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Quasi-Periodicity and Dynamical Systems:
An Experimentalist’s View

JAMES A. GLAZIER AND ALBERT LIBCHABER

Abstract — A great variety of natural and artificial systems exhibit chaos
and frequency locking associated with quasi-periodicity. In this tutorial
paper we present an overview of current theoretical and experimental work
on quasi-periodicity. In Section I, we discuss the concept of universality
and its relevance to experiments on nonlinear multifrequency systems. In
Section II, we describe the reduction of experimental data by means of
Poincaré sections, and the mathematical properties of the one-dimensional
circle map. In Section III, we present the various dynamical systems
techniques for determining scaling and multifractal properties as well as
other more traditional methods of analysis. We emphasize the experimen-
tal observations that would support or refute the one-dimensional circle
map model. In Section IV, we summarize the experimental results, con-
centrating on forced Rayleigh-Bénard convection and solid state systems.
In Section V, we conclude with a brief discussion of the accomplishments
and open problems of the dynamical systems theory of quasi-periodicity.

I. INTRODUCTION

HE phenomenon known today as frequency locking

was discovered over three hundred years ago when the
Dutch physicist Christian Huygens noted that the pendula
of two clocks placed near each other tended to synchronize
[74]. This effect, in which an oscillator adjusts its frequency
in response to a periodic stimulus (either externally or
internally generated), is used today in many electronic
systems requiring precise control of frequencies. Examples
including the phase locking circuitry of atomic clocks, in
which a quartz oscillator is locked to a Cesium standard,
radio receivers, stereo turntables, and disk drives.

In the natural world, systems which exhibit frequency
locking behavior are almost bewildering common; the most
visible example being the moon, whose orbital and rota-
tional periods are locked in a one-to-one ratio because of
dissipative tidal forces. In any system in which two or
more frequencies couple nonlinearly, either because of
external perturbations or internal generation, a rich variety
of effects can occur, including frequency locking, quasi-
periodicity, pattern formation, intermittency, period dou-
bling and other subharmonic generation, and both tem-
poral and spatial chaos. It is sobering even to attempt to
list the systems which have been examined experimentally:
in mechanics, the damped driven pendulum [3], [34], [60],
[101]; in hydrodynamics, the vortices behind an obstacle in
a wind tunnel or an airplane wing [122], the dripping of a
faucet [116], the convective rolls in a heated pan of water,
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and the oscillations of acoustically driven helium [82],
{121]; in chemistry, the Belousov—Zhabotinsky reaction,
the Chlorite—Thiosulphate reaction and many others [38],
[111]; in solid state physics, charge density waves in
niobium selenide [22], and other compounds [117], the
conductivity of barium sodium niobate [94], oscillations in
Josephson junctions [105], and in germanium [62], [72], in
biology, cardiac cells [45], the brain [10], the slime mode
dictyostelium discoideum [104], menstrual cycles in human
females, and elsewhere [136]. This list could probably be
extended almost indefinitely. We refer the reader inter-
ested in additional reading on experiments and theory to
the bibliographies contained in the many surveys of spe-
cialized topics [11], [15], [33], [49], [102], [108], [128], [137].

One major characteristic of the above list is that, though
all of its members exhibit complicated multifrequency
behavior, they seem to share almost no other features. It is
clearly impossible to produce a single theory which de-
scribes the detailed behavior of all of them. A theory
which describes voltage oscillations in Josephson junctions
can scarcely be expected to describe the life cycle of slime
molds. A further problem is that full mathematical de-
scriptions are not known for many of these systems; often,
when the equations are known, they are effectively insolu-
ble.

For a long time these various effects were seen as
unrelated, if occasionally useful, curiosities. It required the
development of a new branch of physics to allow us to
appreciate them for what they are, the diverse results of a
single elegant and simple theory. We find that if we
examine all these systems at a high enough level, that
is if we ignore detailed causes, they can be grouped into
a few classes of generic behavior. This concept of univer-
sality —that seemingly unrelated systems can behave in
essentially the same way—is central to many recent ad-
vances in physics. A Fortran programmer knows instinc-
tively the lesson that physicists have had to learn with
effort: it is the result of the program, not the particular
machine language implementation that matters. In this
case the “high level language” is, dynamical systems theory,
the formalism which describes complicated behavior and
chaos in terms of sequences produced by the repeated
iteration of simple functions, and the relation of these
iterated functions to the “machine code” of differential
equations.

We may illustrate this point by considering an example
from our own research [95]. The behavior of a fluid in a
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box, heated from below (Rayleigh—Bénard convection) has
been studied for almost a hundred years [83]. Yet, 10 years
ago, if you had asked a theoretical physicst to predict the
flow pattern in such a box of fluid subject simultaneously
to a magnetic field, heating and an. alternating injected
current, he would probably have said that it would be
complicated and, because the result would apply only to
one specialized system, uninteresting. If you had convinced
him to try to calculate the flow he would have written
down three coupled nonlinear partial differential equations
(the Navier Stokes equation for the fluid flow and trans-
port equations for the current and heat) and paused, for,
with realistic boundary conditions, the equations would be
completely intractable. To proceed further he would have
assumed simplified boundary conditions, linearized the
equations about a known solution [26], and with luck (for
even the linearized equations are non-trivial to solve),
produced an “approximate solution.”

This answer would have had two fundamental problems:
1) changing the boundary conditions or the geometry even
slightly would require resolving the whole problem from
scratch; and 2) the answer would be both quantitatively
and qualitatively wrong, because the linearization would
be invalid in the range of parameters of interest. In par-
ticular, in the region of chaotic behavior, the “approxima-
tion solution” would be completely meaningless.

Today, despite extraordinary advances in computers and
the techniques for solving partial differential equations, a
physicist could still not solve the problem asked above.
Except in the most trivial cases the Navier—Stokes equa-
tions remain insoluble. However, as first shown by Lorenz
in his classic work on convection and weather prediction
[87], in certain types of Rayleigh—Bénard convection we
can predict many properties with excellent numerical accu-
racy without solving any differential equations at all. In-
deed, for the small aspect ratio, forced Rayleigh—Bénard
system, many of the calculations described in this article
could be done with nothing more elaborate than a pro-
grammable calculator. Furthermore, the results we obtain
for the Rayleigh—Bénard system apply, with only minor
modifications, to many of the other systems we listed
above. Using the techniques of dynamical systems theory,
we can attain a universal result without a detailed solution
to the underlying equations of motion.

We should add a note of caution. The dynamical sys-
tems approach is not a panacea. There are classes of
questions, just as there are classes of systems, and we will
discuss in this paper the sorts of questions our “high level”
theory can answer. One thing we can definitely not predict
is the detailed motion of a large volume of fluid in space
and time. Though originally developed in the context of
Hamiltonian systems, the iterated map approach discussed
in this paper works best in heavily damped (or dissipative)
systems in which most of the degrees of freedom are
suppressed and only a few contribute to the behavior. In
fact, the existing theory is only well developed for systems
with one or two independent degrees of freedom. For-
tunately, most of the systems on our list have this prop-
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Fig. 1. Schematic diagram of a two frequency torus and a Poincaré
section. The helical line on the torus traces out the system’s trajectory
in phase space. Angular coordinates §; and 8, are indicated. The
vertical plane indicates the stroboscopy at times it. The Poincaré
section is the intersection between the plane and the system trajectory.
From [76].

erty. However, if we want to design an airplane wing, or a
turbine, both of which depend on true many dimensional
effects, we still need to solve the Navier—Stokes equations
in detail. For the same reason we cannot address the
problem of turbulence using existing dynamical systems
techniques. With these caveats in mind we may turn to the
theory of systems with two degrees of freedom.

II. THEORY OF THE CIRCLE MAP

From Phase Space to the Iterated Map

Let us consider the simplest possible two-frequency sys-
tem, two uncoupled harmonic oscillators with frequencies
f, and f,. We may characterize the state of the system by
coordinates describing the amplitude of the oscillators x;
and x, and their time derivatives X, and X,. In this simple
case, we can immediately reduce the number of variables
to two by expressing both coordinate pairs in terms of
angular coordinates §,=f;r and 0,=f,r, with x, =
sin(4,), X, = f,cos(6,), etc.---. We can understand this
system in a simple geometrical way. If we make a rotation
by 360° correspond to #=1 and identify 8§ =60 +1, we
may represent the time evolution of the system as a helical
motion on a torus with the small diameter corresponding
to 8, and the large diameter corresponding to 8,, as shown
in Fig. 1. Even this trivial system exhibits two qualitatively
distinct behaviors depending on the ratio f; /f,, the num-
ber of rotations in the 6, direction per rotation in the 8,
direction. If f,/f, = p/q is rational, then the motion is
periodic, and the path will close after g circuits around the -
big circle. We say that the system is periodic with period q
and completes p cycles per period. If, on the other hand,
f1/f, is irrational, then the path never intersects itself and
the trajectory will cover the torus densely, that is, the
trajectory will come arbitrarily close to any point on the
torus. A system containing two or more incommensurate
frequencies is said to be quasi-periodic.

