsening distributions and three dimensional coars-
ening distributions are clearly distinct. The best results for the three dimen-
sional distributions come from the mean field theories of Blanc and Mocellin
and Carnal and Mocellin which were designed precisely for this purpose.30:46
Interpolating for p(3) = 0.04 and f = 3 respectively fits the distribution and
all the moments to well within the experimental error. The actual distribu-
tion function of the Carnal and Mocellin model is particularly impressive.
The three dimensional Potts model gives values of moments much too large
and a tail much more extended than our hypothetical “typical coarsening.”
Whether this disagreement results from finite size or anisotropy effects, or
the particular choice of comparisons (we note that the comparisons given in
the paper of Anderson, Grest and Srolovitz fit only marginally bettet),15 is

unclear.

There does seem to be a typical side distribution for two dimensional
sections of three dimensional grain growth (and hence, presumably for three
dimensional grain growth itself). It is striking that the simplest of topo-
logical mean field theories, which assumes no side shedding correlations and
independent creation and destruction of three-sided bubbles, and which re-
quires only one rate constant, seems perfectly adequate to describe all of
the measured patterns in three dimensions. In two dimensions, on the other

hand, none of our theories is entirely satisfactory, and the one that works the



204
best is also the most complicated and microscopically detailed. As in two
dimensions, structures with limited area distribuitions have distinctly differ-
ent side distributions. The range of scatter in the distributions is narrower
in three dimensions than in two, as if the details of what was coarsening
mattered less (this is partly an effect of the loss of information from taking
a section, but we are still perfectly able to distinguish coarsening from non-
equilibrating cellular aggregates and foams). The extra dimension seems to
reduce the effects of topological constraints, anisotropy, etc., and paradoxi-

cally to simplify the physics, while making exact modeling more difficult.

VI1.b Area Distributions

Because we have much less reliable data on the equilibrium area distribu-
tion of the soap froth, we will treat the topic of area distributions more briefly
than the side distributions, focusing on comparisons to the Potts model sim-
ulation. In particular we lack the distributions of bubble radii which are
the probabilities calculated by most models. We will not quote the many
distribution functions available for metals. We refer the interested reader to

the papers of Beck or Anderson et al..15:24

If we examine the time evolution of Glazier et al.’s area histograms (Fig.
41) for the two dimensional soap froth, p(A/ < a >), we find roughly the
same scenario that we found for side distributions. At short times the dis-
tribution peaks sharply around the average area (corresponding to a pattern
composed primarily of uniform sized six-sided bubbles). In time, the most

probable size gradually decreases to zero while the large area tail of the dis-



Fig. 41 Area Distribution versus Time. Evolution of the area
distribution for an initially ordered two dimensional air froth. Times are:
(a) t = O minutes. (b) t = 545 minutes. (c) t = 1124 minutes. (d) ¢t = 1565
minutes. (e) ¢ = 2044 minutes. (f) ¢ = 3163 minutes (From Glazier et
al.1989).93
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Fig. 42 Correlated Area Distributions. Area distributions for
five-, six-, seven- and eight-sided bubbles in the scaling state. Measurements
in air froth (solid line) and Potts model with identical starting conditions
(heavy dashed line). Total area distributions are shown for reference for the
soap froth (dotted line) and Potts model (light dashed line) (From Glazier

et al. 1989).9
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tribution gradually lengthens. This broadening comes about because the
fraction of shrinking small bubbles with near zero absolute area remains es-
sentially constant, while their relative size decreases as the total length scale

increases. Eventually the distribution reaches a time invariant scaling state.

We next examine the scaling state distributions more closely. In Fig. 42
we plot Glazier et al.’s area distributions for five-, six-, seven-, and eight-
sided bubbles and compare them to the total distribution functions and the
equivalent results from the Potts model simulation. As we might expect
for bubbles which shrink, the most probable area for a five-sided bubble is
zero, agreeing with the Potts model result. Six-sided bubbles have a rela-
tively narrow width around the average area, with good agreement between
the experiment and the Potts model. Both seven- and eight-sided bubbles
are larger, with broader distributions than the six-sided bubbles. The Potts
model seems to give a higher third moment than the actual froth for these
types (again we may suppose that this is an anisotropy effect), but the dif-

ference is statistically significant only for seven-sided bubbles.

Comparing to other models we find comparable distributions from the
various mean field theories, network models and boundary dynamic models.
Unfortunately, the error in our measurement of the area distribution and
the aiﬁculty of determining exactly how the histograms were constructed,

makes the area distribution useless as a diagnostic.



CHAPTER VII
CORRELATIONS

In this chapter we continue our examination of the experimental results
looking at correlations between area (or radius) and number of sides, “Lewis’
Law,” and correlation’s between the number of sides of neighboring bubbles,

the Aboav-Weaire relation.

VIl.a “Lewis’ Law”

Of the aggregate quantities derivable from the area distribution func-
tions, the average area of an n-sided bubble as a function of n is the most
robust diagnostic. The relationship had been evaluated by Fradkov, Shvin-
dlerman, and Udler, Beenakker, Marder, and others.2”:28,76,77,157 The most
commonly assumed relation is that of Lewis, originally proposed for the ep-
ithelial cells of the cucumber, that the area of a polygonal cell should be a

linear function of its number of sides,14! i.e.,
<ap>=c1+ez-n (VIL1)

at any fixed time, where ¢; and cg are fitting parameters.

Glazier, Gross and Stavans have measured this relation by hand for var-
ious stages in the evolution of a two dimensional helium froth and Glazier et
al. from directly digitized images. The hand measured results cover several
different times during the helium run indicated in Figs. 16 (d) and 9 (a).
The direct digitization results are available for the entire run shown in Fig.

210
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17 and allow us to calculate an ensemble average of different times to im-
prove our statistics. In their hand measurements Glazier, Gross and Stavans
estimated areas by connecting the vertices and centers of sides of bubbles by
straight lines and measuring the area of the resulting polygon using a digi-
tizing tablet. Since the walls of few-sided bubbles are convex and the walls
of many-sided bubbles concave, this method caused them to systematically
underestimate the area of few-sided bubbles and overestimate the area of
many-sided bubbles by up to a few percent. Glazier et al. measured areas

directly by counting pixels and should thus have achieved better accuracy.

We present experimental measurements of normalized bubble areas (i.e.
An = —<<—‘;ﬂ;>—) as a function of n in Fig. 43 for the hand measured data and
in Fig. 44 for Glazier et al.’s directly digitized data along with their results
of the Potts model simulation starting with identical initial conditions on
the next nearest neighbor square lattice. Beginning with random initial
conditions on the nearest neighbor hexagonal lattice gave identical results.
We observe that the area for few-sided (n = 3, 4) bubbles is larger than that
predicted by Lewis’ hypothesis, in agreement with the models of Fradkov,
Shvindlerman and Udler, Beenakker, Marder, and Weaire and Kermode,
but disagreeing with the predictions of Rivier.198 Lewis’ Law is seen to work
poorly for few-sided bubbles. Indeed, for many runs, a linear fit actually
predicts negative areas for three- and four-sided bubbles. Many-sided (n > 8)

bubbles are smaller than predicted as well, though this discrepancy may

be due to memory of the initial length scale. The correlation seems to be
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independent of the degree of equilibration of the froth and the distributions
of normalized area are constant to within experimental error (typically 5%)
at all times, suggesting that they depend on local rather than long range
equilibration. For example, a very large few-sided bubble can rapidly shed

sides by T'1 processes without having to wait for bubbles to disappear.

In Table 9 we present side-area correlations for a few models and ex-
perimental systems. We normalize Ag to one, which is not ideal (we would
prefer to look at Ay) but is at least consistent and does not require us to know
< a > for all categories. We can easily distinguish the biological patterns
which obey Lewis’ law from the coarsening patterns which do not. The cor-
relationsA for the soap froth and two dimensional grain growth in aluminum
are comparable for large n. For small n, the grains are much larger than
the bubbles, suggesting a mechanism stabilizing small few-sided grains in
the metal. Of the models, the Potts model gives almost identical results to
the froth. The vertex model of Nakashima et al. also does well. The mean
field theories all tend to have both few- and many-sided bubbles too large,
again suggesting a failure to consider an anticorrelation in side redistribu-
tion. Large few-sided bubbles are less likely to lose sides than small few-sided
and large many-sided bubbles, and thus there are fewer large few-sided bub-
bles produced than predicted by the uncorrelated mean field theories. As we
might expect neither the Voronoi construction nor the first model of Almeida
and Iglesias are within range. The second model of Almeida and Iglesias does

better but is still too weakly correlated.



