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We study the transition to chaos at the golden and silver means for forced Rayleigh-Bénard
(RB) convection in mercury. We present f(a) curves below, at, and above the transition, and pro-
vide comparisons to the curves calculated for the one-dimensional circle map. We find good
agreement at both the golden and silver means. This confirms our earlier observation that for low
amplitude forcing, forced RB convection is well described by the one-dimensional circle map and
indicates that the f(a) curve is a good measure of the approach to criticality. For selected sub-
critical experimental data sets we calculate the degree of subcriticality. We also present both ex-
perimental and calculated results for f(a) in the presence of a third frequency. Again we obtain
agreement: The presence of random noise or a third frequency narrows the right-hand (negative q)
side of the f(a) curve. Subcriticality results in symmetrically narrowed curves. We can also dis-
tinguish these cases by examining the power spectra and Poincaré sections of the time series.

I. INTRODUCTION

For certain combinations of temperature difference,
aspect ratio, and external magnetic field, forced
Rayleigh-Bénard (RB) convection in mercury exhibits
dynamics similar to those of the critical circle map.! In
this paper we carry out a detailed study of the transition
to chaos in this system, and examine the effects of noise
and of a third, nominally incommensurate, frequency.
We use the f(a) singularity spectrum? and the power
spectrum to compare the dynamics of the experiment
with that of the circle map.}

Experimental studies of the transition to chaos in hy-
drodynamic systems have employed power spectra, Poin-
caré sections, Lyaponov exponents, and calculations of
fractal dimension to characterize the states examined.*
Previous work using the f(a) technique of characteriz-
ing attractors naturally tended to follow the same lines,
concentrating on the f(a) curve exactly at criticali-
ty.">=7 This focus made sense since exact theoretical re-
sults were known only for the critical cases."> The f (a)
curves obtained from the RB system at criticality and
with golden mean winding number agreed well with
those obtained by exact calculations on the circle map,’
confirming the correspondence between forced RB con-
vection and the one-dimensional circle map already not-
ed using other techniques.®® Similar agreement obtained
between the period-doubling cascades observed inside
locked tongues in forced RB convection and the stan-
dard bifurcation tree.* One problem with these results
was that the method of calculation employed was
cumbersome (requiring a separate calculation for each g)
and not terribly accurate. Thus only data sets already
known to be critical from other tests were analyzed.

However, a better general understanding of the f(a)
function has led us to develop improved techniques for
calculating it from experimental data.!® There are now
good numerical f(a) curves for the subcritical circle
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map!! and dynamical systems in the presence of noise
are also better understood.'> Thus we are able for the
first time to carry out the experimental program pro-
posed by Jensen et al.! In this paper we examine experi-
mentally the regions around criticality, both subcritical
and supercritical, and the effects of noise (in this case a
third frequency) on the f(a) function. We also present
a variety of spectra and Poincaré sections to show how
these various techniques can reveal different aspects of
the system’s behavior.

II. EXPERIMENTAL PROCEDURE

The experimental apparatus consists of a rectangular
cell, 0.7X0.7x 1.4 cm® filled with mercury. We main-
tain a constant vertical temperature difference across the
cell to induce the oscillatory instability (this defines the
internal frequency f;,, typically 0.24 Hz), apply a con-
stant magnetic field of approximately 240 G parallel to
the short axis of the cell, and inject an alternating
current (amplitude A4.,,, frequency f.,,) asymmetrically
through the mercury. The Lorentz force induced by the
current couples nonlinearly to the vorticity field. We ob-
serve the state of the system by measuring the tempera-
ture as a function of time at the bottom center point of
the cell. The experimental apparatus has been described
in more detail elsewhere.®

In this experiment we attempt to set the winding num-
ber, fin/fex» e€qual to either the golden
[og=(V'5—1)/2] or silver (cg=V2—1) means. Be-
cause forced RB convection exhibits frequency locking,
these ratios cannot be achieved exactly but can be ap-
proximated (to the accuracy allowed by experimental
noise) by locking successively to the Fibonacci approxi-
mants (5/8, 8/13, 13/21, 21/34, ... for o and 5/12,
12/29, 29/70, 70/169,. .. for og). A detailed descrip-
tion of the tuning process at the golden mean has been
given elsewhere.’
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Because of the rapid increase in denominator of the
o series, the silver mean is much more difficult to tune
accurately than the golden mean. A particular problem
in the silver-mean case, especially near and above criti-
cality, is the noise or drift-induced transition between
locked states which results in time variation of the wind-
ing number and hence limits the usable time series to a
few hundred points. Because the silver mean is close to
the strong resonance at 1, silver-mean forcing drives
higher-order instabilities more strongly than the golden
mean and hence is more likely to produce unwanted ad-
ditional frequencies.