Visualizing a torus is inconvenient. We can simplify the
picture by using the equivalent of a strobe light to freeze
the motion in the 6, direction and to eliminate the
frequency f, from the problem. If we record 6, at a fixed



792

time interval 7 =1/f, and define 6, = 6,(ir), we flash the
strobe at the frequency f,, and take a slice through the
torus at a fixed value of 4, as indicated by the vertical
plane shown in Fig. 1. It is a general theorem [36] that the
structure of the stroboscopy we obtain will be the same for
almost all (in a measure theoretic sense) choices of 8,. We
have now reduced our four-dimensional problem to one
dimension. We may therefore encode all of the dynamics
of the problem in the form of a map from the circle onto
itself, where the return map, F(8) is defined by 6, ;=
F(8,). In our example of a uniform rotation, F(8) is the
rotation map, F(8) =6 + Q, where @ = f; /f,. For an arbi-
trary system we will obtain a return map of form, F(8) =
0+ Q+ f(6), f, will vary with f,, and the period of the
sequence {6} will not equal the denominator of §. In this
case it is convenient to describe the frequency of the
system using the winding number [17], [76].

. 0:"‘00
W= lim

i— o0 1

which is, in fact, the measured frequency ratio, f,/f,. In
the case of uniform rotation, W= Q. If W is rational {6,}
will be a finite periodic set of points, if irrational, {6,} will
be quasi-periodic and cover the circle densely.

This formalism may seem elaborate for the problem in
hand, but it does yield one immediately useful result. We
have reduced a problem on the torus to the study of a map
from the circle to itself.

In a real experiment, we measure the value of an oscil-
lating variable T, at times it as described above, and plot
T, versus T,,,. This produces a tangled one-dimensional
loop or a finite set of discrete points lying on a bumpy and
folded surface, not a smooth circular doughnut. A theory
of Takens [112], [131] assures that this attractor contains
the same information as a plot of T versus T. For many
purposes, e.g., the calculation of a local scaling or of a
fractal dimension, this folded attractor is perfectly ade-
quate. However, if we wish to calculate a return map, or an
f(a) spectrum (to be discussed later) we must map the
two-dimensional pairs (7, T,,;) into the #,’s, using a
method developed by Thomae [77], [124] in which we
measure the unknown winding number by plotting the
time series versus a known rotation frequency (or the
stroboscopy T, versus (W) and looking for a one-dimen-
sional Lissajous pattern.

We pick a W and plot T versus Wt. If we have chosen
W correctly, the periods of the experimental data and W
will correspond and we will obtain a one-dimensional
curve as seen in Fig. 11 column 1. If our guess is close but
not exact, we will see a gradually drifting Lissajous pat-
tern. We repeatedly guess values of W and plot the results
until we obtain a satisfactory agreement. An experienced
operator with good data can calculate W to one part in 10°
in four or five iterations. Using this W we can define an
unambiguous order on the experimental attractor and as-
sign a value of 6 to each point. It is then a simple matter
to calculate the return map or the f(a) spectrum. Unfor-
tunately this method only works efficiently for one-dimen-
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sional sets and hence cannot be used in the strongly
chaotic regime where many experiments show fundamen-
tally two-dimensional behavior.

At this point it is helpful to introduce a few definitions.
The reduction of a continuous time series to a discrete
sequence ({7;}) using stroboscopy is known as taking a
Poincaré section [28], [37] and may be employed in an
arbitrary number of dimensions. The plot of T, versus T, ,
(versus T,,,,--- in higher dimensions) is the Poincaré
section. It is also called an attractor because all points
initially lying in some volume containing it, rapidly iterate
towards it. This attraction is equivalent to the damping of
an initial transient or perturbation. A given system may
have more than one attractor for the same parameters, in
which case it is said to be multistable. The reduction of the
attractor to the {6,} form is known as unwinding and the
resulting sequence {6,} is called an orbir. Because of the
fundamental equivalence of these two representations, we
shall use the terms orbit, section and attractor, inter-
changeably.

In an arbitrary two variable system the reduction proce-
dure can break down at any point. It may not be possible
to eliminate the time derivatives. If it is, the set of points
produced by taking the Poincaré section may be a two-
dimensional cloud, not a loop or finite set of points (this is
the case for many strongly chaotic systems). It is the
surprising experimental fact that many systems do produce
one-dimensional Poincaré sections that makes the one
dimensional theory discussed below useful.

The Circle Map

We next consider a slightly more complicated return
map, which we will use as our model for the rest of this
paper. We define the one-dimensional standard circle map,
or sine map by

: k
F(8)=0+Q- 2—Wsm(21r0).

In an experimental system, we define @ to be the ratio
f2/f,, where f is the natural unperturbed oscillation
frequency. The exact choice of the function sin(2#8) is not
critical in this definition. Essentially any function with a
single cubic inflection point will yield identical qualitative
and similar quantitative behavior. The relative indepen-
dence of the properties of the iterates on the exact form of
the map makes the sine map model very general.

The big advance from the rotation map discussed in the
previous section, is that we now have a nonlinear term
with an adjustable strength and hence can examine what
happens as we vary the nonlinearity. For k=0 we are
back to the linear situation described above, but for 0 < k
<1 the situation is more interesting. F(#) is still a simple
invertible map of the circle onto itself, but the winding
number W, no longer equals . Each irrational W corre-
sponds to a unique £ as before. However, there is a finite
interval [&,, ,,€Q, ,] over which the iterated map achieves
each rational W= p/q and {6,} (we should really write
{6,(k,Q2)}) is periodic with period gq. We say that the
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Fig. 2. Devil’s staircase for the critical circle map. The steps indicate the regions in which W is constant. Fractions indicate
W for a few of the wider steps. Inset shows an expanded view of the indicated section of the staircase. The structure of the

sub-region is the same as that of the entire curve. From [76].
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Fig. 3. Arnol'd tongue diagram. The pattern of locked tor:ig

orders. The fractions indicate the winding number achieve
as the tongue denominator increases an
k =1 critical line. From [76].

equation Jocks to the winding number W over the interval.
Experimentally, when the frequency f, is changed, there is
a transient during which f; gradually “pulls in” to the
appropriate ratio to f,. The function W(Q) forms a Devil’s
Staircase [12], a monotonic increasing continuous func-
tion, with plateaus of finite width at every rational W. We
show the Devil’s staircase for the sine map at k =1 in Fig.
2. The plateaus are self-similar; that is, if we enlarge any
given segment of the staircase, its texture remains the
same, as shown in the inset of Fig. 2.

0.6

Q

ues is shown in the © versus k plane for the first few Farey
inside the tongues. The relative widths of the tongues decrease
the tongues bend away from each other. The tongues do not overlap below the

As we increase the strength of the nonlinearity k, the
width of each locked interval increases. If we plot these
regions in the k versus @ plane they form a series of
slightly distorted narrow triangles (known as Arnol’d
Tongues [7]) with their apices on the k =0 axis as shown
in Fig. 3. Each tongue represents a region in parameter
space associated with a particular rational winding number
and we will refer to the tongue associated with a winding
number p/q as the p/q-tongue. Surprisingly, for k <1 the
tongues bend away from each other and do not overlap.
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The area covered by the locked regions increases smoothly
and monotonically from 0 at k=0to 1 at k=1. At k=1
(the critical line) almost any @ vyields a rational W and the
set of § corresponding to irrationals forms a fractal of
measure 0. Above the critical line (k>1), F(#) is no
longer invertible. The tongues begin to overlap, leading to
hysteresis effects and chaos. Inside the tongues there are
period doubling cascades leading gradually to chaotic mo-
tion (the “period doubling” route to chaos). Outside the
tongues the remaining quasi-periodic orbits disappear
abruptly, giving rise to further chaotic orbits (the “quasi-
periodic” route to chaos).

The non-overlapping of tongues below k =1 implies that
the width of a tongue corresponding to a rational winding
number with denominator g,(w(g)) must decrease rapidly
as g increases. We may make a quick estimate as follows:
The number of tongues with a denominator ¢, n(q) is of
order g (strictly n(q)— n). The total width is w ~

— 00

q

7—19-w(g). For w to remain finite requires w(q) ~ q*

where B8 < —2. Detailed calculations by Bohr, Bak, and
Jensen yield the result that at k=1, B=—-229[17].