Fig. 43 Lewis’ Law. Normalized average area of an n-sided bubble
versus n for a two dimensional helium froth at four different times during
arun. (a) ¢t = 2.52 hours. (b) t = 8.63 hours. (c) ¢ = 12.45 hours. (d)
t = 64.32 hours. To within experimental error the four correlations are

identical (From Glazier, Gross and Stavans 1987).%4
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Fig. 44 Lewis’ Law. Normalized average area of an n-sided bubble
versus n for a two dimensional air froth (circles), @ = 48 hexagonal lattice
Potts model (triangles), and Q = 48 next nearest neighbor square lattice
Potts model (diamonds). To within experimental error the correlations are

identical (From Glazier et al. 1989).93
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Fig. 45 Radius Law. Normalized average radius of an n-sided bubble
versus n for a two dimensional air froth (circles), @ = 48 hexagonal lattice
Potts model (triangles), and Q = 48 next nearest neighbor square lattice
Potts model (diamonds). To within experimental error the correlations are

identical (From Glazier et al. 1989).%3
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TABLE 9

LEWIS’ LAW
As Ay Ag A Ay As Ao Ao
System [43] (A1) | (A13) | (A1s) | (A1d) | (41s)
Experiment
Soap Froths
Averaged Air®® 0.04 0.18 | 0.56 1.00 1.96 2.84 3.19 3.75
(4.61)
Averaged Helium 005 | 017 | 0.44 1.00 1.78 2.38 2.96
(¢.01)
Metal Grains
Al Foil ® 012 | 037 | 056 | 1.00 1.41 2.12 325 | 3.5
[0.16) : (4.35) | (5.18)
Biologicall4?
Cucumber 100mm - 0.51 0.76 1.00 1.29 1.49 1.60
Cucumber 200mm - 0.52 0.78 1.00 1.21 1.44 1.64
Amnion 042 | o059 | o082 1.00 1.20 1.35 1.59
Other Materials .
Agfa Film14 008 | 020 | oue 1.00 1.68 243 3.49 449
Theory
Waeaire?4¢ - 0.12 | 038 1.00 1.39 1.87 2.87 3.17
Almeida & Iglesias (I)*? 0.68 0.85 | 0.94 1.00 1.02 1.08 1.06 1.07
Almeida & Iglesias (IT)}! 017 | o036 | o.es 1.00 1.40 1.89 2.40 2.99
(3.60) | (4.29)
Marder?s? 0.24 038 | 056 1.00 1.58 2.04 2.49 2.93
(8.18) | (3.60)
Fradkov et &L™® 058 | 053 | 071 | 1.00 1.96 2.80 | 3.95 491
(6.47) (7.n)
Beenakkar™® 038 | 046 | 062 | 100 | 175 | 263 | s49 | 439
(5.38)
Voronoi®? 051 | o6 | 0.2 1.00 1.17 1.38 1.58 1.67
Potts Model®® 0.08 028 | 0.53 1.00 1.83 2.38 3.07 3.53
(437) | (4.70) @ | (537
Nakashima et al.1™ 0.002 | 0.17 | 045 1.00 1.72 2.39 3.06 3.64
(4.36) | (5.13) .
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TABLE 10
RADIUS LAW

rs ¢ rs re ry rs o r10
System (r11) (r12) (r1s) (r14) (r17)
Experiment
T-;B_lm_emiond Growth
Air Froth®3 0.15 | 040 | 0.73 1.00 1.40 1.711 1.82 1.93
(1.96) (2.21)
Al Foil™® : - 0.48 0.72 1.00 1.13 1.58 1.93 2.10

(2.28) | (2.52) ] (2.76)

Two Dimensional Sections of Three Dimensional Grain Growth

Tin%¢ 026 | 049 | 069 | 1.00 1.28 1.68 1.88 2.37
(2.83) | (291) | (3.31) | (3.23) | (3.49)

MgO + LiF® 0.2 047 | 0.72 1.00 127 1.58 1.78 1.96

(2.23) (2.45)
“Theory
Topological”® 057 | 061 | 0.76 1.00 1.38 1.67 1.96 2.13
(2.21)
Vertex Model'™ | 0.15 | 0.36 | 0.6¢ | 1.00 1.56 1.76 1.93 2.15
' (2.40)
Vertext3 016 | 027 | oe¢ | 1.00 1.3¢ 1.59 1.66

Topological?® 0.62 0.60 0.77 1.00 1.37 1.70 1.99 2.23

Potts Model3%® 0.27 0.49 0.73 1.00 1.34 1.60 1.82 1.95
@17) | @222) | (239)
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If we plot instead r, = %“:5_; the graph is significantly more linear, with
just a hint of S-curve rollover for large n. We show Glazier et al.’s result for
an air froth in Fig. 45. In this case because of the scarcity of many-sided
bubbles we may well be observing a subtle selection effect: large many-sided
bubbles are more likely to intersect the frame boundary than small bubbles
and are hence more likely to be excluded from consideration, resulting in a
lower apparent size for large n. Once again we find that the soap froth, the
hexagonal lattice Potts model and the next nearest neighbor square lattice

Potts model give essentially identical results.

We have fewer examples where radius correlations are quoted than we
have area correlations. We summarize the available data in Table 10. Once
again we have used the normalization, rg¢ = 1. The agreement between the
soap froth and the aluminum foil is reasonable, though the foil has slightly
larger many-sided grains. Surprisingly, the two dimensional sections of three
dimensional grains give results essentially indistinguishable from true two
dimensional coarsening. As we would expect, the Potts model and the vertex
model of Nakashima et al. give the best agreement with experiment. The
uncorrelated mean field theories predict excessively large few-sided bubbles.

In all cases the overall linearity of the correlation is good, and the radius law
<rp>=cy+e-n (VIL2)

seems verified for both two and three dimensional grain growth, at least for

n small enough that we are able to obtain reasonable statistics.

Our conclusion is twofold. First: the radius law seems to work for grain
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growth while Lewis’ law fails (though the latter works for biological aggre-
gates with constrained area distributions). Second: all of the models that
seem physically reasonable give good agreement with experiment, the models
that we think of as coming closest to the actual physics, like the Potts model
giving the best results. The agreement also provides added evidence for the
existence of an anticorrelation in side redistribution, which is apparent in

the mean field theory’s predictions of larger size few-sided bubbles.

VII.b Aboav-Weaire Law

The simplest side correlation function to measure (and the only one that
can be reliably calculated given the available statistics) is the average number
of sides of the neighbors of an n-sided bubble, m(n). Assuming sta.tistical
equilibrium and short range interactions, Rivier and Weaire have both pro-

vided arguments for the form of this function.134:135,199,236

Rivier’s argument is particularly elegant. In this case nm(n) is the av-
erage total number of sides of the neighbors of an n-sided bubble. Consider
a bubble with n sides next to a three-sided bubble, and the two common

neighbors, a and b. Then
nm("’) = g + np + 3 + Nothers (VIL3)

where nyy,, is the number of sides of the remaining grains adjacent to the
bubble. If the three-sided bubble disappears, the original bubble and its

neighbors each lose a side, and the total number of sides of the remaining
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neighbors decreases by 2, so
(n—1)m(n—1) =ng +ny — 2+ nygpey- (VIL4)

Assuming that m(n) is unchanged by the disappearance as it must be in a

scaling state yields a recursion relation
(n —1)m(n — 1) + 5 = nm(n), (VIL5)

which is solved by
m(n) =5+ %, (VILS)

where ¢ is an arbitrary constant.

We may argue even more simply as follows. Assume that there are no
long range correlations or stresses in the lattice. Then topological charge
(which represents residual stress) should be locally screened. Consider an n-
sided bubble. Its topological charge is T = n—6. Therefore nearest neighbor
charge screening requires that the bubble’s nearest neighbors must have a
total topological charge of T = 6 — n. Thus the average topological charge

of each neighboris T = 9—;—”, 80

m(n) = 6 — 9—;-'-‘ =5+ %‘ (VIL7)

A longer range interaction with weak local correlation will change the con-

stants, but we expect a general form:

m(n) = Ky + % (VILS)
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Weaire has argued on physical grounds that the correct form of the relation
is
6a + uz
n ]

m(n) =6—a+ (VILY9)

where pu9 is the second moment of the side distribution and a is a constant

of order one.134:13% This relation is known as the Aboav-Weaire Law.

