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ABSTRACT: We discuss the analysis of experimental data

from chaotic systems.

Quasiperiodicity in Rayleigh-Bénard Convection

I want to discuss briefly, from an experimentalist’s point of view, the various
ways one can analyze a chaotic time series (be it experimental or numerical). Since
the emphasis of this conference has been on the theory of chaos, I will start with
the simplest traditional experimental techniques, and conclude with some general
questions.

There are several routes to chaos. I will describe frequency locking and
quasiperiodicity in the context of hydrodynamics. However, the discussion should
be equally valid for other systems. We study convection in liquid mercury, in a cell

with dimensions 1.4 x .7 x .7 cm?®

. We heat the fluid from below to produce two
convective rolls perpendicular to the long axis of the cell, with a periodic transverse
oscillation, the oscillatory instability, defining an internal frequency f;. Applying a
constant magnetic field parallel to the roll axis and injecting an AC current sheet,
amplitude A.s:, frequency fo, asymmetrically through the fluid produces two non-
linearly coupled oscillators, one of which, fi, can shift in frequency. We measure

the temperature of the fluid, T'(t), at the bottom center of the cell.
For low forcing amplitudes (small nonlinearities) the typical behaviors of the
convection cell are frequency locking, in which f; shifts so that % = % is rational

over some range of fy, and quasiperiodicity in which % is irrational. The locked

states are stable to small perturbations, the unlocked unstable, so the system is
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always in a locked state up to its noise level. The pattern of these locked regions

agrees qualitatively with that of the one dimensional circle map:
Opr1 =00+ 90— k sin(278,,)
n+l = VUn - n).

For stronger forcing (stronger nonlinearity) new phenomena appear. Instead of
quasiperiodicity, we obtain aperiodic time series which include broad band noise
(chaos). For rational frequency ratios, locking persists, but cascades of period-
doubling and other rational period multiplications occur as well. For still higher
forcing amplitudes we also observe intermittency between locked states. For ex-
tremely strong forcing, the oscillatory instability is driven completely off resonance,
resulting in a drastic decrease in its amplitude, and the system returns abruptly to

periodic behavior.1:2:8

The details are specific to convection, but the general patterns of frequency
locking are common, occurring in, mechanical and electrical oscillators, charge den-

sity waves, electrically driven germanium, binary convection in He 3/He 4 mixtures,
lasers, etc...4

Traditional Methods of Data Analysis

I think that it is worth beginning with the most obvious measurements,
because {in conjunction with the experimenter’s eye and brain) they can yield a
surprising amount of information. They are also more robust than the more sophis-

ticated techniques I will discuss later.

For weak forcing, a theorem of Takens permits us to hope that, since the flow
is spatially coherent, we can reconstruct a complete description of any universal
features of the experiment (generally, scalings, i.e., limits of ratios) from a single
series of an arbitrarily chosen variable, in our case, temperature.5® Let us begin by

plotting the time series on a piece of paper and looking at it.

If we are patient we can see whether the system is in a locked state, p/q,
in which case the time series will be periodic with period p, or quasiperiodic (in
practice this means that the period, if it exists, is longer than a few hundred (Fig.
1). In our convection cell the frequency of oscillation is 0.5 Hz, so we can measure
the numerator of the locking ratio by eye about as fast as by computer. It is

quite easy to tune irrational frequency ratios like the golden mean, og = Y52,
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by successively locking to their continued fraction approximants (e.g. 3/5, 5/8,
8/13,...), which are the most stable nearby rational lockings. We can also gauge
roughly the degree of nonlinearity in the system by looking at the amplitude of the
modulation of the main oscillation, fi. It is difficult thus to distinguish weak chaos
from quasiperiodicity or the presence of a weak third frequency, since all appear
to be made of of nearly repeated blocks of rational lengths corresponding to the
continued fraction sequence {e.g. for the golden mean 3,5,8,13,21...). However,
strong chaos with wildly irregular oscillations, and intermittency in which two or
more periodic blocks alternate after irregular numbers of repetitions are easy to
spot. Counting nearly periodic blocks also allows approximate determination of the
irrational frequency ratio in quasiperiodic states. The irregularly alternating blocks
of intermittency, e.g. 2/3<3/5, and the envelope modulationed block patterns of
low order period doublings and other subharmonic cascades are also easy to pick
out. Working only with a time series it is possible to map the regions of frequency
locking in Azt vs f3 space, and to compare them quantitatively to the predictions
of the one dimensional circle map.% A time series also exhibits immediately baseline
drifts (e.g. due to problems in temperature control).