The analyses presented here are based on strobo-
scopies, i.e., sequences of data {T,,...,T,}, where
T, =T (tg+1i/fey) We filter the raw data to eliminate
long-term drift, using both a Krohn-Hite Model 3342
analog bandpass filter (cutoffs set at 0.01 and 10 Hz, 48
dB per octave) before sampling, and digitally after sam-
pling. The digital filtering consists of subtracting off a
flat running average from the digitized data. Because
the data have intrinsic periodicity, the average is taken
over 34 points for the golden-mean time series and over
29 points for the silver-mean time series, which are the
approximate periods. We have checked that the filtering
does not significantly affect the final f(a) curves ob-
tained. The filtered data is then converted into the f(a)
format using the method described in Sec. III and
displayed as Poincaré sections (plots of T, versus T, ).
We also obtain power spectra of the unfiltered continu-
ous time series using a Hewlett-Packard HP3562A spec-
trum analyzer.

III. CALCULATION OF THE f(a) SPECTRUM

Using the signal {T;}{=% we first determine the rota-
tion number of the circle map which corresponds to it
by guessing a value for the rotation number ) and
graphing x, versus n{) (mod1). For the correct  the
graph is a one-dimensional curve.!® Therefore using a
series of trial ’s, we do a binary search to determine
the value that gives the most one-dimensional curve.
This graph establishes the relationship (conjugacy) be-
tween the experimental curve and pure rotation and
gives a natural ordering of points on the experimental
curve. To nth order, the periodicity of the system is C,,,
where C, is the denominator of the nth continued-
fraction approximant to the winding number; for exam-
ple, for the golden mean C, is the nth Fibonnacci num-
ber. Thus C, gives the nth-order point of closest return
and selecting a series of C, points gives one approximate
cycle.

Next, we use straight lines to approximate the curved
arcs between successive points of the experimental data
and obtain a partition of the curve. Since each of the
arcs contains one point of the time series, each is
equiprobable with probability 1/C,. Hence the proba-
bility measure and the arc lengths of each member of the
partition are known. We use this partition to evaluate
the generalized dimension and the singularity spectrum
of the experimental curve. Note that the entire singular-
ity spectrum is obtained from a single partition of the

curve, involving one free parameter, the order of trunca-
tion of the continued fraction expansion.

More rigorously, the phase space of the experimental
signal is three dimensional' (by the embedding theorem
of Takens a circle map may be embedded in a space of
dimension less than or equal to three), and hence the
map

T, =F(T,), (1)

where T, =(T,,,T,, ,1,T,, ;) is conjugate to a circle
map, whose rotation number is denoted by (,. Hence a
graph of G=(mQ,T,,), (m=1,2,3,...) is a one-
dimensional curve, and so is any of its projections onto a
plane.’® In particular G, the graph of (mQ,,T,,)
(m=1,2,3,...), is a one-dimensional curve. On the
other hand, for an incorrect rotation number () this
statement will generally not be valid and G will be space
filling. If Q is close to 2, one can determine visually if
it is smaller or larger than ), by looking at successive
iterates. Therefore we determine (), by examining
graphs of (mQ,T,,) for several trial values of (2, and
iteratively refining ) to obtain the most one-dimensional
curve possible. Typically with a signal of about 1000
points we can determine () to five significant figures and
obtain results in perfect agreement with the frequencies
given by the power spectra. Below criticality G is an in-
vertible function while G is not. However, since G is a
well-defined (i.e., single valued) function, the closest
points on it correspond to closest points along G. Fur-

ther the order of points (T, ), T,3), ..., T, ) on G is
the same as that of (T,(;),T,3)...,T,,) on G [we
choose r(1),r7(2),...,r(n) so that the corresponding

points are consecutive along the curve]. We use this or-
dering to construct a partition on G that allows the eval-
uation of the generalized dimensions.

We determine the points of closest return by expand-
ing €, in continued fractions. Denoting the nth
continued-fraction approximant by p, /q,, the nth parti-
tion of the curve is the set of arcs S,, (m =1,2,...,q,)
between T,(,,, and T,,, . ). For sufficiently large g, the
distance between T,.,,, and T,,, ., is small, and the arc
can be approximated by a straight line. On the other
hand, if S, is too small, experimental noise will be im-
portant, and will lead to errors. For the system we
study, choosing g, between 100 and 500 gives optimal
results. The optimum g, can also be determined by
evaluating the length of the curve, approximating the
curve between T,(,,, and T,(,, ;) by a straight line. As
g, increases from O to about 100, the length increases as
the length scale becomes sensitive to the curvature of G.
For g, in the range 100-500 the length of the curve
does not increase appreciably. For larger g, the length
again increases indicating that the length scale is compa-
rable to the noise amplitude. The arcs S,, are equiprob-
able since they each contain one point of the set.