In Fig. 46 we present experimental results for nm(n), measured by Sta-
vans and Glazier for a scaling state of a two dimensional helium froth. They
found excellent agreement with the Aboav-Weaire law with the second mo-
ment of the distribution u2 = 1.4 and @ = 1. Aboav also obtained good
agreement for soap froth patterns with us ranging from 0.24 to 2.86 during
the initial transient, using @ = 1.2. It is reasonable to expect that longer
range correlations (i.e. larger values of a) would obtain during a transient
which retains some residual order. Similar results also obtain in metal films,
and two dimensional sections of three dimensional polycrystals. Since the
Aboav-Weaire law depends on the ability of the froth to equilibrate stress
locally, it is not surprising that it does not apply to either the Voronoi or
Johnson-Mehl models. It does apply to almost all the other models we have

discussed. We present a summary of Aboav’s Law results in Table 11.

Since the Aboav-Weaire law has two fitting parameters, a and uj, the
best we can hope for is a general agreement in form among the data pre-
sented. In Fig. 47 we show Glazier et al.’s comparison between m(n) for

the



TABLE 11
ABOAV’s LAW

m(3) m(4) m(8) m6) | m(7) | m(8) | m(9) | m(10)
System (m(11)) | (m(12)) | (m(18))
Experiment
Soap Froth
Aboav?
v/1 - - 6.20 608 | 5.84
IvV/1 - 6.68 6.33 600 | 591 | 576
v/2 7.49 6.82 644 611 | 593 | 580
v/s 7.86 6.96 6.49 619 | 59 | 587 | 576
IV/e 797 7.09 6.59 628 | 610 | 595 | 578
Iv/s 8.4 T4 6.7 64 632 6.1 6.0
Glasier et al%® 8.13 7.31 6.65 63¢ | 610 | 607 | 604 | 5.7
(5.90)
+ 2.43 2.00 1.58 1.58 158 | 172 | 211 | 201
(1.88) -) )
Grain Growth
AL,O4% 8.08 7.06 6.55 637 | 633 | 597 | 599 | 604
(5.76)
+ 0.34 0.17 0.08 008 | oos | oos | o011.| o028
(0.17)
Al Foil™? 6.99 6.78 6.60 645 | 630 | 622 | 617 | 6.2
6.06 ) (6.03)
+ 0.13 - - - - - - 0.10
(0.10) () (0.10)
Biological
Cucumber'4? - 6.67 6.50 6.18 8.82 5.78 8.79
Theory
Network™ 7.1 7.21 6.69 639 | 62¢ | 614 | 597 | 578
(5.75) (5.80) (5.75)
Vertex ModeP'™ | 851 734 6.64 642 | 6322 | 612 | 596 | 5s8
(5.83) 6.04
Potts Model®® 8.28 7.23 6.65 63¢ | 619 | 607 | 604 | 587
(5.82) (5.08) (5.70) - | (5.63)
+ 2.00 177 1.88 185 155 | 1855 | 118 1.65
(1.84) (1.78) (178) | (1.78)
Static3¢
Voronoi 6.96 6.68 6.44 626 | 610 | 605 | 581 | 574
Johnson-Mehl 714 6.60 6.36 621 | 613 | 600 | 595 | 6.02
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Fig. 46 Aboav-Weaire Law. Correlation between the number of
sides of neighboring bubbles. m(n) is the average number of sides of a bub-
ble next to an n-sided bubble. The dots are taken from an equilibrated
two dimensional helium froth. The dashed line shows the prediction of the
Aboav-Weaire law using a = 1 and the measured value of ug = 1.4 (From

Stavans and Glazier, 1989).220
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Fig. 47 Nearest Neighbor Side Correlations. Correlation between
the number of sides of neighboring bubbles. m(n) is the average number of
sides of a bubble next to an n-sided bubble. The upper points show the value
of m(n), the lower points the standard deviation, for a two dimensional air
froth (circles), the Q = 48 hexagonal lattice Potts model (triangles), and the
Q@ = 48 next nearest neighbor square lattice Potts model (diamonds). To
within experimental error the correlations are identical (From Glazier et al.

1989).93
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Fig. 48 Correlated Side Distributions. Side distributions of bubbles
next to m-~sided bubbles in the scaling state. Solid lines show distributions
for a two dimensional air froth, heavy dashed lines for Potts model. The
total distribution function, p(n), is given for reference, dotted lines for the
air froth and light dashed lines for the Potts model (From Glazier et al.
1989).93
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soap froth and the Potts model. The results are essentially identical with
no free parameters. We can extend the comparison by plotting pp,m(n) the
probability that a bubble next to an m-sided bubble has n sides. We present
Glazier et al.’s results in Fig. 48 for the soap froth and the Potts model
starting with identical initial conditions. As expected we find that few-sided
bubble tend to be near many-sided bubbles. The converse does not hold,
however. Six-sided bubbles like to cluster together, and seven-sided bubbles
attract six-sided bubbles. Even more surprising, the distribution of neighbors
of eight-sided bubbles is essentially the total distribution. Discounting the
bias towards many- and few-sided bubbles that we have noted in the Potts
model, the behavior of the distributions as a function of m is identical for the
model and the froth. Of the remaining models for which data are available,
only the vertex model of Nakashima et al. comes close to reproducing the

soap bubble correlation.



CHAPTER VII
OTHER MEASURES OF DISORDER

We have previously discussed several ways to quantify the equilibration
and disordering of a cellular pattern, including dynamical and distribution
function measures. One natural way to look at disorder is to calculate an
entropy. However, calculating the entropy of a pattern directly is sensitive
to low amplitude noise and to lattice discretization. We therefore follow a
suggestion made by Gollub for the analysis of the pattern of convective rolis
in a large aspect ratio Rayleigh-Bénard cell and measure the entropy of the

azimuthally averaged two dimensional Fourier transform of the pattern:®7
fo® = [ f(m)é*ax
O 103)
k)= o1 VIII.1
f(k) T & ( )
S(®) = [ 7o) log( (k)

This function depends in a simple way on the length scale, L, of the
pattern f(%) as
S(f(LR)) = S(f(%)) + 6log(L), (VIIL2)

where § is the dimension of the Fourier transform. For two patterns with
the same basic length scale, a larger value of S indicates a more disordered
pattern. In Fig. 49 (a) we plot S(f(X)) versus log({a-%)) for Glazier et al.’s
two dimensional air froth. For moderate length scales (late times) we observe

(with some scatter due to poor statistics) the expected linear relationship.
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Fig. 49 Spectral Entropy. (a) Spectral entropy versus time for a two
dimensional air froth. (b) Spectral entropy versus the logarithm of the mean

bubble radius for the same froth (From Glazier et al. 1989).93
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Fig. 50 Radius versus Time. Mean bubble radius versus time for the
two dimensional air froth shown in Fig. 49. Note the nonmonotonic scatter

at long times due to edge effects (From Glazier et al. 1989) 98
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Fig. 51 Perimeter/Area Ratio. Ratio of perimeter to area as a
function of time for the two dimensional air froth shown in Fig. 49. The
ratio reaches a constant value around 8000 minutes, when the froth reaches

its scaling state (From Glazier et al. 1989).93
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At short length scales (early times), S(f(X)) lay below the extrapolated
line, indicating that the disorder of the pattern was increasing. As expected,
the entropy reached equilibrium at approximately the same time as other
measures of the disorder. At very long times the entropy rose abruptly
above the extrapolated line. Most of this rise was due to non-monotonic
fluctuations in the measured average bubble radius (See Fig. 50) at long
times and does not represent a real change in the rate of entropy growth. If
we plot instead, S(f(X)) versus time (Fig. 49 (b)) we see a smooth increase
in entropy, with a large slope during equilibration when the pattern was
increasing in disorder and a smaller constant slope at long times when the

pattern was merely increasing in length scale.

A disadvantage of the entropy method is its sensitivity to noise due to
our difficulty in accurately measuring the average length scale of the pattern.
However, its general applicability makes it a technique worth developing

further.

Another technique to examine the stationarity of the pattern is to mea-
sure the ratio of the mean bubble circumference to the mean bubble radius
as a function of time. We plot Glazier et al.’s values for the ratio versus
time in Fig. 51. The ratio reached its equilibrium value of 4.73 + .4 af-
ter approximately 8000 seconds, agreeing with the other measures of system

equilibration.



