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Nonideal effects in the two-dimensional soap froth
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We discuss the effect on two-dimensional bubble growth of deviations in internal vertex angles
from the predicted 120°. We also present evidence that Plateau border broadening contributes to
the anomalous growth exponent that we have previously observed in froth coarsening.

Most studies of the two-dimensional soap froth have
considered it as a model for ideal two-dimensional grain
growth. In this role its value has been amply demonstrat-
ed.!”* We have previously measured the average internal
angle at the vertices in a two-dimensional soap froth and
found systematic deviations from the predicted value of
120°.> We have also characterized the evolution of a
two-dimensional soap froth and found that it reaches a
scaling state, that is, a state in which the distributions of
fractional bubble area and number of sides remain con-
stant in time. In the scaling state the average bubble area
(a ) grows as a power law in time, {a ) « % with growth
exponent a=0.59+0.11.° A variety of theoretical argu-
ments predict @=1.* In this report we discuss the effect
of angle deviations on bubble growth rates and present
evidence that film thickening contributes to the deviation
of the measured growth exponent from the theoretically
predicted value.

We have discussed our experimental procedure in de-
tail elsewhere.® The basic apparatus consists of a thin
rectangular Plexiglas cell which we fill with a soap froth
to produce a two-dimensional pattern, seal, and allow to
evolve. To record the pattern evolution, we periodically
photocopy the cell and analyze the results by hand.

The driving mechanism behind the pattern evolution of
the soap froth is pressure-driven diffusion. If we assume
that (1) all vertex angles in a froth are 120° (2) all walls
are sections of circular arcs, (3) the pressure difference
across @ wall AP is proportional to the reciprocal of the
radius of curvature of the wall, (4) the rate of gas
diffusion across a wall is equal to the product of its length
with the pressure difference across it, and (5) pressure
differences are small so that diffusion of gas is equivalent
to diffusion of area, we obtain von Neumann’s law for the
rate of change of the area, A4,, of an n-sided bubble’

dA
dt

where « is an effective diffusion constant with the units of
area/time. von Neumann showed that this law is exact
for each bubble in any system obeying these five hy-
potheses.’

If we assume that a pattern’s free energy depends only

n

=k(n—=6) , (1)
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on its wall length and linear functions of wall curvature
and that the pattern evolves to minimize the free energy,
we find that in an equilibrated pattern the angle at every
vertex should be 120°. Since the internal angles of
straight-sided polygons with n56 are not 120°, energy
minimization requires that bubbles with fewer than six
sides have convex walls and bubbles with more than six
sides concave walls. Experimentally we have found that
at all times the average internal angle lies between 120°
and the polygonal angle for straight sides, i.e., bubbles
are more polygonal and less curved than predicted by
linear energy arguments. Thus there must be an addi-
tional nonlinear curvature energy. We can recover a gen-
eralized form of von Neumann’s law if we assume an n-
dependent typical internal angle, 8(n ),

da,

dt

6(n)
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180°
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(2)

We show the calculated value for the modified von
Neumann’s law obtained using our previous experimental
measurements of 8(n) in Fig. 1, along with a linear fit
corresponding to an unmodified linear relation. In spite
of the large angle deviations observed experimentally (up
to 10°), d A4, /dt remains a nearly linear function of n,
though with a smaller slope than that obtained from the
unmodified law with the same value of k. The scarcity
and small size of three-sided bubbles results in a large er-
ror for d A; /dt and the true value is probably larger.
Previous experimental verifications of von Neumann’s
law have looked only at bubbles with fewer than ten
sides.*® In Fig. 2 we show d 4, /dt in an air froth for a
pattern with a large range of bubbles sizes and hence
number of sides. Since it is not practical to make an ex-
perimental cell large enough to generate a 20-sided bub-
ble in a scaling state, we need to use froths with
artificially introduced many-sided bubbles. Such non-
equilibrium froths may have growth rates which differ
from those in a scaling state froth. The indicated error
bars are one standard deviation in the measured values of
d A, /dt and at least partially represent real fluctuations
in bubble growth rates. For example, some seven-sided
bubbles shrink. However, much of the scatter is probably
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FIG. 1. Modified von Neumann’s law. Growth rates for n-
sided bubbles predicted by the modified form of von Neumann’s
law [Eq. (2)] using the experimentally measured angle deviations
in Ref. 5 (squares) and an unmodified von Neumann’s law [Eq.
(1)] with the same average diffusion rate (solid line). The large
error in the experimental measurement of 6(3) makes the true
value for d 4; /dt uncertain.