Irrational Numbers

Because the circle map distinguishes strongly between
rational and irrational winding numbers, it is worth recall-
ing a few facts about irrationals and methods of approxi-
mating them by sequences of rationals. Approximating an
irrational by truncating its finite decimal expansion is
universally familiar. We will discuss a different method
here. Any irrational number, o €{0,1] can be uniquely
represented in continued fraction form [7], [28] as

where the n, are positive integers. This formula may be
written more conveniently as o =(n;, n,, n,,--- ). If we
truncate the expansion after i terms we may define o, =
{(ny,---,n;y=p,;/q;. This yields a sequence of rational
approximants, known as the truncation sequence, converg-
ing to o: {0;} = o.

The truncatilc;;lwsequence is closely related to the Farey
ordering of the rationals [2]. For any pair of rational
numbers p/q < p’/q’ we define their Farey sum

LA N S A 4

" 9 9 qtq
This sum has three properties: 1) p/q<p”/q"” <p’/q’,
2) p”/q” is the rational with smallest denominator be-
tween p/q and p’/q’, and 3) if |pg’— p’q|=1 then
p”/q” is in lowest terms. If we construct a “Farey tree”
by starting with 0 and 1 and Farey adding nearest neigh-
bors at a given level, property 3) will always be satisfied.
We can then construct an approximation sequence con-
verging to o by successively bracketing o and taking
appropriate Farey sums. We define oj =0 and o =1 and
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Fig. 4. Experimental Arnol’d tongue diagram for small aspect ratio
forced Rayleigh—Bénard convection in mercury. The tongues are shown
in the Q versus A4 plane. The numbers indicate the winding number
achieved inside the tongue. Insets show the relative widths of tongues
near the golden (o) and silver (gg) means and mark the position of
the critical line. The widths and spacings of these tongues may be used
to calculate the fractal dimension and scaling of the unlocked critical
set. From [123].

let o/ =0/ 1®0/ where j is chosen as large as possible
such that o/ lies on the opposite side of ¢ from ¢;_,. The
sequence {0/} is in some sense the “best” approximation
to the given irrational. It is the sequence of fractions with
lowest monotonically increasing denominators which con-
verge to o. These lowest denominator tongues are the
widest so the “best” sequence is the most significant to the
experimentalist. In general the sequence {o;} will be a
subset of {0/} as the reader may easily verify by examin-
ing the sequence of fractions in Figs. 2 and 3.

These notions allow us to characterize the “degree of
irrationality” of an irrational. We say that a number is
strongly irrational if it is hard to approximate by rationals.
In particular, numbers which have continued fractions of
form {(n, n,,---,1,1,1,---) are the most strongly irra-
tional. The golden mean, o, = W5-1/2= (1,L1,1,--- ) is
the simplest of these. Of all irrationals in the interval [0,1],
it is furthest from rationals of any given denominator. The
golden mean has several other convenient properties. The
sequence given by truncation of the continued fraction is
the “best” sequence, and the terms are easily calculable:
6,,,=0,00,_,=F,/F,_ , where F, is the ith Fibonacci
number defined by F,,,=F,+ F,_; for i»1, F;=0 and
F, =1. Because of its distance from rational approximants,
the golden winding number is the easiest place to observe
quasi-periodicity experimentally (other winding numbers
are more likely to lock to low denominator tongues). Thus
the majority of both experimental and theoretical work on
quasi-periodicity has been done at the golden mean. A
second, slightly less irrational, winding number often
selected for study is the silver mean, o = V2 -1=
{2,2,2,---), for which 0,,,=0,®0,®0;,_;. The positions
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of o; and o and a few of their approximants are indicated
in Fig. 4.

We must be a bit careful when we consider the notation
for periodic states. For rational winding numbers f, /f, =
p/q the notation means that the system returns to its
original state after p cycles in f; or g cyclesin f,. Thus we
cannot in general divide out common factors between p
and g (the use of the Farey construction guarantees that
common factors will not appear accidentally). A period
doubling represents the appearance of low frequency sub-
harmonics at f, /2 and f, /2. The time the period doubled
system takes to return to its original state is now twice as
long, but the ratio f; /f, is the same. We denote this state
using the somewhat bizarre looking notation 2®p/q or
2p/2q. It may help to think of p and ¢ as elements in a
matrix, rather than as a fraction. We denote a state with
multiplicity m by writing it out in terms of its prime
factors, e.g., a period-18 state would be denoted 32®2®
p/q and call it a period m or multiplicity m state. There
are also additional conventions for distinguishing the
qualitative nature of such highly multiplied states which
need not concern us here.

IIL.

With this basic mathematical formalism we can consider
the ways in which an experimental system might behave
like a circle map. We will pay particular attention to the
feasibility of measurements and to experimental behaviors
which are imcompatible with the circle map model.

EXPERIMENTALLY VERIFIABLE PREDICTIONS

Global Structure

We have already discussed the typical pattern of Arnol’d
tongues produced by the circle map. The presence of a
heirarchy of locked states with a unique locked tongue for
each rational winding numbers is the most characteristic
feature of this map. Other systems which exhibit frequency
locking, like phase locked loops, will typically lock only
one fixed frequency ratio [34]. Because we do not expect
the experimental system to correspond exactly to the sim-
ple circle map, we can not hope for exact quantitative
correspondence in all aspects of the tongue structure.
Nevertheless, the ordering of the tongues and their relative
widths as given by the Farey construction are robust, as is
the presence of a well-defined critical line. No missing or
duplicated tongues are possible. Below the critical line,
tongues do not overlap. There is no hysteresis (each value
of k and @ yields a unique winding number) and only
periodic and quasi-periodic states exist. Above the critical
line tongues overlap with hysteretic and multistable effects
and only periodic and chaotic states exist. For higher
dimensional iterated maps there is, in general, no single
well-defined critical line and tongues can split and merge
in complicated patterns [8], [90].

The sequence of states leading from periodic to chaotic
motion within a tongue has been studied by MacKay and
Tresser [90], Schell, Fraser, and Kapral [114], and by Glass
and Perez [13], [45], [58], [107]). They find that above
criticality, the locked states in the tongue undergo
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Fig. 5. Subharmonic structure of an Arnol'd tongue. A theoretical
calculation of the period doubling structure of the 1/2-tongue for the
circle map is shown in the € versus k plane. The lines in the tongue
indicate tﬁe borders between different periodic states. The areas labelled
by n correspond to n®1/2 states. Overlaps indicate regions of multi-
stability. Note the symmetry breaking at periods 4 and the sequence of
doubling. From [114].

Feigenbaum period doubling [28], [43]. That is, the length
of time (number of iterations) the system takes to return to
its initial condition successively doubles. This corresponds
to a splitting of the torus into 2" overlapping sheets, where
n is the order of the doubling. In the Poincaré section,
each point of the locked state splits into 2" distinct points.
The separation between successive doublings decreases in
accord with the Feigenbaum theory [33}, and at a critical
value of k =k, the accumulation point of the cascade, the
period becomes infinite, i.e., the state becomes chaotic. For
still higher k the full bestiary of complicated multiplicities
predicted by Metropolis, Stein, and Stein is expected [28],
[97], [99], however, the overlapping of tongues makes it
difficult to observe experimentally [18]. We present the
first few doublings for the 1/2-tongue as calculated by
Schell, Fraser, and Kapral, in Fig. 5. The first doubling is
symmetric and occurs in a single U-shaped band across the
tongue. Higher doublings are composed of at least two
distinct doubled states centered in the right- and left-hand
sides of the tongue. The orbits of these states are different
and “break the symmetry” of the tongue. The order in
which these periods appear is generic to all one-dimen-
sional circle maps with cubic inflection points. The pres-
ence of a different sequence in experimental observations
would rule out identification with the circle map [27].

Scaling

We have noted that we do not expect quantitative
correspondence between experimental and theoretical
tongue widths. However, the sensitivity of tongue widths
to the exact form of the circle map decreases for large
denominators. At smaller length scales the locking sees
only the narrow region around the inflection point of
F(8), much as a Taylor series sees only its lowest order
terms for small arguments, so we expect that the ratios of
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tongue widths or tongue separations for large denomina-
tors will be universal quantities depending only on the
order of the inflection point. There are many such ratios or
scalings which can be calculated. We have already men-
tioned one in passing, the ratio between the & intervals for
period doubling bifurcations. However, we will discuss the
Shenker & [32], [118] (corresponding to the Feigenbaum §
for the logistic map [43]) which is the most easily calcu-
lated from experimental data. Choose an irrational ¢ and
let w; be the width of the tongue corresponding to the
winding number o, in the truncation series. We then define
Wi1— W
8,= lim ———
i—roo W;— Wiy

or equivalently,

W;

§ = lim

4 .
i=o0 Wi

Depending on the system, either the first or the second
definition may converge more rapidly. It may be helpful to
refer to Fig. 4 to see that this limit makes sense around o
and og. Renormalization group analysis by Shenker,
Shraiman, Bohr, and others gives 806=2.833 and 60S=
6.799 [32], [76], [118]. Fortunately for the experimentalist,
the limit converges rapidly and it is only necessary to
measure tongues with denominators up to =100 to obtain
a value of & to a few percent.