CHAPTER IX
THREE DIMENSIONAL FROTHS

IX.a Some Thoughts On Three Dimensional Froths

While we have briefly discussed two dimensional sections of three dimen-
sional materials, our previous discussion has focussed on true two dimen-
sional coarsening, like that found in a flat soap bubble cell or a thin metal
film. For mosi: applications, however, coarsening occurs in an open geometry
in three dimensions and it is the real three dimensional properties, not the
properties of sections which are important. In spite of the importance of the
problem few detailed studies of the development of true three dimensional
structures exist. In the 1940’s Marvin and Matzke did some beautiful work
on the shapes resulting when spherical lead shot is subject to high pressure
and reduced to a dense polygonal mass,158:160 Matzke et al. studied the shape
distribution of carefully stacked regular soap bubbles,161:162 and Lewis stud-
ied the shape distributions of three dimensional biological cells.140:144,147 [,
the first two cases the systems were not allowed to coarsen in time, either
by the nature of the material (lead shot) or the design of the experiment.
In the last, biological constraints on the growth of vegetable cells (mitosis of
large cells) introduced additional processes which are not typical of normal
coarsening. The one complete study of an evolved froth is that of White
and Van Vlack,2%0 who studied the area and side distributions of a slowly
cured polymer foam. Unfortunately, as we mentioned earlier, it appears that
the foam had not reached a true scaling state. In addition, Williams’ and
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Smith measured the shape distribution in A1-1.2%Sn,252 using stereographic
pairs taken with X-rays and viewed under a microscope. Earlier work on
grain shapes was done by Desch in #-brass,’ and Scheil and Wurst in ingot

iron.24 None of these studies examined the dynamics of the pattern evolution.

Theoretical studies of regular and pseudo-regular polyhedral packings are
more common, beginning with Lord Kelvin’s famous paper demonstrating
that a modified tetrakaidekahedron is the minimal regular packing.120 The
distributions produced by plane sections of regular three dimensional pack-
ings have also been extensively studied. Fortes and Ferro have enumerated
the allowed three dimensional polyhedra, in order to define the elementary
three dimensional processes.”’3 Besides the studies of Blanc and Mocellin
and Carnal and Mocellin on two dimensional sections, direct simula.ﬁons of
three din:;ensiona.l coarsening are few. Kurtz and Carpay go to great length
to develop the formalism for a true topological mean field theory, but then
make a variety of ad hoc assumptions that greatly reduce the usefulness of
their model.132 The generality of the various radius based mean field theories
means that their predictions are usually independent of dimension, and so
they may be considered three dimensional models, but the only true three
dimensional models of grain coarsening are the Potts modei simulations of
Anderson et al..12:15 Without more detailed experimental data, it is difficult

to evaluate the accuracy of their results.

Except for the Potts model studies, none of this work is of the sort to

appeal to a physicist. Besides the now discredited idea that a froth was
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an imperfect realization of an optimal regular packing, the work on three
dimensional froths has concentrated on details and special cases with little

effort to elucidate general principles.

IX.b Why is the Three Dimensional Case Difficult?

Why is the three dimensional case so relatively neglected? The basic
problem is experimental. It is much harder to measure a three dimensional
than a two dimensional structure. Just recording the state of the system
in an unambiguous way becomes difficult. Measuring the volume of foam
grains with a syringe or the volumé of metal grains by serial sectioning is
extraordinarily tedious and slow, while the much broader range of shapes
possible in three dimensions means that many more bubbles need to be
analyzed to obtain reasonable statistics. Small wonder that most researchers
. have contented themselves with examining the two dimensional sections of
three dimensional materials. This method has two unfortunate consequences.
First, since sectioning is destructive, it is impossible to follow the evolution of
a pattern. Second, the distribution functions of the two dimensional section
are only second order dependent on the real three dimensional distributions.
For example, a section of a perfectly regular tetrakaidekahedral packing can
result in broad area and number of sides distributions in the section.’3 It is
not surprising therefore, that all the mean field theory models which give (or

assume) log-normal area distributions agree reasonably well with the
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experimental results. They essentially describe the process of taking two
dimensional sections rather than the properties of the materials being mod-

eled.

Besides the virtual absence of good experimental data, any theory of
the three dimensional froth faces an even more serious obstacle. The basic
equations which allow one to write mean field theories for two dimensional
froths, von Neumann’s law, and the rule that < n >= 6, both fail in three
dimensions. In fact, the average number of faces, < f > of bubbles in a three
dimensional froth can vary considerably, though most experiments yield a

value near 14. Instead the relation is

12

<n>=6-—
" <f>’

(IX.1)

which adds an inconvenient level of self consistency to any models. Similarly,
in three dimensions the average surface curvature of a bubble with tetrahe-
dral angles (109.5°), is not determined solely by its number of sides. Rivier

has proposed patching things up with the relation

dA
L =r<f>-1), (X.2)

but his argument is not ent‘irely convincing,198 and at best applies only to
ensembles of bubbles. An additional problem is that the basic scattering pro-
cesses and elementary shapes are much more complicated. There are many
different types of fourteen-sided bubbles, for example. Trying to simulate
two dimensional sections in the manner of Carnal and Mocellin’s and Blanc
and Mocellin’s phenomenological mean field theories, though extremely suc-

cessful at giving distributions does not help us understand the real physics of



245
the three dimensional froth. Non 120° angles and spontaneous nucleation of
bubbles at vertices, remove the characteristic geometrical constraints which
are typical of two dimensional froths, without suggesting any way to re-
cover their three dimensional equivalents, and leave us without either von

Neumann’s law or rates for the elementary processes.

Computer time is the chief problem for the Potts model simulation (which
is the one true three dimensional model which has been successfully imple-
mented), especially because the fraction of volume affected by edge effects is
much larger in three than in two dimensions. Equilibration times are sim-
ilarly stretched out making very large systems imperative. Unfortunately,
running long time montecarlo simulations on 1000 x 1000 x 1000 lattices is

costly to say the least.

IX.c Existing Results

For detailed distributions broken down by topological categories of bub-

bles, we refer the reader to the papers of Matzke and Fortes and Ferro.72:73,161

Rhines and Craig have measured the steady state face distribution in Aluminum.194
Anderson, Grest and Srolovitz have summarized the existing data on metallic
grain growth and the Potts model.l5 Besides the Potts model work, the only
interesting theory for three dimensional grains is the topological mean field
theory of Kurtz and Carpay.!32 Their comparisons to experiment are elab-
orate but not well chosen from a physicist’s point of view, since they never
really show that the model reproduces the most important characteristics of

a real metal (for example the side distribution).!33
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IX.d Where do we go from here?

Fortunately many of the two dimensional models we have described can
be extended in a straightforward manner to three dimensions. We describe

briefly a few possible methods for extending simulations to three dimensions.

Three dimensional topological network models are no more difficult than
network models in two dimensions, provided that we accept Rivier’s three
dimensional von Neumann’s law. The scattering table is longer, but no more
complicated in principle than in two dimensions, the chief inconvenience
being that there are ten or more types of disappearing bubbles rather than

three.

Three dimensional vertex models are extremely attractive because their
dynamics is identical to that in two dimensions. If we select, for example,
the model of Fullman, 3¢ we may immediately write the three dimensional

equations of motion:

: k4

;=5 =, IX.3
VY e (B-F)-F (X3)
, neighbors
where we define the force on a vertex j by
7= e B (IX.4)
: ,.;,. 1% — %
neighbors

We note again that we have no a priori physical argument to derive these
equations. However, their excellent agreement with two dimensional experi-
ment suggests that if we accept them as phenomenologically correct we will

not be too far wrong, especially since the work of Blanc and Mocellin and
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Carnal and Mocellin indicates that three dimensional models are less depen-
dent on details than two dimensional models. One minor difficulty in three
dimensions is that it becomes much harder to define the inside and outside
of a bubble. Perimeter tracing no longer works. Thus we need to set the
dynamics on top of a topological network that we can use for bookkeep-
ing purposes. Computationally, the effort goes up linearly in the number
of vertices, allowing us to contemplate extremely large simulations, which
should be able to reach the scaling regime in an unambiguous fashion. We

are currently designing a model along these lines.

Boundary dynamic models also extend well from two to three dimensions
with the added bonus that the underlying physics is correctly expressed. In-
deed, we might hope to measure the three dimensional analogue to von Neu-
mann’s law from such a simulation. Laplace’s law relating pressure differ-
ences to wall curvature is certainly true in three as well as two dimensions so
there should be no surprises in the physics. Fortes and Ferro have described
such a model but apparently never solved it numerically.”® Once again the
main problems are in bookkeeping. We need to maintain a topological net-
work, and keep track of patches of two dimensional bubble walls, resulting
in a computational load proportional to the total surface area of bubble in
the system. Nonetheless, the method should still prove much more practical
than Potts model simulations and should allow an empirical determination

of an extended von Neumann’s law.