Moving up one step in complexity, we can look at the Poincaré section of the
time series.%? This is defined by embedding the time series in an N dimensional
space, by taking multiplets of the data (e.g. {T'(t),T(¢t + r),T(t + 2 % 7),...}), and
recording the coordinates of intersection between this path and an (¥ — 1) dimen-
sional surface (e.g. (0,y, 2,...)). This procedure reduces the apparent dimensionality
of the data by 1 if the embedding corresponds to a natural periodicity in the time
series. In a quasiperiodic system, there are two natural variables (the phases of
the two oscillators) so we embed in three dimensions. Generally we approximate
the Poincaré cut by measuring T'(¢) in phase with the known driving frequency, fs,
to generate a stroboscopy but this approximation can result in serious problems in
the presence of drift in either baseline or winding number. The fixed phase of the
stroboscopy means that analog filtering, which trades amplitude errors for phase
errors, is useless.? A better technique is to take a continuous time series and define
a selection criterion, e.g. select only points with O time derivative. This requires

storage of a much greater quantity of data but eliminates problems of phase drift.

In a two dimensional Poincaré section, a locked one dimensional state will
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Figure 1 (left): Time Series: a) An 8/13 locked state, b) A period tripled 34/55
locked state [See Ref. 4].

Figure 2 (right): Golden Mean Spectra: a) Subecritical, b) Critical, ¢) Chaotic.
[See Ref. 1].

show up as discrete clumps of points. In the case of a stroboscopy, the number of
clumps gives the denominator, ¢, of the locking ratio. A quasiperiodic time series
will be a continuous, possibly tangled, smooth, closed one dimensional curve.! In-
creasing the forcing amplitude at a fixed frequency ratio, cusps first appear on the
curve at the transition to chaos, then the curve breaks up into a haze of points

around its original position. We do not yet know whether taking a true Poincaré
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section will restore the one dimensional curve. Period multiplication by n splits
each clump into n nearby sub-clumps.? A weak third frequency braids the section.
Higher dimensional and truly aperiodic systems, have space filling sections without
apparent structure.® In a stroboscopy an intermittent state looks like a strongly
chaotic state, in a true phase section, intermittency appears as two or more well
defined sets of clumps, irregularly visited. The section can also provide informa-
tion about system dynamics. A gradually locking or unlocking state shows up as a
narrow streak leading to a clump. Phase or amplitude drifts smear out the section,
phase drifts by rotation, amplitude drifts by diagonal translation. In both cases,
large amplitude drifts render the section essentially unusable over long time peri-
ods. If the period ¢ is known, however, high frequency noise can be eliminated by

averaging known corresponding points to arrive at an "ideal” Poincaré section.

Any more sophisticated method of data analysis starts with either a contin-
uous time series or a Poincaré section, and therefore inherits its typical advantages
and disadvantages. The two most common techniques are Fourier analysis and
autocorrelation. Power spectra can be used to measure frequency ratios, but for
locked states they are less convenient than direct counting from the time series. For
irrational frequency ratios all combination peaks of form n f1 £ mfy appear, the
amplitude of higher order combinations decreasing with increasing m and n and
increasing with the forcing strength. For a well behaved irrational like the golden
mean, the lowest order combinations are all powers of the frequency ratio (Fig.
2b). The degree to which they are equally spaced on a log frequency plot gives a
rough estimate of how well tuned the ratio is. At criticality, at the golden mean,
these primary peaks have amplitudes proportional to the square of their frequency.?
Period multiplications by n show up in the presence of nth subharmonics. Within
period doubling cascades, the amplitude of the subharmonic peaks gives a rough
indication of the approach to chaos. Chaos itself shows up clearly as broad-band

noise which gradually swallows the combination peaks and comes to dominate the
spectrum (Fig. 2c).