Fractal Dimension

We have mentioned that at k=1 the set of Q corre-
sponding to irrational winding numbers is a fractal of
measure 0. Fractals are objects whose apparent density or
length changes depending on the length scale examined
[92]. Such objects are ubiquitous in nature, classic exam-
ples being coastlines (which are short if measured in mile
lengths but inconceivably long if measured at the scale of a
grain of sand), the pattern of branches in a tree, the
silhouette of a mountain, and cloud formations [113]. In
mathematics the best known example (and a close ana-
logue to the set under consideration) is the Cantor set
consisting of all the numbers between 0 and 1 which have
no 1’s in their ternary expansion.

All objects are characterized by a dimension (&) which
describes how their volume (V') changes with length scale
(1). For an ordinary object: V' ~ I%, where 8 is an integer.
The dimension of a fractal is determined in exactly the
same way except that, in the case of a set of points we use
not volumes but an effective number of points. We may
define the fractal dimension, D, by the method known as
box counting 53], [54], which resembles measuring an area
by counting squares on a piece of graph paper. Consider a
volume containing the set to be measured and divide it
into rectangular n-dimensional boxes of side /. Let N(/) be
the number of boxes containing one or more points. Then,
in the limit / — 0, N(/) ~ I~ ®. For a normal object, the two
methods yield identical integer results. For a fractal the
dimension can be any positive real number. The only
restrictions on this method are that the embedding dimen-
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sion, n, must be larger than D+1 and the minimum
sample of the points goes like 10°. The latter means that
box counting is an inefficient way to calculate dimensions,
and there exist myriads of specialized tricks for calculating
the dimensions of particular systems {56].

As an example we describe the calculation of the dimen-
sion of the set of irrational winding numbers at k =1, first
by box-counting and then using a trick. Let w(/) be the
total width of locked tongues on the interval [0,1] which
have width greater than or equal to /. Then 1— w(/) is the
total width of the regions which are unlocked at this length
scale (i.e., for which the denominator of the winding
number is too large). Therefore the number of unlocked
boxes at this length scale is N(/) = (1—w(/))/l. We then
calculate the fractal dimension D by the box counting
method, as D= —lim,_, ,(log(N(/))/log(!)). Numerical
computations by Jensen, Bak, and Bohr [76] give D = 0.87
+3.7x1074.

For the experimentalist, measuring an arbitrarily large
number of tongues to determine w(/) is impractical. It is
much more convenient to use a local method developed by
Hentschel and Procaccia [73}, which depends only on the
scaling of the spacing between three Farey neighbors and
yields a result within a few percent of the fractal dimen-
sion. If we pick an irrational ¢ and look at the “best”
sequence of rational approximants we can obtain a fair
approximation to D as follows: let S; be the length of the
interval between the tongues corresponding to ¢/_; and o;.
Let S/ and S/’ be the lengths of the intervals between
these two tongues and the tongue corresponding to o/, ;.
See Fig. 4. Then we may define D’ by

S’ D’ S D’
lim {[—]| +[= =1.
i— 00 S,- S,-

The numerically computed value of D’ for the circle map
is D’=0.868+0.002. Again, as in the computation of
scaling constants, one need only measure tongues with
denominators up to about 100 to obtain experimental
values of D’ to a few percent. Like D, D’ is the same for a
wide variety of maps similar to the sine map. This method
has the additional advantage that it establishes an implicit
relationship between local dimension and scaling.

The Multifractal Spectrum

The frequency locking structure at the critical line is not
the only fractal generated by the circle map. For irrational
winding numbers, the Poincaré section itself is fractal at
the critical line. The local density or scaling («) is nonuni-
form as seen in Fig. 12. That is, if we measure the density
of the Poincaré section at different points we obtain differ-
ent results. The simple fractal dimension is less useful for
such sets, since it averages out much of the structure. We
would like to be able to characterize inhomogeneities in
scaling consistently. There are two different ways to view
the problem, leading to equivalent results.

The first is the method of generalized dimensions, D,
defined by Hentschel and Procaccia [73]. We examine the
moments of the density distribution, much as we would the
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multipole expansion of an electric field, and repeat the
basic fractal dimension calculation keeping track of the
number of points per box. We give each box a weight p,(/)
associated with the number of points it contains by defin-
ing

I} li N
Pi( )= lim N

N->w

where N, is the number of points in the ith box when we
restrict to a randomly chosen subset of N points. We then
define the gth moment of the probability distribution,

) log ) p?
R :

= h !
i q—l/l-r»no log (1)

where ¢ is any real number. For ¢ =0, D, is the ordinary
fractal dimension defined above. For ¢ large and positive,
D, gives information about the most dense regions of the
fractal. For ¢ large and negative, D, gives information
about the least dense regions. Experimentally, we find that
D, is more sensitive to high frequency noise for positive g
and to low frequency drifts and finite time series lengths
for negative g.

Alternatively we may characterize the variation in den-
sity of a set by looking at the local scaling («) and
calculating the dimension (f) of that subset of points
which have a given value of the scaling. This function, the
multifractal spectrum, f(a) encodes all the global scaling
information of the set of a compact form [63], [130].

Following the method of Jensen et al. [77] we determine
the f(a) spectrum as follows: we pick a point x, in the set
and find the density of points, p,, around it. As in our
fractal dimension calculation we may do this by picking
boxes of size m and letting p,(m) = Nlim (N,,/N), where

N, is the number of points in the box when we restrict to
N points. We may then define «, by the relation p,(m) =
m%® in the limit m — 0. Letting p,= lim p,(m) we ob-
tain the local scaling at each point. Wemcalg now measure
the fractal dimension of the set of points with a given
value of a by box counting a second time. If we set an
acceptance interval da and let n(a,/) be the number of
boxes of side / with a € [a, ag+ da], we obtain, in the
limit a = 0 and /- 0,

n(a,l)=dap(a)l~/®

where p(a) is a smooth function independent of / that
does not affect the value of f(a).

Once again, box counting is not the most convenient
way to calculate f(a). However, it is the method which
makes the meaning of the function most explicit (the f(a)
spectrum can also be understood in the context of thermo-
dynamics [42], [132]). In practice one calculates first the
generalized dimension and defines a rescaled generalized
dimension 7(q)=(q—1)D,. Then, using the equivalence
of dimension and scaling mentioned above, f(a) is the
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Fig. 6. Multifractals. f(a) curves for (a) the quasi-periodic transition to
chaos at the golden mean and (b) the period doubling transition in the
8/13-tongue. Solid lines indicate theoretical calculations for the circle
map. Dots and error bars indicate experimental results for small aspect
ratio forced Rayleigh-Bénard convection in mercury. From [46] and
[77.
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Legendre transform of 7(q) given by

dr(q)
dq

and
f(a) =ag—1(q).

Large scaling exponents correspond to low density, so the
low « side of the f(a) curve corresponds to positive g and
the high a side to negative ¢. Depending on the system
under study different tricks can be used to obtain 7(q)
[46], [47], [62], [63].

For the circle map, f(a) characterizes unambiguously
the transition to chaos for both locked and quasi-periodic
states. It may either be calculated at k =1 for irrational
winding numbers or at accumulation points of period
doubling cascades inside tongues. In both cases certain
landmarks, e.g., the position and value of the maximum of
f (fmax = D), the smallest and largest a’s, the upside-down
paraboloid shape of the curve, etc. are extremely robust to
minor changes in the map. For example, the period
doubling cascades of the logistic map F(8)=k8(1-9)
and the sine map produce identical f(«) curves. For
theoretical curves see Fig. 6(a) for the quasi-periodic tran-
sition and Fig. 6(b) for the period doubling transition.