Experimentally the picture is less promising. In principle it should be
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possible to determine the three dimensional structure of a froth using ei-
ther CAT, NMR or optical tomography. Whether the needed accuracy of
resolution is achievable, and if achievable compatible with the timescales of
the coarsening process (true three dimensional imaging still uses the ancient
method of serial sectioning—-though in these cases non-destructive—and there-
fore remains painfully slow), are unsolved questions, because no one has ever
tried the experiments. Clearly, any three dimensional tomographic experi-
ment will generate vast quantities of image data. Nevertheless, the potential
payoff would be large both in applications and in providing hard data to the
theorists, and the experiment is worth trying. The biological possibilities are
even more exciting. One might imagine, in the spirit of Lewis, that cancer
cells with their fast division, would produce aggregates with different side
distributions from normal cells, and hence provide a diagnostic tool. But

such speculations lead us too far from our topic.



CHAPTER X
OTHER COARSENING SYSTEMS

In this chapter we briefly consider two two dimensional systems that
coarsen in a manner that appears qualitatively similar to coarsening in the
soap froth and in metals: bubble patterns in the liquid-gas phase transition
in lipid monolayers and in the magnetic domains of doped iron garnets. Both
are distinguished by the presence of long range interactions which lead to a
greater variety of phenomena than observable in normal coarsening. Both are
also only beginning to be studied experimentally, with few hard theoretical
results. Indeed, in the case of the magnetic bubbles it is still not clear what

sort of theory is appropriate.

X.a Lipid Monolayers

If we distribute a small quantity of a lipid surfactant on a water surface,
the polar lipid molecules align with their heads at the surface of the fluid
and their long polymer tails in the air. Depending on the areal density of the
lipid and the temperature, “solid”, liquid or gaseous two-dimensional phases
may form. We can visualize the phase transition if we add a small amount of
a second lipid with a tail marked by a fluorescent dye, the fluorescent group
being active only in the liquid phase regions. Illuminating the liquid surface
with light of the dye excitation frequency then makes it straightforward (with
correct filtering) to observe the patterns of the different phase domains, a
technique pioneered by Losche and Mohwald, and McConnell, Tamm and
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gas condenses and the interface grows. If we assume that the total surface
energy is small compared to bulk energy, then the temperature and pressure
of the lipid remain essentially constant (provided the water temperature is
carefully controlled). Since we remain at the same point in the coéxistence
curve, the total area of liquid and gas remains constant. Since the thermal
diffusion time is long compared to the molecular diffusion time, the patterns
are well equilibrated, with minimal surface (circular) shapes. Thus the basic

mechanisms driving the pattern evolution are similar to those in coarsening.

A fundamental difference from the soap> froth is that , since pressure is
carried by the connected matrix phase as well as by the fragmented bubble
phase, interactions between bubbles can be long range. When the separation
between bubbles is small compared to their size we would expect this effect
to be small. When the bubbles are well separated it should dominate, and

the behavior should be closer to that of Ostwald ripening.

Depending on the point in the coéxistence region chosen, we can obtain
either bubbles of gas in a liquid matrix, bubbles of liquid in a gas matrix, or
mixtures of both (e.g. patterns with regions of both types, or hierarchical
patterns with gas bubbles inside liquid bubbles, inside gas bubbles, etc.).
This range of initial patterns is a fascinating topic in its own right which we
will not discuss here. Moore et al. studied stearic acid monolayers, looking
at gas bubbles in a liquid matrix.1%® They were particularly interested in
the possible analogy with the two dimensional soap froth. Qualitatively

the phenomena they observed seemed very much like those seen in a soap
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froth. The pattern itself looked similar to soap bubbles, with small bubbles
shrinking and large bubbles growing. They observed both T'1 (side swapping)
and T2 processes (bubble disappearance). The overall length scale of the
pattern increased monotonically in time. An obvious difference from the soap
froth was the variable width of the walls. At short times bubbles were more
round than polygonal, becoming progressively more polygonal with time (a
behavior more typical of nucleation than coarsening). Quantitatively, they
measured the side distribution for their patterns and the mean bubble area
versus time. They obtained a growth exponent of & = 1.1+0.1 (See Table 4),
in agreement with the expected value for ideal grain growth. Their measured
distribution function is rather tail heavy including a thirteen-sided bubble
(See Tables 7 and 8), and depends on measurements of only about forty
bubbles. They note that the second moment of the distribution was still
increasing at the end of their run, a sure indication that they had not yet
reached a scaling state. A problem with lipid monolayer patterns is that,
because they form by a nucleation process, they tend to start with many
very small bubbles and very broad area distributions and therefore take a
long time (and a large relative increase in length scale) to equilibrate. The
experiment is much faster than in the soap froth since the typical timescales
are a few hours and the absolute length scales typically 10 um to 100 um.
Even so, maintaining temperature and concentration stability over that time

is difficult.

Berge et al. have recently extended Moore et al.’s work, studying gas
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bubbles in a liquid matrix using pentadecanoic acid, with a hexadecylamine
label.?? Unfortunately experimental difficulties with image stability and anal-
ysis have so far prevented them from making quantitative measurements, but
they did observe coarsening with well defined T'1 and T2 processes for a wide
range of ratios of matrix area to bubble area. For patterns dominated by
bubbles, the evolution looked very similar to that of the soap froth, with
walls of uniform width and polygonal bubbles (See Fig. 52). For patterns
with more matrix the bubbles were rounder (See Fig. 53) and some ambi-
guity crept in in determining the number of sides (See Fig. 54), though it
is always possible to formally determine nearest neighbors using the Voronoi
construction. In the former case the rates of growth appeared to be close
to von Neumann’s law, in the latter, the rate of shrinkage of small bubbles
appeared to depend on the bubbles’ size as well as their number of sides. In
patterns with extremely narrow walls, wall breakage and grain coalescence
- occured, but were rare otherwise. Glazier has measured side distributions
from ordered (N = 221) and disordered (N = 103) patterns supplied by
Berge (See Tables 7 and 8 and Fig. 55).9 The "disordered” pattern prob-
ably still contained some residual order but its side distribution lay within
the experimental range for the scaling state soap froth. On the basis of
these observations we may tentatively conclude that the narrow matrix lipid
monolayer behaves like an ideal two dimensional coarsening system. The
crucial piece of missing information is the dynamics, a measurement of the

dependence of the growth rate for bubbles on their number of sides and size.



Fig. 52 Lipid Monolayer Bubbles. Pattern of lipid monolayer bub-
bles showing well separated round bubbles (Figure supplied by B. Berge

1989).
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Fig. 53 Lipid Monolayer Bubbles. Pattern of lipid monolayer bub-
bles showing close packed polygonal bubbles (Figure supplied by B. Berge

1989).
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Fig. 564 Ambiguity in Separated Bubbles. (a) A four-sided bubble.
(b) A three-sided bubble. In some situations only the Voronoi construction

can to distinguish the two cases.






Fig. 55 Side Distribution. Side distribution for an ordered and
a disordered lipid monolayer pattern. A typical soap froth distribution is

given as a comparison.



O Lipids A
o Lipids B
A Soap Froth

261



262
Based on our concept of the lipid monolayer as intermediate between the
soap froth and Ostwald ripening, we suggest that a reasonable form for the

growth rate should be:

r
<r>

dA(n,r)

i =(1-¢x (n—6)+e (1—

), (X.1)

where ¢ is a fitting parameter that describes the degree of polygonality of
the bubbles, being zero for purely polygonal bubbles, and one for infinitely
separated bubbles. The form of the second term comes from the requirement
that area be conserved. We can easily rewrite any of our mean field and
network models using this sort of a fundamental dynamics. We could also
write a next order theory to include the dependence of a bubble on the
properties of its neighbors, in which we explicitly consider area exchange

between all pairs of bubbles:
i - (1 Onlni— ) + 5 Zf(lz, - z,l)(— -h,

where 1 indexes the bubbles, Z; is the position of the center of the ¢th bubble
and f describes the drop off with distance of the interaction between bubbles.
We might also wish to make € a local function of bubble size and separation.
Without further experimental data we cannot begin to discuss correlations

in side redistribution, local fluctuations, or other second order effects.

X.b Magnetic Bubbles

Throughout our previous discussion we have examined coarsening in

time, the basic mechanism in all cases being diffusion driven by energy gra-
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dients. Magnetic bubble patterns, in contrast, are usually time indepen-
dent, with the control parameter being the strength of an applied magnetic
field. Generally when the applied magnetic field changes, the pattern evolves
rapidly and then reaches a time independent state (sometimes with a few
noise driven adjustments at later times). This difference of control parame-
ter allows a variety of experiments impossible in normal coarsening, since it
allows us to move “backwards in time” towards smaller length scales. Further
complications come in two types. The long range interactions in magnetic
systems are longer range and less intrinsically self averaging and support
larger gradients than in lipid monolayers. They are also fundamentally non-

linear, which makes them harder to model.