due to measurement error rather than intrinsic fluctua-
tions in growth rates. We have discussed sources of mea-
surement error in detail elsewhere.* We are interested
primarily in the linearity of the measured growth rates as
a function of n, so we neglect the absolute value of «
which depends on details such as cell thickness and the
total amount of fluid in the froth and hence varies from
run to run.

We obtain the expected linear relation between n and
d A, /dt for bubbles with between five and roughly 20
sides. Three- and four-sided bubbles shrink slightly more
slowly than expected and bubbles with more than about
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201

(arbitrary units)
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FIG. 2. von Neumann’s law. Growth rates for n-sided air
bubbles. The result shows some features of the modified form of
von Neumann’s law but is also close to the unmodified form for
n up to 24. Error bars show one standard deviation. Single
points indicate that only one measurement was made for that
number of sides.
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20 sides seem to grow slightly more slowly than expected.
The apparent slower rate of shrinkage of few-sided and
many-sided bubbles and the faster than linear increase
with n for bubbles with between 9 and 14 sides slightly
favor the modified form of von Neumann’s law [Eq. (2)].
However, within experimental error we find agreement
with both the modified and unmodified [Eq. (1)] forms of
von Neumann’s law.

Given the experimental confirmation of von
Neumann’s law (or its modified form), it is somewhat
surprising that we have obtained long-term growth ex-
ponents different from 1.° von Neumann’s law predicts
that in a scaling state the average area of a bubble {a)
should be proportional to the time #.5!° Let 4 be the
area of the entire system, N be the total number of
bubbles [(a)=A/N], p(n) as above, and A,
=(A4,)/{A). Then, assuming the distributions are
random, and coarse graining over the time it takes for
one bubble to disappear, we find that the average number
of bubbles lost per unit time is the area lost by three-,
four-, and five-sided bubbles per unit time divided by
their mean areas,

dN kp(n)N(n—6)

anv _ ) 3)

a2 A ‘
Substituting for {a ) we obtain

dN _ 2 kp(n)(n—6)

an _ kpin An—06) 4

a N 2T A4 @

Since the distribution functions p(n) and A, are time in-
dependent in a scaling state, the sum in Eq. (4) is a con-
stant and

dN

aN a2, -1
dtoc N No<t™ ', (5)

so
(a)xt. (6)

The modified version of von Neumann’s law leads to the
same result for the power law. Thus both forms of von
Neumann’s law predict asymptotic linear scaling of the
froth. Inversely, if the constant k changes in time, the
observed growth rate will not be linear in time.

The observation of anomalously low growth exponents
is common in metals, where initially well-dispersed im-
purities gradually segregate to the grain boundaries and
reduce boundary mobility and hence slow (or even stop)
grain growth. Inversely, the presence of impurities which
increase boundary mobility results in growth exponents
larger than 1.!' In a froth the equivalent to a decreased
boundary mobility is a decreased effective diffusion con-
stant k. Our previous measurement showed that « stayed
constant to within 5% over reasonably long times.®
However, we did not measure k at very long times when
the exponent deviation was significant.!> We have there-
fore looked more closely at possible causes of time-
dependent diffusion constants.

We do not observe any difference in exponent between
experiments done using helium and air, even though the
helium bubbles evolve five times more rapidly, so changes
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in the permeability of the soap films due to changes in
their chemical structure as they age, are improbable. It
seems more likely that any decrease in the diffusion con-
stant is due to an increase in the amount of fluid per unit
length of soap film in the sealed cell as bubbles disappear
and the total length of bubble wall decreases. The
diffusion constant is proportional to the product of the
vertical extent of the thin film with the permeability of
the thin film. A change in wall length can change both of
these terms.