There is also a hidden bonus for the experimentalist.
Below criticality the exact f(a) curve collapses im-
mediately to a point located at f=1, a=1 for quasi-
periodic states and at f=0, a=0 for periodic states. It
does this at irrational winding numbers because, below
k =1, the map F(#) is conjugate to a pure rotation. This
means that at very small length scales the Poincaré section
looks just like a circle and has uniform dimension equal to
1. There is no interesting scaling. Similarly, below the
accumulation point of the period doubling cascade, the
Poincaré section consists merely of a finite number of
points. Hence at small length scales we see only a discrete
set of points of uniform dimension 0. However, an experi-
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Fig. 7. Experimental time series. An 8/13 locked state for small aspect
ratio forced Rayleigh—Bénard convection in mercury. The basic oscilla-
tion is the low frequency (f;) so the blocks contain 8 oscillations. The
apparent phase drift is an artifact due to slow sampling rate of the
digitization.

mentalist has access only to finite length scales because he
cannot record an infinite number of points. Thus he will
always observe density variations and obtain a nontrivial
f(a) spectrum, even much below criticality, as seen in Fig.
10. This is useful for two reasons. 1) He need not worry if
his data is taken a little away from the critical point. 2)
Arneodo [6] has shown that away from criticality the
calculated f(a) curves will narrow in a predictable way as
either k is decreased or the number of points used in-
creased. By observing this Arneodo narrowing an experi-
mentalist can derive a value of k directly from an experi-
mental time series. This is extremely helpful because the
experimental control parameters do not in general corre-
spond exactly to k and  and the scaling the Fourier
spectrum (discussed below), which is the only other tech-
nique for determining the amplitude of the nonlinearity k,
is only quantitative at the critical line.

Time Series, Poincaré Sections, and Spectra

To bridge the gap between experiment and theory we
must consider the general features of a signal generated by
two nonlinear coupled oscillators. We may then ask what
the time series of an experiment agreeing with the circle
map should look like. We will assume throughout the
following discussion that f, > f,, however, the same argu-
ments will hold in the opposite case. The time series will
show a more or less sinusoidal oscillation at the natural
frequency f;. The second frequency f, will produce a beat
pattern superimposed on this basic oscillation. In a locked
state, f,/f,=p/q, we will see a repeated unit block
composed of p fundamental oscillations. We show an
experimentally observed 8,13 signal in Fig. 7. A period
doubling will appear as a second modulation with period
2 p, making the amplitude of the blocks alternately large
and small. As mentioned previously, the period doubling
does not change the winding number. It takes p/q —
2p/2q. A general period multiplication by n of a state
p/q, will result in a periodic time series (n®p/q) with a
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Fig. 8. Experimental time series. A 3®34/55 locked state for small
aspect ratio forced Rayleigh—Bénard convection in mercury. The basic
period 34/55 and the period triplin% envelope modulation are clearly
visible. The basic oscillation is the low frequency (f;) so the blocks
contain 34 oscillations.

period np/f,. We show another experimentally observed
state of form 3® 34/55 in Fig. 8. The basic period 34 (the
time series showing the numerator of the fraction) and the
period tripling envelope modulation are clearly visible. A
quasi-periodic state will look similar, except that the en-
velope will gradually drift in phase with respect to the
fundamental oscillation. Chaotic states have additional
irregular modulations. The attractors of weakly chaotic
quasi-periodic states are nearly impossible to distinguish
from ordinary quasi-periodic attractors. However, chaotic
period doubled attractors are clearly distinguishable from
ordinary locked states, showing smeared pointlike attrac-
tors which may drift to such an extent that they fill the
entire circle.

In applying the above model to a real experiment, we
must take into account the conflicting effects of noise. On
the one hand, we can never achieve a true quasi-periodic
state, since we cannot set the winding number exactly, and
the external frequency inevitably varies slightly in time.
The system will always tend to lock since the presence of
even an arbitrarily small amount of noise will shift a
quasi-periodic state to a nearby locked state. On the other
hand, noise also smears out high denominator tongues. We
may think of each tongue as a potential well whose depth
varies inversely with the denominator of the tongue. In the
presence of noise the state can tunnel between nearby
tongues of high denominator. The system will not remain
in a given large denominator tongue for an arbitrarily long
time. Thus when we speak of an experimental quasi-peri-
odic state, we mean only that we cannot measure any true
periodicity over the duration of the experiment. Another
limitation is that for a finite measurement time we cannot
distinguish arbitrarily low frequencies. For a true quasi-
periodic state with W = ¢, all of the {o,} will be approxi-
mate periods. For some value of i our experiment will fail
to distinguish the difference between o, and o, ,. This is
the limiting resolution of the experiment [46], [125]. Be-
cause the golden mean is furthest from rationals of any
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Fig. 9. Power spectrum for the critical golden mean circle map. The series of large peaks are at frequencies o/, The pattern
of peaks between each pair of main peaks is the same and the envelope of the peak heights goes as w?.

given denominator, it is the irrational winding number
most resistant to noise. A golden mean state can be
knocked further without locking to a low denominator
tongue.

Using time series alone, it is rather difficult to dis-
tinguish quasi-periodic states from chaotic states arising
from quasi-periodicity. The power spectrum:

2

1
P(w) =‘Efdtf(0)e2’”“”

provides an immediate indication, however, and is not
sensitive to random variations in winding number. If two
oscillators of frequencies f; and f, are coupled nonlin-
early, all frequencies of form f, ,, = nf,+ mf, (where n
and m are integers) will be present in the power spectrum,
with the amplitude of the peaks decreasing rapidly with
increasing m and n. Surprisingly, going from a continuous
system to the circle map does not affect the global proper-
ties of the spectrum. It merely sets f, =1. We may define
the power spectrum for the discrete series as

2
1 g -1

P(w) = lim . Yy Hje2’”'“’f
i-> 00 i j=0

where ¢, is the denominator of o,. For periodic states the
number of distinct f, ,, < f; is just p, the lowest frequency
being f, /p and the low frequency spectrum will consist of
a finite number of lines of form jf, /p. If the system is
quasi-periodic, however, the f, , are distinct for all n and

m and the spectrum will consist of a countable infinity of
lines. The combination frequencies are particularly well
behaved at the golden and silver means. Because the
golden mean has the property that its nth power o} = F,_,;

o F,, all powers of the golden mean are linear combina-
tions of the fundamental frequencies and hence will be
present. If we plot the low frequency part of a golden
mean spectrum on a log scale, as shown in Fig. 9, we
obtain a set of equally spaced peaks at frequencies
0, 062,03, - -+ [32], [106], [118]. There are also smaller
amplitude sequences of peaks at frequencies, {of(o; + m)}
which lie between the main peaks. The silver mean behaves
identically, substituting og for o,. The pattern of the peaks
is self similar, that is, the pattern between, for example, o2
and o is identical, up to scale factors in frequency and
amplitude, to the pattern between of and o/ as can be
seen in Fig. 9.

We may use the amplitude of the combination peaks to
estimate k. For k <1 the amplitude of these peaks drops
off exponentially with m and » resulting in a clean spec-
trum with a finite number of measurable lines, as seen in
Fig. 10 (a2) and (b2). However, at k =1 the amplitude of

each series drops off algebraically, P(aZ) ~ 02" as can be

seen in Fig. 9 and Fig. 10 (c2). If we divide by w? to define
the normalized power spectrum, P(w)/w? its envelope
remains flat as @ — 0. Finding the power of  that yields a
flat envelope and counting the number of visible combina-
tion peaks, gives a qualitative estimate of k. The lower the
power of « and the more combination peaks are visible,
the closer the state is to criticality.
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Fig. 10. Experimental Spectra and f(a) curves for small aspect ratio forced Rayleigh-Bénard convection in mercury:
Column 1, golden mean f(«a) curves (dashed lines show the numerically calculated critical curve); column 2, golden mean
spectra. Row a, strongly subcritical; row b, slightly subcritical; row c, critical; row d, supercritical; row e, third frequency

resent. In column 2 single arrows mark the frequency of the oscillatory instability (fint)
requency (f..)- In (€2) triple arrows mark the third frequency.
curves were: (al), 89; (bl), 144; (cl), 377; (dl), 383; (el),

double arrows the forcing
The number of points used to calculate the f(a)
123. The equivalent Arneodo couplings are: (al),

k =0.960; (bl), k=0.977; (c1), k=0.995. Note the 1/w? scaling in (c2). The error bars indicated in (c1) and (c3) are
maximal deviations. For other figures the errors are typically a few percent. From [47].

Above k =1 there are chaotic and period multiplied
states. The nth period doubling appears as a subharmonic
at f,/2". In general any multiplication of period by m will
appear in the form of mth subharmonics, m —1 peaks
between each of the main combination peaks. Chaotic
states are qualitatively different from those discussed
above. Their aperiodicity does not result from combina-
tions of well defined incommensurate frequencies but from
the presence of a 1/f-like continuum of low frequencies.
These frequencies produce broadband noise throughout
the spectrum. The noise increases in amplitude with k,
gradually swallowing the quasi-periodic combination peaks
and, for large k, resulting in a nearly smooth spectrum.