Hence, the probability measure of S,, is p,,=1/q,
while its length is

lm:(Tr(ml_Tr(m+»1J) . (2)
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The generalized dimension is d, =(g —1)7, satisfies
1=T,=3 (p&)/1,)=¢, 931, . 3)

The singularity spectrum is the Legendre transform of
7,4, given by

The convergence of 7, for ¢ — « is slow, so the conver-
gence of the right-hand section (negative g) of the singu-
larity spectrum is slow as well. The spectra for different
values of g, agree on all but the right (negative ¢g) ends
of the curves. In principle we can improve the conver-
gence of 7, by equating I, and I, ., and then solving,
but the values so obtained are very sensitive to noise and
cannot be used on experimental data.

The singularity spectrum for the trivial circle map
(i.e., pure rotation) whose rotation number is the golden
mean is a single point (1,1), and that for a critical circle
map is the dashed curve shown repeatedly in Fig. 1
(column 1). The f(a) curve becomes wider near critical-
ity, and the abscissa of the maximum moves to about
1.1. We find numerically that the addition of random
noise makes the curve thinner, particularly for large
values of a. The same conclusions hold if we add low
amplitude noise consisting of a well-defined third fre-
quency which is present in the indicated experimental
runs [Fig. 1 (e1)-(e3)]. Above criticality the f (a) curve
narrows because of the overlapping of the locked
tongues and the appearance of large amplitude broad-
band noise (see Fig. 2). The narrowing of the f(a) curve
is consistent with previous observations that for chaotic
states the spectrum is essentially that of the quasiperiod-
ic state with the addition of random noise.”* In the fre-
quency spectrum, the number of combination peaks de-
creases (i.e., the scaling of the spectrum becomes less
critical) and the noise amplitude increases with the dis-
tance above critically. We also note that the one-
dimensional model fails for large forcing amplitudes.’
We are currently beginning additional work on this
problem.

The singularity spectrum found by the equiprobable
partition generally converges faster than that obtained
from partition of constant box sizes. In addition the
number of discretionary parameters required to obtain
the f(a) curves is much smaller than in earlier
methods."”> For example, for a given data set, all the
generalized dimensions are determined using the same
partition of the circle.

Using different values of g, gives slightly different
curves. We believe that these errors are due to the noise
in the experiment and the slow convergence of the gen-
eralized dimensions for large negative g. The error bars
in Fig. 1 (c1) and (c3) indicate this variation.

For subcritical states, the f(a) curve has a finite
width only because of the finite number of points used

for the calculation.!! For a small number of points, the

partition function is sensitive only to the larger distances
along the attractor, which have nearly critical dynamics
and yield an f(a) curve of finite width. Increasing the
number of points systematically probes smaller length
scales at which the structure is closer to pure rotation.
Hence the f(a) curve becomes thinner as the number of
points used in the calculation increases. For very large n
we should obtain the single point f(a) curve of pure ro-
tation, but the presence of noise in the experimental data
prevents us from taking the limit. Nevertheless, the sub-
critical f(a) curve is meaningful. It is essentially in-
dependent of the detailed method used in the computa-
tion and thus is reproducible. Also, it allows us to deter-
mine the distance of the system from criticality. For ro-
tation numbers near o it is known that the effective
coupling k measured using the F,-cycle (where F, is the
nth Fibonacci number) is proportional to a>".'* Hence,
the generalized dimensions and the singularity spectrum
are functions of (1—k)a?" and the difference of the gen-
eralized dimensions D;")(k) from those obtained at criti-
cality D;”)(k =1) is given by

n n _ 2n
AD,(n,k)=D{"(k)—D\"(k =1)=h,(a®"(1—k)), (&)

where a is the parameter rescaling for golden-mean rota-
tions, and F, points have been used for the calculation'!
The function hq(az"( 1—k)) is approximately proportion-
al to a®(1—k), the proportionality constant A, being a
function of ¢ only. Thus the function AD,(n,k) will be
the same for all subcritical data sets apart from the re-
scaling factor. Knowing the rescaling factor gives the
value of k. For the experimental data we obtain
ADq(n,k) curves which have the same shape as those ob-
tained directly from the iterated map. The value of k
obtained is the coupling strength at which a circle map
will give the same singularity spectrum as the experi-
mental data. Thus we can determine the degree of sub-
criticality from the experimental data. This correspon-
dence is particularly valuable, because in general in ex-
perimental systems the control parameters do not map
in any obvious way onto the natural parameters of the
iterated map. We are currently undertaking additional
work on this problem.