The magnetic bubble patterns that we will discuss are regions of partic-
ular spin orientation in thin samples of doped ferri-magnetic iron garnets.
The anisotropy of the material is such that the spins tend to align either up
or down perpendicular to the material. When viewed in a microscope under
crossed polarizers, the Faraday effect makes one spin orientation look light
and the other dark. Since the basic exchange interaction is ferromagnetic,
like spins clump into macroscopically large patches of a given orientation,

and the patterns are easy to visualize.

Because they were once thought to have industrial applications, iron gar-
net magnetic bubble materials have been studied extensively by engineers
and applied physicisf;s.31’45'63'186'224 There have been analytic calculations

of the behavior of isolated bubbles and regular bubble lattices as well as
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pattern instabilities,156:187,212,225,226,235,253 T}ere are a number of interest-
ing questions concerning residual twists in domain walls (Bloch lines), and

various kinds of anisotropy which need not concern us directly here.

While a full Hamiltonian for a magnetic bubble pattern would be difficult
to write down (and even a moderately complete one is complicated) we need
concern ourselves with only a few terms.®® An applied magnetic field will
tend to align spins with it. The domain walls between regions of reversed
spin have an energy associated both with the mismatch between neighboring
spins and with the local spin misalignment relative to the crystal as the
spins rotate (spatially) from one orientation to the other. Finally, regions of
uniform gpin orientation have a dipole energy created by the self-interaction
with the total generated field. In schematic form we may express this as an

Hamiltonian:%3

¥=> |-&-8- D 2755 +J’/A
'

nesghbors ¢

sin?(¢(Z))dZ+2n / M?(Z)dz,
a Area

(X.3)

re

where ¢ indexes the spins, &; is a spin, J is a positive exchange strength, J'
an anisotropy streﬁgth, ¥ the angular mismatch between local spin orienta-
tion and the preferred crystalline orientation, H the applied magnetic field,
and M the local magnetization per unit area. The four terms correspond
respectively to the external field energy, the exchange energy, the anisotropy

energy, and the dipole energy.

The basic mechanism controlling the formation of magnetic bubble pat-

terns is the competition between the wall energy which favors the creation
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of large domains, and the dipole energy which favors the creation of small
domains. Thus the basic dynamics differ from the soap froth in the presence
of long range forces. Also if the size of the domains is very small, the wall
energy per unit area is very large. If the domains are very large, the dipole
energy per unit area is very large. Thus for any given value of the external
magnetic field (and control parameters like temperature) the pattern has a
preferred wavelength which minimizes the sum of the wall and dipole ener-
gies. The wall energy has the additional function of a surface tension, tending
to straighten (or reduce to smooth arcs) the domain walls. Because of the
presence of long range forces we cannot expect rigorous minimal surfaces
however. Recurved walls reminiscent of metal grains are also common. The
applied magnetic field controls the balance between the two spin orientations

and also increases the preferred wavelength.

If the sample is raised above the temperature at which it undergoes its
ferrimagnetic phase transition (the Néel temperature, Ty, is approximately
130° C in Molho et al.’s samples) and is then cooled, it forms at zero field
(depending on the individual sample and the applied field when the Néel
temperature is crossed on cooling) one of two basic types of pattern, a more
or less regular array of bubbles (See Fig. 57 (A)), or a continuous folded
labyrinth (See Fig. 56 (a)).

If we apply a magnetic field to the labyrinth favoring one spin orientation
(by convention we will assume that we favor the white spins in our pictures),

the black regions first narrow and then begin to unwind, keeping close to



Fig. 56 Coarsening of a Labyrinth. Stages in the coarsening of a
magnetic bubble labyrinth subject to an external magnetic field. (a) H= 0
Oe. (b) H= 1470 Oe. (c) H= 2250 Oe. (d) H= 2700 Oe. (e) H= 3080 Oe.
(f) H= 3300 Oe (From Kooy and Enz 1960).124



267



Fig. 57 Coarsening of Magnetic Bubbles. Normal coarsening at
T = 20° C of a magnetic bubble pattern with applied magnetic field. (A)
H= 0 Oe. (B) H= 54.1 Oe. (C) H= 73.8 Oe. (D) H= 85.2 Oe (Figure
supplied by P. Molho 1989).
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both the favored ratio between white and black and the selected wavelength,
until at some critical field, the last black line collapses and the sample has
uniform magnetization. We show an early example of this process by Kooy

and Enz in Fig. 56.

In the case of a bubble pattern at a temperature much below Ty, the pro-
cess is different (See Fig. 57). Because it takes energy to change the topology
of a three-connected vertex (to break a wall), bubble patterns cannot change
. scale smoothly in the way a labyrinth c@. If we apply an external field to
favor the bubble orientation, the walls initially narrow, but soon reach a size
below which they are unstable. The next stage consists of the shrinking of
few-sided (small bubbles) but the wall energy prevents small bubbles from
shrinking indefinitely. Bubbles that are too small increase in energy when
they shrink (hence the absence of three- and four-sided bubbles). These sta-
ble uniform area five-sided bubbles freeze the pattern evolution (note the
presence of many uniform five-sided bubbles in Fig §7 (A)-(C)). They can
also maintain a size much smaller than the optimal wavelength. For the ratio
of white to black to increase further the small bubbles must collapse entirely
and this is the fundamental mechanism of coarsening in magnetic bubbles.
Because of the long range dipole interaction and the pinning of five-sided
bubblesi which results in large areas having mismatched wavelength, the re-
organization of the pattern tends to happen abruptly, with large patches
reorganizing together rather than continuously with bubble by bubble reor-

ganization as in normal coarsening. In particular, five-sided bubbles near



Fig. 58 Coarsening of Magnetic Bubbles. Number of bubbles in a
fixed area pattern versus applied magnetic field (Figure supplied by P. Molho
1989).
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Fig. 59 Coarsening of Magnetic Bubbles. Average area per bubble
in a bubble pattern versus applied magnetic field (Figure supplied by P.
Molho 1989).
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Fig. 60 Coarsening of Magnetic Bubbles. Moments of the side
distribution in a bubble pattern versus applied magnetic field (A) Second
moment. (B) Third moment. (C) Fourth moment. (D) Width (Calculated

from data supplied by P. Molho 1989)
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Fig. 61 Coarsening of Magnetic Bubbles. Area Distributions. (A)
Total area distribution. (B) Area distribution for five-sided bubbles. (C)
Area distribution for six-sided bubbles. (D) Area distribution for seven-sided

bubbles (Figure supplied by M. Magnasco 1989).
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each other tend to be destabilizing so there is a critical field above which
groups of three five-sided bubbles lose stablity, then a field above which
pairs become unstable, and finally a field above which single five-sided bub-
bles become unstable. At this field there are no more topological structures
to stabilize the pattern and the length scale grows explosively (see Fig. 59).
For high applied fields the size of the reorganizing patches is large and wall
breakage and domain coalescence are common. One way to make the evolu-
tion more like a soap froth is to apply a small alternating bias field on top

of the main field.22

If we calculate our usual quantities using Molho et al.’s measurements
for coarsening magnefic bubbles (< a(H) >, moments, etc.) we see a very
different general pattern from that of the soap froth. The number of bubbles
decreased slightly faster than linearly in H (Fig. 58). On a log-log plot, there
was a clear but smooth rollover around 50 Gauss, where the rate of area
growth suddenly increased (Fig. 59). The monotonic increase of average
area with applied magnetic field at least suggests that we are not too far
wrong to associate field strength with time. As the field increased, p(6)
decreased monotonically and p(5) and p(7) increased monotonically, but the

distributions themselves remained very narrow.

The moments all showed the same behavior, with ug gradually increasing
from 0.29 to 0.39 before taking off (Fig. 60 (a)), us staying constant at 0.008
before increasing (Fig. 60 (b)), u4 staying nearly constant around 0.33 (Fig.