We must also consider noncircle map effects. A complex
experimental system can only resemble the simple circle
map when all but one degree of freedom in its motion is
suppressed. For small perturbations this suppression is not
surprising, but for large external perturbations we expect
that we may excite additional degrees of freedom, raising
the system’s effective dimension [17]. One symptom of an
increase in dimensionality is wrinkling of the Poincaré
section—that is, the Poincaré section folding up on itself
to form a fractal with dimension between 1 and 2. As long
as the wrinkling is small and the dimension is close to 1
our simple circle map will be a reasonable approximation.
However, for very strong forcing, the Poincaré section
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tends to dissolve into a gnatlike sea of points and the
dimension approaches two [47]. In this case we need to
embed our system in a higher dimensional space and use a
higher dimensional model like the Henon or Standard
maps [5]. Two-dimensional extensions of the circle-map,
like the dissipative Standard map:

( 01 ) _
Xit+1

are particularly appealing since they can be reduced con-
tinuously to the one-dimensional case. Unfortunately, if it
is difficult to determine k experimentally, it is nearly
impossible to determine e. Experimental and theoretical
techniques exist to treat this case but they are much less
well developed than those for the simple circle map. We
will discuss two dimensional effects briefly in the experi-
mental section of this paper.

k
6,+Q— —sin(6,) + ex;
2a

X~ 5 sin(4,)

IV. EXPERIMENTAL RESULTS

Now that we know what to look for we may examine the
experimental evidence. We will limit our discussion to
frequency locking effects and neglect the related one-
dimensional mapping problems of phase locking and
simple period doubling. We have studied quasi-periodic
effects in small aspect ratio forced Rayleigh—Bénard con-
vection [46]-[48], [77], [123], [124], and we will describe
this system in detail. A large range of effects have also
been observed in oscillations in Germanium [61], [62],
[69]-{71]. We will discuss other experimental results when
relevant. Experiments on quasi-periodicity fall into two
broad classes, those in which the frequency f, is externally
controlled (which we will denote type I, and those in which
it arises internally, which we will denote type II. Experi-
ments of type I allow much greater control over the
varieties of quasi-periodic behavior observed and we will
concentrate on them.

Forced Rayleigh— Bénard Convection

Our Rayleigh—-Bénard convection experiment consists of
a small mercury-filled rectangular cell (1.4x0.7X0.7 cm?)
with plexiglass walls and copper plates on the top and
bottom. The cell has its temperature regulated to a few
thousandths of a degree celsius and is placed in a horizon-
tal magnetic field of =200 G aligned perpendicular to its
long axis. We begin with a motionless fluid and heat the
cell from below. The heating causes the fluid at the bottom
of the cell to expand and lose density. At a few degrees
temperature difference the inverted density gradient be-
comes unstable and the hot and cold fluids exchange
places (convect) forming horizontal, time independent rolls.
The magnetic field acts to damp motion perpendicular to
its axis and aligns the convective rolls parallel to the short
side of the cell. If we increase the heating further, to about
10°C, the rolls themselves become unstable to the oscilla-
tory instability and begin to oscillate transverse to their

801

axes. Further increasing the heating results in the ap-
pearance of additional low frequencies which have been
used to observe type II frequency locking effects [49], [84].
Other fluids with different thermal properties show differ-
ent sequences of instabilities but the basic sequence: mo-
tionless, steady motion, periodic oscillation, and finally,
multiperiod oscillation, is the same. The oscillatory insta-
bility produces a well defined frequency (defining f,)
which depends on the box size, magnetic field strength and
temperature difference. In the experiments to be discussed,
f1 is typically between 0.2 and 0.4 Hz. We then inject an
alternating pulsed current sheet (frequency f, and ampli-
tude A4) asymmetrically through the mercury. The current
and magnetic field produce an alternating Lorentz force
which couples nonlinearly to the oscillations of the rolls
[124]. The whole procedure closely resembles stirring a pot
of soup while heating it on a stove.

The experimental control parameters related to the non-
linearity are the amplitude of the current pulses (4) and
their duty cycle (x). If the total forcing power (x4?) is too
large, it can drive the oscillatory instability off resonance
and suppress it. Since the amplitude of the nonlinearity
depends on the product of the internal and external oscil-
lator amplitudes, and is more sensitive to peak height than
power (it goes roughly as x4), we use narrow 8-function
pulses to reach the maximum possible nonlinearity without
killing the internal oscillation.

We measure the temperature of the system at the center
of the bottom of the cell using a semiconductor bolometer.
A very useful theorem proposed by Poincaré and proved
by Takens and Swinney [120], [128], [131] assures that as
long as the flow in the cell is coherent (i.e., the flow is not
turbulent) all information about the cell behavior can be
reconstructed from any local measurement of any system
variable.

In the first set of experiments we scanned the 4, f,
plane to map the locking behavior. We present the results
in Fig. 4. We found excellent agreement with the standard
Arnol'd structure with no duplicated or missing winding
numbers and the correct qualitative tongue widths. We
then located the position of the critical line at o, and o
(here defined as the A value at which broadband noise
first appears in the spectrum) and calculated the scaling
exponent & and the approximate fractal dimension of the
quasi-periodic structure D’ by explicitly measuring the
widths of tongues in the “best” approximant series with a
denominator of 100 or less, as shown in Fig. 4. We obtain:
8,, =70+£10%, §, =2.8+10%, and D’'=0.86+3% for
both winding numbers. This agrees with the theoretical
predictions discussed earlier and supports the hypothesis
that the fractal dimension of the set of quasi-periodic
winding numbers at criticality is uniform. However, the
critical line is by no means straight, indicating that the
correspondence between 4 and k is only approximate.
Together these results establish the global similarity be-
tween forced Rayleigh-Bénard convection and the simple
circle map. We have also, by means of a three-dimensional
Poincaré section (7,7, ., T;,,), been able to untangle the
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Experimental critical attractor for small aspect ratio forced Rayleigh—Bénard convection in mercury. The attractor

is wrinkled, indicating two dimensional effects, and varies in density. The width of the attractor results from temperature

drift in the experiment. From [125].

attractors and calculate the return map F(8) explicitly
from the experimental data [124]. We present three-dimen-
sional Poincaré sections and unwindings for weak, mod-
erate and critical forcing in Fig. 11. In each case the
resulting curve is clearly one dimensional, justifying the
circle map model.

We next examined the nature of the transition to chaos
at o; and o;. The experimental procedure consisted of
selecting a winding number o and then, for each change of
the forcing amplitude, approximating it to the desired
accuracy by adjusting the forcing frequency to lock succes-
sively to each of the best approximants {¢;}. By directly
examining the periodicity of the locked time series we
could rapidly tune the winding number to 5 parts in 105,
since tongues with denominators up to around 1000 are
stable. One problem is the low basic frequency of the
system, which results in long data acquisition times and
sensitivity to long term temperature drift.

Fein, Heutmaker, and Gollub made the first experimen-
tal observation of the golden mean critical power spectrum
in a hydrodynamic system. They studied forced Rayleigh—
Bénard convection in water using a 2.1 X 1.6 X0.8-cm’ cell
driven by thermal pulses and detected density gradients in
the fluid using optical techniques. Drifts and pattern com-
petition instabilities prevented them from tuning their
frequency ratio to better than 1 part in 10°. Nevertheless,
they were able to observe a roughly self-similar spectrum
with «* scaling of the peak heights [41]. Our work on
spectra has confirmed and amplified those results. If we
examine spectra at the golden and silver means we find the
predicted pattern: well defined line spectra below critical-
ity, power law (w?) scaling at criticality and broadband
noise above [47], [123]. We present subcritical spectra in
Fig. 10 (a2) and (b2), critical spectra in Fig. 10 (c2), a
rescaled critical spectrum in Fig. 12, and supercritical
spectra in Fig. 10 (d2), all at the golden mean. We have

calculated the f(a) spectrum below, at, and above critical-
ity for both o; and og and find excellent agreement with
theoretical predictions. We present golden mean results in
Fig. 10 (al)-(d1) and Fig. 6(a). We find good agreement
with the predicted Arneodo narrowing for subcritical f(a)
curves, and are able to use it to calculate k. We have also
examined the effects of a third frequency on the spectrum
and critical f(a) curve and find adequate agreement with
theoretical predictions. We present these results in Fig. 10
(el) and (e2).

The agreement between the experiment and circle map is
surprising. Indeed it is so good one might wonder if the
system were not simply a slow analogue computer simulat-
ing the circle map. Fortunately things are not that simple.
We know that for very strong forcing we have turbulent
(high-dimensional) behavior. These extra dimensions must
begin to make themselves felt at some point. In practice,
the first sign of the breakdown of sine map behavior is the
wrinkling of the Poincaré section which begins near criti-
cality as seen in Fig. 13. Just above criticality the dimen-
sion of the attractor creeps above 1, and 10% above, the
attractor has exploded into a full two-dimensional set.