IV. RESULTS

We present experimentally determined results for the
golden mean in Fig. 1, columns 1 and 2, and for the
silver mean in columns 3 and 4. We determine the ap-
proximate criticality of the signal from the spectrum.
As the control parameter increases towards its critical
value, the number and amplitude of combination peaks
in the spectrum increases [Figs. 1 (a2—c2) and (a4-c4)].
Above criticality, broadband noise appears [Fig. 1(d2)
and (d4)]. We may deduce much of the same informa-
tion from the Poincaré section (a plot of the strobed time
series as T; versus T; ;). In this case the approach to
criticality appears as the wrinkling of an originally
smooth 1D loop [Fig. 3(a)], which breaks up into two-
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FIG. 1. Experimental spectra and f(a) curves at the golden and silver means: Column 1, golden-mean f(a) curves (dashed
lines show numerically calculated critical curve); column 2, golden-mean spectra; column 3, silver-mean f(a) curves (dashed lines
show numerically calculated critical curve); column 4, silver-mean spectra. Row a, strongly subcritical; row b, slightly subcritical;
row c, critical; row d, supercritical; row e, third frequency present. In columns 2 and 4, single arrows mark the frequency of the
oscillatory instability (f;, ), double arrows the forcing frequency (f., ). In (e2) and (e4), triple arrows mark the third frequency.
The number of points used to calculate the f(a) curves were (al), 89; (bl), 144; (c1), 377; (d1), 383; (el), 123; (a3), 169; (b3), 233;
(c3), 169; (d3), 79; (e3), 70. The equivalent couplings are (al), 0.960; (bl), 0.977; (c1), 0.995. Note the w? scaling in (c2). The error
bars indicated in (c1) and (c3) are maximal deviations. For other figures the errors are typically a few percent.
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dimensional fuzz above criticality [Fig. 3(b)]. For a fixed ly unstable to a low-frequency pattern competition oscil-
number of points, the computed length of the curve (as  lation, the external forcing may drive a pattern competi-

defined in Sec. III) increases abruptly at this transition. tion resonance which would not appear in the unforced
In the experiment a third frequency may arise for a  state, or, as described in detail in an earlier paper, the
number of reasons: The convective flow may be natural-  third frequency may arise from a multifurcation of a su-
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FIG. 1. (Continued).
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FIG. 2. Numerical f(a) curve: f(a) spectrum for a super-
critical state near the golden mean using 144 points. The curve
narrows asymmetrically, pulling in chiefly on the negative ¢
side.

percritical locked state.” In all three cases, the low fre-
quency dresses the main peaks as seen in Fig. 1 (e2) and
(e4). Because the silver mean is close to the strong reso-
nance at 4, the resulting third frequency can be so
strong that it dominates the spectrum completely (Fig.
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4). The Poincaré sections help to distinguish the nature
of the third frequency. The first two cases, when incom-
mensurate or in a high locked state, produce a charac-
teristic smeared Poincaré section [Fig. 3(c)]; when in a
low-order locked state they produce a braided pattern of
one-dimensional loops.  Multifurcation of high-
denominator locked states also produces a braided pat-
tern [Fig. 3(d)].

With these qualitative features in mind we may turn
to the calculation of the f(a) curves. On the basis of
the previously demonstrated correspondence between the
forced RB system and the circle map we expect that the
f(a) curves will agree at criticality. A calculation at the
golden mean has already been published.! We find excel-
lent agreement at both the golden and silver means [Fig.
1 (cl) and (c3)]. The slight narrowing observed at the
lower right of the curve, corresponding to large negative
q values, is expected due to unavoidable experimental
noise and limited time series lengths. Below criticality
we observe the narrow f (a) curves predicted by numeri-
cal simulation [Fig. 1 (al), (bl), (a3), (b3)]. If we fix the
number of points used in the partition function, the
width of the f(a) curve increases monotonically with
the forcing amplitude, reaching its maximum at criticali-
ty. For consistently chosen winding number and ¢,, we
never observe a curve significantly wider than the criti-
cal curve. Incorrect values of these parameters result in

(a)

Ti +{ \ \w
,"
%

(b)