60 (c)), and W increasing in step with the area from about 0.30 to 0.38
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over the same range (Fig. 60 (d)). If we wanted to identify any of these
patterns as a scaling state we would have to choose those at low magnetic
field, but this seems unsatisfactory. Instead it seems more reasonable to
accept that magnetic patterns never find an equilibrium. At all applied
magnetic fields six-sided bubbles dominated (except perhaps at very high
fields where our statistics are abysmal), there were no three- or four-sided
bubbles. Bubbles with more than eight sides were extremely rare and the
moments were much smaller than observed in normal coarsening systems,
resembling much more the distribution functions we associate with biological
materials or basalt fracture. The basic reason is the same in both cases.
Wavelength or area selection results in strong limitations on the possible
width of the side distributions. The total area distribution (Fig. 61 (A))
resembled that of the soap froth with a few significant differences. As in
the soap froth, p(A) decreased with increasing area for large areas, but more
rapidly as befits a wavelength selected distribution. Unlike the soap froth,
the number of very small bubbles was small. Five-sided bubbles (Fig. 61 (B))
formed a well defined class with a well defined non-zero most probable area.
Six- and seven-sided bubbles, which do not feel the constraint on minimum
bubble size, showed distributions close to those found in the soap froth (Fig.
61 (C) and (D)). To the extent that such a measurement is meaningful for a
distribution in which only five- though nine-sided bubbles occur, the patterns

appeared to follow the Aboav-Weaire law.

In spite of these differences between magnetic bubbles and our other
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coarsening patterns, we can still approximate our coarsening as a competi-
tion between surface tension energy minimization and topological constrains.
We have already noted the stabilizing effect of five-sided bubbles. In fact, any
three-connected vertex is stabilizing in the same way because (at least at tem-
peratures well below the Néel temperature) breaking a wall costs energy.168
We see this most clearly when we perform the experiment impossible in nor-
mal coarsening of increasing and then decreasing the magnetic field. We
show Molho et al.’s example in Fig. 62. He began with an initial bubble
pattern at moderate field and temperature (Fig. 62 (A)) and reduced the
magnetic field. Since the pattern could not nucleate new bubbles it adjusted
to its smaller optimal wavelength by having its walls buckle and stretch (Fig.
62 (B)). Where the presence of pinned five-sided bubbles resulted in a local
wavelength smaller than the optimal, the five-sided bubbles grew but the
walls remained smooth (e.g. in the lower middle left of Fig. 62 (B)). De-
creasing the applied field to near zero resulted in a labyrinth with almost
uniform areas of black and white (Fig. 62 (C)). Looking carefully at Figs.
62 (B) and (C) shows that the three-connected vertices moved slightly but
did not disappear. Increasing the field back to its original value restored a
pattern topologically close to the original (Fig. 62 (D)). While the sizes of
the bubbles changed slightly, most of the vertices remained unchanged. In a

few places, bubbles which were much smaller than the optimal wavelength
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disappeared. Presumably the changes in pattern detail affected the stabil-
ity of nearly unstable bubbles as the field was increased, resulting in the

disappearance of a few additional bubbles.

For the sake of the pictures and to stimulate further thought on the sig-
nificance of anisotropy and long range interactions we include a few examples
of exotic coarsening behavior for which we do not yet have quantitative anal-

yses.

Near the Néel temperature the presence of a defect in the sample crystal
can allow the nucleation of labyrinth at no energy cost. Molho et al. began
with a pattern at T = Ty — 5° C (Fig. 63 (A)), indistinguishable from that
shown in Fig. 56 (a). As they increased the applied field a region of labyrinth
nucleated from a defect (Fig. 63 (B)). At higher fields weaker defect centers
also began to nucleate labyrinth (Fig. 63 (C)). Finally the labyrinth pushed
aside the bubbles to dominate bthe pattern (Fig. 63 (D)). The wavelength of
the labyrinth was substantially larger than the wavelength of the bubbles.
It is also interesting to note that this entire evolution took place at fields
too small to cause the collapse of bubbles. One could scarcely ask for a
clearer demonstration that the labyrinth pattern has a lower energy than
the bubble pattern, and that the energy advantage increases with field. The
only thing that kept the labyrinth from swallowing the bubbles completely
was the boundary of stretched bubbles (looking rather like the epithelium of

a tree) which apparently add an extra “domain energy” to the labyrinthine



Fig. 62 Pattern Conservation in Magnetic Bubbles. (A) A bubble
pattern at a fixed field, T = 20° C. (B) The field is decreased and the
walls buckle. (C) At small fields a nearly symmetric labyrinth forms. (D)
Returning the field to its initial value restores the topology of the original

pattern with minor changes (Figure supplied by P. Molho 1989).
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Fig. 63 Nucleation of Labyrinth. Nucleation of labyrinth from a
defect with applied magnetic field, T' = Ty — 5° C. (A) H= 0 Oe. (B) H=17
Oe, beginning of nucleation. (C) H= 19.1 Oe, labyrinth begins to nucleate
at additional locations. (D) H= 19.4 Oe, Labyrinth grows rapidly at the

expense of bubbles (Figure supplied by P. Molho 1989).
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Fig. 64 Anisotropic Coarsening of Bubbles. Effect of anisotropy
on bubble growth near Tyy. T = Ty — 1° C. (A) H=16.5 Oe. (B) H=17.5
Oe, bubbles begin to stretch. (C) H=19.0 Oe, growth of elongated bubbles.
(D) H=21.5 Oe, bubbles grow by the motion of three-connected vertices to
lower left (Figure supplied by P. Molho 1989).
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Fig. 65 Anomalous Bubble Growth in Magnetic Bubbles. Anoma-
lous bubble growth in a magnetic bubble pattern near Ty, T = Ty — 4° C.
(A) H= 0 Oe. (B) H= 28 Oe, a few bubbles grow bigger as the field in-
creases. (C) H= 30 Oe. (D) H= 31 Oe, THe larger bubbles grow rapidly.
(E) H= 32.1 Oe, the large bubbles dominate the pattern. (F) H= 36 Oe, the
initial length scale has disappeared and the pattern resembles that produced
by normal bubble growth (Figure supplied by P. Molho 1989).
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Fig. 66 Coarsening of Magnetic Bubbles. Bubble growth for the
ensemble of n-sided bubbles as a function of applied magnetic field. Note
that this is not the same as von Neumann’s law (Figure supplied by M.

Magnasco 1989).
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patch. However, besides retarding the growth of the labyrinth, these bubbles
also facilitate the collapse of the original bubble pattern. In their absence
the nucleated pattern cannot grow.18”7 The temperature determines whether

the labyrinth is energetically favorable enough to cause wall breakage.

Anisotropy can also have a decisive effect on coarsening. In Fig. 64 we
show Molho et al.’s observation of coarsening in a material at T = Ty — 1°
C, which allowed walls with a particular orientation to break more easily
(ranging from east-west at the right of the picture to northwest -southeast
at the upper left). Because this type of anisotropy is small the effect occurs
only near T)y where the wall breakage energy is very small. Once again the
zero field pattern (Fig. 64 (A) was indistinguishable from Fig. 56 (a). As the
field was increased however, bubbles with borders aligned along easy breaking
directions began to coalesce (Fig. 64 (B)), producing a pattern of elongated
bubbles reminiscent of cloth stretched near the point of failure. For larger
fields the coalescence perpendicular to the preferred direction continued (Fig.
64 (C)), eventually producing a strongly grained pattern which grew by the
sliding of three-fold vertices (Fig. 64 (D)). The final pattern was nearly as

well behaved as one composed of well ordered parallel stripes.

Finally we show Molho et al.’s example of orientationally isotropic but
spatially varying rates of bubble growth, analogous to the case of anomalous
grain growth in metals. Again, working near T is crucial since the small
anisotropy can only have an effect when it is comparable to the wall breakage

energy. A sample that exhibits anomalous bubble growth near Ty will show
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normal bubble growth at lower temperatures. They began with the usual
zero field bubbles at T' = Ty — 4° C (Fig. 61 (A)). For small fields they
observed normal grain growth with a few bubbles slightly larger than their
neighbors (Fig. 61 (B)). As the field increased further these larger bubbles
grew explosively at the expense of their neighbors (Fig. 61 (C)-(E)) produc-
ing the characteristic bark-like pattern of elongated bubbles lying along the
surface of the growing bubbles which we noted in Fig. 11 (D). Finally the
anomalously growing bubbles swallowed all the small length scale pattern
and returned to a situation indistinguishable from that produced by normal
bubble growth (Fig. 61 (F) compare Fig. 56 (d)). This return to a normal
looking scaling pattern is also observed in metals. Of course if we were to
look at fhe distribution functions for this pattern as a function of field they
would be bimodal, and vastly broader than the corresponding stages in nor-
mal growth. The energy to drive this anomalous grain growth presumably
comes from the mismatch between the wavelength of the bubble pattern and
the optimal wavelength, but the mechanism which selects the anomalously

growing grains is unclear.