If we look for period doublings inside a tongue we see
higher dimensional behavior of a different kind [46]. The
doubled attractors themselves are unsurprising. In Fig. 14
we show Poincaré sections of a pure §/13 state and a
triply period doubled, 2*®8 /13 state. The periodic attrac-
tors have nearly the same shape as the quasi-periodic
attractor shown in Fig. 13, indicating that the form of the
torus is independent of the trajectory. This agreement is an
example of universality that would be difficult to explain
outside the context of dynamical systems theory. However,
the sequence of multificurcations within the tongues is not
that predicted by the one dimensional model. We have
mapped the 8 /13 tongue in detail and present it in Fig. 15.
At the edge of the tongue and for small nonlinearities the
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Fig. 12. Three-dimensional Poincaré sections and unwindings of experi-
mental golden mean time series for small aspect ratio forced
Rayleigh-Bénard convection in mercury. Column 1 shows the one
dimensional unwinding described in the text. Column 2 shows the three
dimensional Poincaré section. The top section shows weak forcing, the
middle moderate and the bottom critical. From [124].

structure is still largely one dimensional. The overlapping
of neighboring tongues is that predicted by the one dimen-
sional circle map, as are the various intermittency effects
[126]. The first period doubling occurs slightly above criti-
cality, and according to the one-dimensional scheme of
Glass and Perez [13], [107]. We also observe the predicted
symmetry breaking bifurcation (that is there are two dis-
tinct types of period 4 cycles), followed by period doubling
cascades at the sides of the tongue. We have measured the
f(a) curve for one of these cascades and find excellent
agreement with that predicted for simple period doubling,
as seen in Fig. 6(b). So far this is normal one dimensional
behavior. However, when we move towards the axis of the
tongue, the situation changes. Instead of the predicted
pure period doubling cascade, we find paired “bells” of
odd subharmonics, with the order of the subharmonic
increasing toward the tongue axis. Inside each of these
subharmonic bells we observe a subsidiary period doubling
cascade. That is, proceeding from tongue edge to center,
we find 2"® £,2"93® £,2"®5® &, - -. We are able to
observe subharmonics up to 13 but have only succeeded in
mapping up to 5. Furthermore these subharmonic bells
overlap, leading to a strongly hysteretic multisheeted struc-
ture in which states of form m® &, n® &, and me®n® &
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Fig. 13. Rescaled experimental critical spectrum at the golden mean for
small aspect forced Rayleigh-Bénard convection in mercury. Only the
first few series of peaks are shown. The envelope is flat for all series,
indicating w? critical scaling. From [123].

can all exist for the same values of 4 and f,. The simple
circle map predicts no hysteresis in these regions. There
are also various two-dimensional intermittency effects re-
sulting from noise induced jumps between sheets within
the tongue.

At first this structure seems completely incomprehensi-
ble in terms of the circle map model. However, similar,
though not identical, structures have been predicted and
more recently calculated for various two dimensional maps
by MacKay and Tresser [89]-[91], [134]. We may under-
stand this mixture of one- and two-dimensional behavior
by considering the nature of a locked state. Near the edge
of the tongue the system is detuned, resulting in a rela-
tively large damping (effectively the nonlinearity is smaller
near the edge of a tongue). As we move toward the center
of the tongue and the resonance condition, the damping
decreases, allowing the normally suppressed second dimen-
sion to appear. Taking the dissipative standard map as an
example, we might say that € = 0 at the edge of the tongue
and increases to a maximum on the tongue axis. In this
case the sequence in which the subharmonics appear should
allow calculation of € as a function of the distance from
the tongue axis.

Recently, Ecke and Haucke have succeeded in observing
a similar range of phenomena, including well-defined
Arnol’d tongues and period doubling, as well as a variety
of three frequency states in binary convection in a *He-
superfluid “He mixture [67], [68], [35], [66], [64]. Their
system contains two internal frequencies whose ratio is
precisely controlled by varying the Rayleigh number.

Thus in the simple convection experiments, it is possible
to produce the full range of circle map behavior and to
introduce higher dimensional effects in a controlled fash-
ion. This holds out the hope that we can treat more
complex hydrodynamic systems using extensions of the
simple theory, rather than having to start from scratch.
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Fig. 15. Experimental Poincaré sections in the 8/13-tongue for small
aspect ratio forced Rayleigh-Bénard convection in mercury. (a) A pure
8/13 state. (b) A 2°®8 él3 state. The overall shape of the attractor is
the same as in Fig. 11. From [46).

Solid-State Systems

Of the numerous solid state systems exhibiting quasi-
periodic behavior, electrically forced germanium is the
most studied. In the experiment of Held and Jeffries {70],
[72] a single crystal (1 mm®) of n-type germanium with a
electron injecting contact made of diffused lithium and a
hole injecting contact of diffused boron, is cooled to liquid
nitrogen temperatures. When the crystal is subject to a dc
electric field (15.02 V) and magnetic field (9.32 kG) it
produces measurable oscillations in the form of traveling
density waves in the electron-hole plasma. The typical
frequency is 235 kHz which makes data acquisition some-
what inconvenient. Depending on the angle between the
magnetic and electric fields and their relative amplitudes,
the system can oscillate at either one or many frequencies
(resulting in type II frequency locking [69]). However, in
the experiment, the angle and drive voltage were adjusted
to produce a single well defined f;, and an alternating
voltage was applied between the contacts to define f,. The
measured variable was the total current through the sam-
ple I(1). .

They found the standard Arnol’d tongue structure with
the fractal dimension for the unlocked set at the critical
line being D’ =0.90+0.03 and the scaling 8, =2.7+0.5
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accuracy for large a (low densities) is remarkable. From [62].

in agreement with the simple sine map. The power spec-
trum at the golden mean shows the expected behavior and
critical (w?) scaling. Unlike the Rayleigh-Bénard attrac-
tor, the germanium attractor does not wrinkle or explode
until well above the transition to chaos [72]. They have
also examined forcing at two incommensurate external
frequencies and found three frequency quasi-periodicity
with frequency locking to either forcing frequency. There
is a well defined critical surface in agreement with the
predictions of Ostlund, Kim and Siggia [55], [79], [80],
[106]. Unfortunately their signal-to-noise ratio was not
sufficient to allow them to map a three frequency tongue
in detail.

Gwinn and Westervelt [61], [62] have performed a simi-
lar experiment on oscillating electric field domains, using
cooled (4°C) germanium with boron implanted contacts.
They applied a dc bias to induce oscillations at roughly 10
kHz and superimposed an ac driving voltage. The mea-
sured quantity was I(¢). They observe the expected Arnol’d
diagram with w? power spectrum scaling at the golden
mean. Their calculations of f(a) at the critical golden
mean are in excellent agreement with those for the circle
map. We reproduce their f(a) curve from [62] in Fig. 16.
The high accuracy they obtain for large a is particularly
impressive, since these are measurements made where the
attractor density is lowest and hence require long time
series and good stability. Their attractor (Fig. 17) shows
clear signs of wrinkling at criticality but is otherwise
extremely clean.

Martin and Martienssen [93], [94] have obtained a very
clean circle-map-like return map and devil’s staircase be-
havior in electrically driven Barium Sodium Niobate at
high temperatures (500°C). Because of temperature drift
problems their Poincaré sections are limited to about 500
points. They observe a standard Arnol’d diagram but are
limited to denominators <10. Zett! and Griiner have
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cally forced germanium. The attractor is wrinkled, indicating the
presence of two-dimensional effects. From [62].

obtained a nearly complete devil’s staircase and incom-
plete period doubling cascades in forced charge density
waves in NbSe, [22], [57]. They obtain a fractal dimension
for the unlocked set at the critical line of D =0.91+0.03.
Other groups have obtained similar results in a variety of
charge density wave systems [88].

Winful, Chen, and Liu [138] have observed frequency
locking behavior in a periodically forced semiconductor
laser. An internal instability in their AlGaAs/GaAs laser
generates f; at a frequency between 0.5 and 3 GHz, and
an externally applied RF modulation at a lower frequency
defines f,. For weak forcing they obtained a standard
Arnol’d tongues diagram with appropriate tongue widths.
They are able to follow the golden and silver mean quasi-
periodic states over a wide range of forcing amplitudes,
and to observe the expected transition from line spectra to
broad band noise at criticality. Unfortunately the ex-
tremely high frequencies limit their signal-to-noise ratio to
40 dB, so they are unable to resolve more than the first few
combination peaks or to tune their frequency ratio to
better than 1 percent. For large forcing amplitudes (well
above the onset of chaos) they observe a complicated
pattern of disappearing tongues without period doubling.
This behavior is typically two dimensional, and they pro-
vide a two dimensional differential equation model to
explain it.

That such a variety of natural systems exhibit behavior
quantitatively identical to the one-dimensional circle map
is one of the great successes of dynamical systems theory.