Ti+1

FIG. 3. Experimental Poincaré sections (plots of T; vs T, in arbitrary units): (a) subcritical; (b) supercritical; (c) third frequen-
cy present. Unlike the supercritical state, the smear is of uniform density, with well-defined edges. (d) Multifurcated. Note the
presence of several one-dimensional curves.
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FIG. 4. Experimental spectrum: Subcritical silver-mean
state with strong third frequency. Note that this is a locked
state, so all frequencies are integer multiples of the lowest fre-
quency. The single arrow marks the frequency of the oscillato-
ry instability (f;,), the double arrow the forcing frequency
(fext ), and the triple arrow the third frequency.

wildly divergent f(a) curves. As predicted numerically
(see Fig. 2), the supercritical case exhibits an f(a) curve
narrowed on the negative g side [Fig. 1 (d1) and (d3)].
We also observe that the f(a) curve for subcritical data
is insensitive to noise, but that it becomes more sensitive
near criticality. Very near criticality the f(a) curves
have sizable error bars, while away from criticality the
errors are insignificant.

The location of the peak of the f(a) curve shifts on
the horizontal axis from a=1 to a=~1.1 as we approach
the transition. In the presence of a third frequency [Fig.
1 (el) and (e3)] we again observe narrowing of the nega-
tive g side of the f(a) curve, in agreement with our nu-
merical results. The asymmetric narrowing due to noise
allows us to distinguish subcritical from noisy curves.

Finally we use the f(a) curve to estimate the subcriti-
cality of the experimental data, i.e., we find the coupling
of the equivalent circle map. In Fig. 5 we show
AD,(n,k) as a function of ¢ for two subcritical data sets.
We notice that these curves are proportional to those
shown in Fig. 4 of Ref. 11. By comparing the scale of
this curve with that of a numerically obtained curve of
known coupling we estimate the value of k. For the
curves of Fig. 5 the couplings (k) are 0.978 (crosses) and
0.994 (circles). For the data sets shown in Fig. 1 (al),
(b1), (c1) the equivalent couplings (k) are estimated to be
0.960, 0.977, and 0.995, respectively. We can in princi-
ple establish a relation between the scaling exponent of
the spectrum and k, though we have not yet done so.

V. CONCLUSION

We have studied the transition of an experimental sys-
tem from subcritical to supercritical motion. Though
the experimental hydrodynamic system has many poten-
tial degrees of freedom, its phase-space behavior is low
dimensional, its Poincaré map corresponding to a dissi-
pative circle map embedded in three dimensions [see Fig.
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0.3 :

80q
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FIG. 5. Experimental AD,(n,k): Curve is plotted as a func-
tion of g for two subcritical data sets. Apart from a rescaling
these are identical to Fig. 4 of Ref. 11. This rescaling factor
has been used to determine the equivalent coupling of the data.
The curve indicated by circles is obtained using 377 points and
its coupling is estimated to be 0.994, while that marked by
crosses is obtained using 89 points and its coupling is 0.978.

3 (a)]. We have found that the local scaling properties
are those of the circle map by comparing the power
spectra and the singularity spectra, though the noise in
the experiment narrows the f(a) spectrum slightly on
the negative g side. The power spectra 4 (w) for critical
circle maps at the golden mean are proportional to »?, in
agreement with experimental observation [Fig. 1 (c2)].}
The experimental and theoretical singularity spectra
agree well at criticality. The presence of noise or a third
frequency makes the curves thinner (as seen numerical-
ly). When supercritical, the maps are noisy and tend to
lock on to nearby periodic orbits, resulting in narrowed
S (a) curves [Fig. 1 (d1) and (d3)], again agreeing with
numerical results (Fig. 2).

We conclude that forced RB convection is (locally)
conjugate to a circle map not only at criticality but for a
large range of parameters and we can use the rescaling
of AD,(n,k) to map the experimental parameters onto
those appropriate to the circle map. The strong conver-
gence of the renormalization group fixed point for criti-
cal circle maps makes this possible.!*> However, for su-
percritical motion the higher dimensionality of the
motion becomes important as can be seen in Fig. 3(b)
(also see Glazier et al.’). Such systems may be better
modeled by dissipative maps in higher dimension. We
are currently beginning an experimental study of this
higher-dimensional behavior using unstable periodic
points.'*
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FIG. 3. Experimental Poincaré sections (plots of T; vs T}, in arbitrary units): (a) subcritical; (b) supercritical; (c) third frequen-
cy present. Unlike the supercritical state, the smear is of uniform density, with well-defined edges. (d) Multifurcated. Note the
presence of several one-dimensional curves.