Existing theories of magnetic bubbles treat either regular arrays or iso-
lated bubbles. There have also been a few attempts to deduce large scale
statistical properties of random lattices. The difficulties are several. Since
bubbles evolve in patches and wall breakage is a dominant mechanism in
some types of coarsening, we do not expect a simple description like our

network models to suffice. In extreme cases the growth or shrinkage of an
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individual bubble becomes an ill defined concept. Surprisingly if we take the
naive zeroth order approximation to measuring von Neuann’s law we obtain
a sensible result. In Fig. 66 we plot Molho et al.’s measurement for the
average total area of n-sided bubbles as a function of applied external field.
This measurement is not equivalent to von Neumann’s law because bubbles
can change their number of sides. If we note that < Ay >= A\, < a > we

obtain simply:

d<Apn> | d<a> dAy
ai = An 7l +<a> d—H—. (X.4)
In a scaling state soap froth it would show that all bubbles grow with a

rate d%‘iﬂ?— = KkAp. For the magnetic bubbles the result is rather different.

Average bubble areas, < A,, >, do depend linearly on applied magnetic field
(which we might not have predicted looking at the nonlinear dependence of
total area), but five- and six-sided bubbles shrink and seven- and eight-sided
bubbles grow, showing that the distributions continue to evolve. This gives

us a relation between < a > and Ap:

dln<a> + dinln _ K
dH dH ~ la<a>’
but tells us nothing about the evolution of individual bubbles. Whether this

(X.5)

relation will prbve useful in developing a theory for magnetic bubble growth
remains to be seen. It may prove more helpful as a way to test theories than

to create them.

Magnasco has written an interaction model mean field theory for the
rapid equilibration of a bubble pattern after a field change and during nu-

cleation at the Néel temperature, taking into account both separations and
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radii of the form and assuming nearly circular bubbles.!5¢ He defined the

mean field distance between the surfaces of two bubbles to be
d.'j = |.’l-:; - fjl —r— rJ-, (X6)
where Z; is the position of the center of the ith bubble and r; its radius.

Then he took the movement of the centers of the bubbles to be the effect of

the dipole repulsion by the remaining bubbles,

dz; z; - Ij
T oM E a. (X.7)
jFW
and the change in radius to be pressure driven by the same dipole force,
dr; 1
5 =2 1- ) (X.8)
I# iy

where 2 controls the equilibrium width of the area distribution, small k2
resulting in broad distributions and large x2 in narrow distributions. Note
the nonlinearity in both terms of the equation. He obtained good agreement
with experiment for the qualitative equilibration but has not yet measured
the distribution functions. In principle k3 should be a decreasing function of
the applied magnetic field, and Magnasco is currently developing a model for
the field evolution of magnetic bubble patterns using an extended model of
this type. The difficulty is in understanding why a model that should work
well for Bragg’s bubble rafts should also be appropriate in a case where wall

breakage and patch rearrangement are important mechanisms.

We could also write a boundary dynamic model along the lines of Frost
and Thompson, adding either an exact integrated form for the local magneti-

zation or the mean field version given in equation X.7. It should be possible
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to include wall breakage and the stabilization of five-sided bubbles with an
auxiliary field. The collapse of finite size bubbles can also be included by
increasing the length scale for bubble removal to a larger value. While the
Potts model seems like the natural type of model for a magnetic system, the
calculation of the local magnetization seems guaranteed to be computation-
ally prohibitive. Perhaps, it would be possible to used a mixed model like
that of Weaire and Kermode with Potts model calculations layered on top

of a mean field calculation of the local magnetization.



CHAPTER XI
CONCLUSION

After our long ramble among various two dimensional coarsening phe-
nomena it would be nice to be able to write something definitive. We are
a long way from that achievement. We do understand a great deal about
two dimensional coarsening in soap froths and pure metals. We understand
how we go from an ordered pattern to a disordered scaling state and we have
developed several methods to measure pattern disorder all of which give com-
patible results. We have developed a large variety of models, many of which
seem accurately to duplicate the evolution of a froth. In the specific points
where our models fail, we have some insight into why: anisotropy in the
Potts model, failure to consider side shedding anticorrelations in our mean
field theories, etc. Having identified the source of our difficulties we still
need to study in detail how calculated distributions depend on anisotropy
and correlations. We understand, at least qualitatively, the physical reasons
why different systems (biological, geological, etc.) give different sorts of pat-
terns, but we have not made any concerted effort to explain those patterns.
Lewis’ program for biology is still far from completion. In this sense we
understand how the interaction of local energy minimization and topology

produces complex patterns.

From an experimental point of view, repeating the soap froth experiment
with larger cells and more and better controlled initial conditions would
be desirable, but we would not expect any real surprises. Repeating the

298
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basic area versus time measurement in a drained cell with constant plateau
border width would be ideal. If a drained cell still came up with a growth
exponent different from one we would have to rethink our entire theory from
the beginning. We also need to measure the anticorrelation between side
shedding and side number. In the area of metal coarsening we need more

information on anisotropy and temperature effects.

We have skirted or merely touched on a number of interesting points
in two dimensional coarsening. We have discussed in a handwaving fashion
how the zone refining of impurities and the presence of macroscopic defects
leads to anomalous exponents in metal grain growth. It is a simple matter to
drill holes and thread pins through a soap bubble cell to duplicate the effect.
Glazier has made some preliminary measurements with a regular lattice of
pins and found that coarsening slowed and eventually stopped. However,
his observations were purely qualitative. A large cell with randomly placed
pins would be a worthwhile experiment. It is less clear how we could du-
plicate anomalous grain growth experimentally. Several of Glazier et al.’s
experiments suffered from undesired wall breakage. Perhaps, short duration
intense heating could be applied intentionally to mimic random grain coales-
cence. More careful comparisons between the small-Q Potts model and metal

systems exhibiting anomalous grain growth would also be interesting.

Theory and experiment are equally deficient when we come to three
dimensional froths. Even the Potts model gives relatively poor results, for

reasons that are not entirely clear. That we possess one adequate theory
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for two dimensional sections of three dimensional materials is no guarantee
that we understand the full three dimensional problem. We are currently
investigating the possibility of extending some of the existing models to three
dimensions. But it will be some time before we have a developed theory. As
a first step it would be nice to have a three dimensional von Neumann’s
law, or at least to know that it did not exist. The experimental picture is
bleak. The best hope would be some sort of optical tomography on a rotating
drum of froth. It would be an expensive and elaborate, but not impossible
experiment. Data analysis and reduction might well prové to be an even
worse problem than data collection. However, the good experimental data

in three dimensions would be the most important new result we could obtain.

Finally, we have looked at two systems in which long range forces play a
role. In the case of lipid monolayers, certain configurations look startlingly
like ideal two dimensional grain growth while others look like mean field the-
ory Ostwald ripening. In both cases we observe classical scaling states and
familiar behavior. Indeed in the grain growth limit we expect the lipid mono-
layers to be closer to the ideal than any other system. We have suggested one
way in which the von Neumann’s law and Ostwald ripening theories could be
combined, but lack the experimental data to test it. Additional experiment
seems likely to lead to an understanding as complete as that we have for

normal coarsening.

In the case of magnetic bubbles, long range interactions are fundamen-

tal. Though we have tried to draw analogies with more familiar patterns of
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behavior in metals and biology, many of the phenomena and patterns seem
bizarre. Treating these patterns with an interaction mean field theory may
work for “ordinary” bubble growth, but seems unlikely to explain behavior
under field reversals, and the whole zoology of non-standard coarsening. A
combination mean field theory plus boundary dynamic approach or mean

field theory plus Potts model approach seems most promising.

Experimentally there is an enormous amount to do. All of the different
coarsening scenarios need to be quantified. It seems clear that any future
experiments should be done with an alternating bias field to smooth out bub-
ble growth. The hysteretic patch reorganization produced by DC fields adds
greatly to the complexity of interpreting a set of data already fearsomely
complex. For both the lipid monolayers and the magnetic bubbles the fun-
damental problem is the lack of a basic dynamical equation. Top priority
needs to go to an experimental measurement of von Neumann’s law. For the
lipids it probably exists. For the magnetic bubbles it may well not exist, in
which case magnetic bubbles may prove a classic hard problem, like large

aspect ratio Rayleigh-Bénard convection.

Spin-glasses may hold an important lesson. Statistics do not always tell
the whole story. We ought to be surprised if magnetic bubble patterns could
be described simply. It is nice to know that underneath these frightening
non-linear problems, lies a simple linear problem that we have managed to

solve.
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