Autocorrelations have the advantage of being more sensitive to long time
behaviors, but are chiefly useful for studying locked states. They are able to pick
out really high order multiplicities in locked states, and to measure very long period

locking. Like power-spectra, they are slow, and occasionally ambiguous.

256

Multifractal Scaling Techniques of Data Analysis

The techniques mentioned above are quite general, and help us understand
the physics of our experiment. Let us next turn our attention to methods specifically
designed to establish exact correspondences between experiments and universality
classes of low dimensional maps (actually proving equivalence is usually impossible).
That these measurements answer different types of questions should always be kept
in mind.

If the Poincaré section of the time series is low dimensional (i.e. one or two
dimensional) the local scaling, «;, at each point, x;, of the section is well defined. We
can define in a simple way the section’s multifractal spectrum, f (@), the dimension,

f, of that subset of points with scaling exponent a910

For our experimental signal a naive box counting algorithm requires too many
points to be useful and is too sensitive to drift. One way to improve the experimental
accuracy is to average the position of points which are known to correspond, for
example every 13th point in an 8/13 locked state. We have used this method
successfully to obtain the f(c) spectrum for a period doubling cascade of the 8/13
locked state (Fig. 3).3

However, in the quasiperiodic case long term averaging is impossible since
there is no exact correspondence between points. We can get around this problem
by using the known frequency ratio of the system to establish a list of nearest
neighbors.® If the frequency ratio is ¢ with continued fraction approximants %’i
then each ¢n is an approximate period, and we may approximate the section by
selecting gn consecutive points. If we treat the section as a tangled circle and look
at the order of nearest neighbor points on a circle {8;4; = 0; + Z—:‘:} with winding
number ;L:, we can establish a corresponding sequence on the section, {Tr(m)},
The probability of visiting a given segment between nearest neighbor points of the
section is inversely proportional to the segment’s length, Im = IT,(m) - T,,(m +1)|.

Then the generalized dimension is dg = (g — 1)74 where 7¢ satisfies

1=Tn= Y (ph)/() =) _lm ™.
The multifractal spectrum is the Legendre transform of 74, given by
dr

a=:i;

fla) = ag—1(q).
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This method converges rapidly in n for positive g, so the left hand side of the
spectrum can be determined with as few as 50 points. The right hand (negative q)
side converges slowly, and is more sensitive to noise (Fig. 3). If an inappropriate or
too large gy, is chosen, the noise amplitude will be comparable to the point spacing,
and the curve will widen abruptly and erratically. High frequency noise affects the
high density side and low frequency noise the low density side. Subcritical curves are
symmetrically narrowed, while supercriticality or the presence of a third frequency
in a critical time series, narrows more on the low density side.?

|

Figure 3:  f(a) curves for the transition to chaos of
in the 8/13 locked state (left) and for a golden mean fre
lines are theoretical, dots experimental [See Ref. 4].

a period doubling cascade
quency ratio (right). Solid

Arneodo has shown that for nearly critical quasiperiodic time series {which
have a true f(a) curve consisting of a single point at (1,1), the approximate f(a),
curve narrows in a consistent way as n increases.!! Therefore the strength of the
non-linearity k can be directly determined from the time series for k ~ 1. This
correspondence is particularly valuable, because experimental control parameters
often do not correspond simply to the parameters of iterated maps.?