Since the fluid volume is very small, the excess fluid
tends to accumulate in Plateau borders, which are tri-
angular regions that appear wetting the top and bottom
plates and also at the vertical intersections between three
films. The borders are very thick compared to the actual
soap films and effectively block the diffusion of gas across
them. The typical width of the borders can be compara-
ble to the separation between the top and bottom plates
in the cell, and the borders can double in width during an
experimental run, which means that the width increase
can reduce substantially the unobstructed height of the
soap films, and hence the total area of film available for
diffusion. Thus the obstruction caused by broader bor-
ders results in a lower effective diffusion constant.

An alternative explanation would be that the soap films
thicken as excess fluid accumulates. Even a small in-
crease in film thickness would result in a decrease in the
permeability of the soap films, and hence in the diffusion
constant. We have no techniques to measure the film
thickness during the experiment. However, we expect
film thickness, if it increases at all, to increase with the
amount of excess fluid available and hence with the width
of the Plateau boarders. Measuring the dependence of
the coarsening rate on the Plateau border width therefore
measures an aggregate of obstruction and film-thickening
effects.

We can measure only the widths of the borders and
must estimate their vertical extent. In our calculations
we assume that the vertical height of a Plateau border is
one half its horizontal width, which is consistent with our
observation of films at the borders of the cell. A larger
wetting angle would result in a relatively larger obstruct-
ed area and hence in an effect of greater magnitude.

An additional complication is that images produced by
our Mita Model DC-1255 photocopier are anisotropic.
When we magnify the photocopies to measure the widths
of the bubble walls some wall orientations produce
smooth well-defined lines and some irregular lines with
great variations in linewidth. Direct examination of an
actual froth with a magnifying glass shows that this is an
artifact and not a wetting effect of the Plexiglas. We
therefore measure only lines oriented within 30° of that
axis, which gives the smoothest line profiles, and average
many measurements distributed over the entire pattern to
reduce any remaining spatial anisotropy and measure-
ment error. The uncertainty in the widths is approxi-
mately 25% of the measured values.

We present results for two air runs with different total
fluid volumes in the same }-in.-thick cell in Fig. 3. In the
first run the width of the Plateau borders increases ap-
proximately 50% during the experiment, and the fraction
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FIG. 3. Plateau border broadening. Plateau border widths vs
time for two air runs. Run 1 (circles). Run 2 (squares).

of the film obstructed by the Plateau borders ranges from
approximately 12.4% at the beginning of the run to
18.7% at the end. The growth exponent for this run is
a=0.81. The Plateau border width in the second run
does not increase significantly until the number of bub-
bles decreases to fewer than 200 when the width doubles.
The obstructed fraction grows from 9.9% at the begin-
ning of the run to 19.0% at the end. The exponent for
this run is @=0.50.% The fact that a lower exponent cor-
responds to a larger percentage increase in obstructed
area is strong evidence that a reduced diffusion constant
is responsible for the changed exponent. As expected, the
run with the initially larger Plateau border width evolves
more slowly. We also obtain a larger exponent if we
work in a larger cell in which film thickening is less im-
portant.13

We can begin to separate film-thickening effects from
those of obstruction by repeating the experiment in cells
with different heights. The effect of obstruction depends
on the ratio between border height and cell height, and
should be larger in a thinner cell. Film thickening de-
pends on the absolute width of the Plateau borders and
should be independent of cell thickness. Experimentally
we find that cells with a thickness of § in. have a larger
average exponent (a=0.71%0.12) than cells with a
thickness of % in. (¢=0.58+£0.12), which suggests that
Plateau border broadening dominates. However, since
we have not controlled for total fluid volume the result is
only indicative.

To obtain a definitive measure of the growth exponent
in the soap froth, we need to repeat the grain growth
measurement in a drained cell where the width of the Pla-
teau borders, and hence the film thickness, is held con-
stant.

Summarizing, we have calculated the generalized von
Neumann’s law using experimentally determined average
internal angles in the two-dimensional soap froth. While
the data agree slightly better with the modified form of
von Neumann’s law, both modified and unmodified laws
are within our experimental error. We do not understand
why the angle deviations should yield a nearly linear
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modified growth law.

We believe that the reduction in film height available
for diffusion caused by broadening of the Plateau borders
as fluid accumulates in our sealed experimental cell (pos-
sibly augmented by film-thickening effects) can explain
our previous observation of reduced growth exponents in
the two-dimensional froth.
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