Analogue Simulators

Another category of type I system is the nonlinear
electronic circuit specifically built to exhibit quasi-periodic
behavior. Bryant and Jeffries [23], [24] have studied a
system incorporating a magnetic inductor with hysteresis.
The system exhibits frequency locking and Arnol’d tongues,
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however its behavior is complicated. The ordering of the
tongues is not that of the simple circle map. There are
missing and extra tongues with unexpected widths. There
is no well defined critical line and subcritical tongues
overlap. The period doubling behavior within the tongues

is also anomalous, without any apparent symmetry break- .

ing. The data recalls that of many two dimensional systems
of differential equations [8], and Bryant and Jeffries pro-
vide a multidimensional model. Gollub et al. {51] have
observed similar complicated locking behavior in tunnel
diode circuits. We will not describe here the numerous
other experiments in electronic systems built purposely to
emulate circle map type behavior [25], [75], [86], [109],
[133].

Recently, Su, Rollins, and Hunt [127], and Cumming
and Linsay [31], have measured f(a) curves for analog
simulators. Su, Rollins, and Hunt employed coupled di-
ode-inductor resonators, Cumming and Linsay, a more
complicated analog circuit. Both obtain reasonable agree-
ment with the predictions of the circle map, though the
results of Cummings and Linsay show anomalous behav-
iors apparently due to discontinuities in the return map
describing their system.

How one judges analogue simulators is a philosophical
problem. They have the advantage that they can be de-
scribed by ordinary differential equations and thus simu-
lated on a computer, but their relevance to dynamical
systems theory is less clear. A dynamical systems approach
is most valuable for systems like convection, which cannot
be solved exactly. It is somewhat ironic that the simple
theory works best in intractably complex continuous sys-
tems, and fails badly in simple simulators.

Multiple Internal Frequency Quasi-Periodicity

We can only mention a few of the many experiments
done on type II systems. The problem with these systems
is that it is difficult to predict whether changing a given
parameter will affect both oscillators in the same way. One
cannot tune the frequency ratio without affecting the
strength of the nonlinearity. Trying to scan a two parame-
ter phase space with one control parameter is a bit like
moving in a maze. One can move further or backward but
one cannot choose a direction. Nevertheless, in the cleanest
of these systems varying a single control parameter results
in a well defined sequence of periodic, quasi-periodic and
chaotic states. In many cases the return map can also be
determined. The typical signature of a circle-map-like sys-
tem is a well behaved “Devil’s Staircase,” followed by
period doubling cascades and windows of periodicity [12].
Full zoologies have been observed by Maurer and
Libchaber in liquid helivm [85], [95], [96] and Swinney
et al. in both chemical (Belousov—Zhabotinsky reaction)
and various hydrodynamic systems [52], [135]. In the latter
they have obtained D’ =0.87+0.02 (Couette flow) [129]
and attractor blowup above the onset of chaos (channel
flow) [20]. Gollub and Benson have observed a similar
variety of effects including three frequency quasi-periodic-
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ity in unforced small aspect ratio Rayleigh—Bénard con-
vection in water [49]. Three frequency quasi-periodic states
and more or less complete Devil’s staircases have also been
observed in CO, lasers [16], [100], and Devil’s staircases
and other quasi-periodic effects in Fabry—Perot inter-
ferometers [4], [98], mechanical systems [34], [60], [101],
Josephson junctions [105}, and yttrium iron garnet oscilla-
tors [1], [44]. Braun et al. in plasmas {21] and Keolian et al.
in the Faraday experiment [78] have found mixed period
doubling-subharmonic cascades similar to those observed
in our forced Rayleigh—Bénard convection experiment. In
general the numerical accuracy of type II experiments is
much lower than in the type I systems described above, so
these results serve chiefly to confirm the large range of
validity of the one-dimensional circle map model.

IV. CONCLUSIONS AND THE FUTURE

The great accomplishment of dynamical systems theory
and experiment has been to establish that the same basic
description of behavior can apply to a wide range of
systems. This universal behavior is independent of the
detailed structure which gives rise to it. The same language
can describe both Josephson junctions and slime moulds.
To return to our computer metaphor: We have indeed
developed a machine independent code, and without hav-
ing had to learn machine language! The recognition of
universality in behavior is a tremendous advance in the
way we think about complex systems. It tells us what sorts
of behavior we can expect from unknown systems, and
what questions to ask to establish the class to which a
system belongs. However, in its present state, dynamical
systems theory is incomplete, both as a technical and as a
theoretical tool.

Even in the study of one-dimensional systems the tech-
niques of data analysis are cumbersome. We need more
convenient and reliable ways to determine important
quantities. The measurement of dimension is now a stan-
dard technique. We need to be able to determine winding
numbers, f(a) curves, nonlinearity strengths and scaling
parameters automatically. Only when making these calcu-
lations is as simple as taking a Fourier spectrum will the
dynamical systems approach achieve its true potential as a
tool for the study of systems. Recent work by Farmer and
Sidorowich [39], [40], and Kosterlich and Yorke [81] on the
extrapolation of chaotic time series is an excellent example
of the type of tools that need to be developed.

Dynamical systems theory, though beautiful mathemati-
cally, is chiefly valuable to an experimentalist as an ana-
lytical technique. One thinks of basic quantum mechanics
as an analogy. One does not, except in a few specialized
cases, do experiments to check the basic mechanics of the
quantum theory. Instead one uses it to analyze systems
that are interesting in their own right. Similarly, with time,
model dynamical systems will become less and less im-
portant. Once we know that many systems behave like a
circle map, finding additional circle-map-like systems be-
comes less interesting.
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We finish by listing, in approximate order of difficulty a
few of the remaining problems which dynamical systems
theory would need to solve to become a useful theory for
explaining the real world: noise is present in all real
systems, yet dynamical systems theory is essentially de-
terministic. We might expect that as systems become noisier
the dynamical systems approach will be less relevant. This
is not necessarily true, and there has been some progress
on a theory of noisy dynamical systems [29], [30], [119].
However, the work of Stratonovich [126] which predates
dynamical systems theory by twenty years, remains the
most complete treatment of noisy systems. A complete
theory of the significance of noise does not exist and
experimental work is just beginning [19], [65], [40].

Most natural systems contain more than two frequen-
cies. The behavior of systems with three frequencies is still
poorly understood. It is not even known whether there are
universal three frequency behaviors. The theoretical pre-
dictions concerning three frequency systems are vague and
apparently contradictory [55], [103], [110], [115]. There has
been some preliminary experimental research but the
parameter space in a three frequency problem is huge, and
without theoretical guidance it is easy for the experi-
mentalist to lose his way [16], [47], [72].

The theory we have developed works only near the
transition to chaos. Even in few dimensions, strongly
chaotic attractors are still not well understood, though
there has been some recent progress in pushing above the
critical line (for example, in analyzing intermittency effects
caused by the overlapping of locked tongues [48], [59]).

There is still no satisfactory general theory for many
dimensional systems, though there has been significant
recent progress toward extending the theory of symbolic
dynamics, from the circle map to its two dimensional
analogues [5], [9], [17], [59]. The hope has always been that
dynamical systems theory could be extended in a con-
sistent fashion dimension by dimension, but preliminary
results indicate that the universality of two-dimensional
systems is weaker than in the one-dimensional case.

Will it be possible to extend dynamical systems to
higher dimensions? Will universality disappear completely
in three or more dimensions? Barring such catastrophies, it
is clear that any general theory will be significantly more
complex than that for one-dimension. One thinks of the
extension of simple quantum mechanics to field theory and
beyond. For the experimentalist the problems are similarly
daunting. We do not know what quantities are of interest,
and the data sets required to analyze even two-dimensional
systems are enormous. More significantly, most experi-
ments lack a sufficient number of control parameters to
explore a many dimensional parameter space fully. It
seems that all many degree of freedom systems will be type
II and hence hard to interpret. Large systems have a
further problem, they tend to develop complex spatial as
well as temporal behavior. The measurement of a single
variable no longer fully describes the system, and instru-
mentation and data collection become significant prob-
lems. Spatio-temporal chaos is an almost untouched sub-
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ject. Even Rayleigh—Bénard experiments in wide cells are
not understood [14], [50], let alone more complicated natu-
ral systems.

The problems are considerable, but the potential payoffs
is a deep understanding of a range of natural phenomena
which would free physics from its usual restriction to
artificially simplified systems. The dream of every hydro-
dynamicist is an effective and complete theory of turbu-
lence. Early workers on chaos thought they had found this
philosopher’s stone when they discovered that simple sys-
tems could have complex aperiodic behavior. They were
disappointed when they discovered that chaos and turbu-
lence were fundamentally different. But this early failure
has not prevented significant advances in understanding a
large class of previously inexplicable phenomena. Dynami-
cal systems still seems the best approach to a theory of
complexity.
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