The f() curve identifies fairly unambiguously the universality class of Poincaré
sections, but spatially averages over the whole section. The trajectory scaling func-

tion (tsf), a smoothed version of the local scaling as a function of position, preserves
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this information.1? We generate an ordered Poincaré section as described above and
look at the hierarchy of ratios between successive nearest neighbor distances as we
increase n in our approximation.!3 Since the result again depends on ratios between
small nearest neighbor distances it is sensitive to noise and requires clump-wise av-
eraging. In the period doubling case, everything is simple. For a period n orbit
(where N = 2™), skipping a few subtleties, we define the tsf, 0 :

_ |xj - xj+N/4I

;= if 0<j<N/4
‘x] _xj+N/2|
x.__x-_
:‘_J__J_f!./.“_l_ if NJ/A<j<N/2
Ixj = X4 n/2]

To examine quasiperiodic states, we work with locked states whose frequency ratio
approximates the desired quasiperiod and define the tsf for an Fp cycle approxi-

mating the quasiperiod to be:

_ |xj — X5+ F, _2|
B |xf _xJ'+Fn—1|
Xy = %54 F, |
- ‘xJ. - xf—Fn—zl

o.

: if 0<j< Fag

tfFp9<j< Fnp1

In both cases our results for the Rayleigh-Bénard convection experiment agree with
the one dimensional circle map, though we have too few data points and too large
an experimental error for the agreement to be conclusive (Fig. 4). However, we
feel the results are good enough to make it worth while to refine the technique
further, especially since the tsf is universal, directly calculable from the fixed point

renormalization group, and contains all scaling information about the time series.

Open Problems

At this conference, in the papers of Barnsley, on multiple affine map teth-:
niques, and Arneodo, on wavelet transforms, we have heard some more sophisticated
ways to analyze higher dimensional data.l41% In their robustness, and in the gen-
eral type of information they provide, these techniques seem closer to the " physical”
methods of analysis we have discussed. The powerful method of singular value de-
composition is also in this class. I hope they will serve similarly as jumping off

points for ”chaotic” techniques as well.
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Figure 4:  Trajectory Scaling Functions at the transition to chaos: (left) Pe-

rigd doubling. Circles are fro.m a nonlinear resonator circuit, x’s from experiment.
(right) Golden mean quasiperiodicity. Circles show experimental data [See Ref. 13].

We still lack well developed techniques for "chaotic” analyses of strongly
chaotic time series. Searching for the ghosts of unstable orbits is one promising
technique, which we are currently attempting to use to examine strongly chaotic
time series from our convection experiment.1%17 But this method can work for us
only because the intermittency is low dimensional, and well described by a two
dimensional extension of the circle map.

What would an experimentalist like to have? It would be nice to have more
refined black boxes to calculate standard quantities like f(e) curves or trajectory
scaling functions. Current techniques have too many free parameters and too much
sensitivity to details of the calculation (like choosing window sizes). Error analyses
are either rudimentary or non-existent, though Farmer and Sidorowich’s work on
singular value decomposition, and Barnsley’s on distances between patterns are
important advances.!%18:19 We need to know how much drift in winding number,

how much high frequency noise we can have, and still calculate an f(a) curve with
a given certainty.

More seriously, the scope of "chaotic” techniques is still far from obvious.

In general chaos is too complicated to understand throughout a parameter space:
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our techniques only work at particular, well behaved values of the frequency ratio,
which must be known as an external parameter. The few methods that do have
general applicability (e.g. looking for positive Lyaponov exponents) do not provide
enough information to be really useful, though Eckmann has made some progress on
this point.20 In hydrodynamics, even medium aspect ratio convection has dimension
greater than two. Techniques for high-dimensional analysis are almost non-existent.
Weak intermittency is currently intractable. The three frequency problem is poorly

understood.21:22 Tt would be nice to know at least what can be known.

While ”"chaotic® methods allow us to prove rigorously the correspondence
between an experiment and a known class of iterated maps, they do not in usu-
ally suggest the correspondence to look for. We established that Rayleigh-Bénard
convection has circle map frequency locking by looking at the time series, not by
calculating an f(a) curve. It is not yet clear how much more chaos methods can
tell us than simpler traditional methods. Only if chaos theorists take direct interest
in experiment, and the needs of experimentalists, will chaotic techniques become a
useful part of physics.
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