
Workflows for Parameter Studies of Multi-Cell Modeling

Randy Heiland

Open Systems Laboratory
Indiana University

Bloomington IN 47405, USA

James Glazier
Biocomplexity Institute and

Department of Physics
 Indiana University

Bloomington IN 47405, USA

Maciek Swat
Biocomplexity Institute and

Department of Physics
Indiana University

Bloomington IN 47405, USA

Andrew Lumsdaine
Open Systems Laboratory

Indiana University
Bloomington IN 47405, USA

Benjamin Zaitlen
Biocomplexity Institute and

Department of Physics
Indiana University

Bloomington IN 47405, USA

Keywords: Scientific workflows, scripting languages,
cluster computing, visualization.

Abstract
Running simulations for multi-cell tissue models can

involve numerous parameters and consume considerable
computing resources. This paper presents an overview and
use case of two open source projects - CompuCell3D, a
multi-cell modeling framework, and VisTrails, a workflow
system for parameter exploration and data management.

1. INTRODUCTION
Mathematical modeling and computer simulations

continue to contribute to our understanding of a variety of
complex phenomena. In this paper we are interested in
processes involved in developmental biology. More
specifically, we wish to model the dynamics of cells, cell
clusters and tissues. There exist a variety of data structures
and techniques for this particular domain of modeling, e.g.,
agents, regular lattices, unstructured meshes, in conjunction
with finite-state machines (cellular automata) or PDEs
solved via finite differences or finite elements.

We present an overview of the CompuCell3D
modeling framework and explore the use of a workflow
system, VisTrails, for the primary purpose of performing
parameter explorations for CompuCell3D. Both packages
are open source software.

Although there are several workflow systems that are
now available, we shall see that VisTrails is an obvious
choice for our particular situation. Scientific visualization
plays a key role when developing a model that simulates
multi-cell dynamics. VisTrails, as the name implies, comes
bundled with visualization packages. In fact, both
CompuCell3D and VisTrails have adopted the
Visualization Toolkit (VTK, www.vtk.org) as one option
for rendering data. Another reason that VisTrails was an
obvious choice is the fact that it is built using the Python

scripting language (www.python.org). CompuCell3D also
uses Python as an interface to its underlying C++ code.
Python is quite popular for developing interactive scientific
applications [1].

2. COMPUCELL3D
CompuCell3D (www.compucell3d.org) is a multi-cell

modeling framework [2]. It implements the Glazier-
Graner-Hogeweg (GGH) model, also sometimes known as
the cellular Potts model, and operates on a regular lattice
(currently either square or hexagonal, in 2D and 3D). As a
general-purpose framework, CompuCell3D is capable of
modeling a broad range of phenomena, e.g.,
ferromagnetism, foams, and biological cells [3][4]. One
noteworthy feature of CompuCell3D is that its most
primitive object is a generalized cell. That is to say, it is
not (typically) concerned with mechanisms at the sub-
cellular (biological) level, e.g. reaction kinetic networks.
And this feature is relevant for this study since it makes the
parameter space more tractable.

CompuCell3D can be invoked as either an interactive
application with a graphical user interface or a batch
program that outputs data at user-specified intervals. In
either case, a user creates an XML-formatted model-
definition input file and then, in the interactive session,
runs the simulation, watching the evolution of the
generalized cells. In addition, it is also possible to visualize
any underlying fields defined on the lattice, e.g., diffusion.

For a use case scenario, we choose one specific model,
biological cell sorting [5] (in 2D), for which we will
conduct parameter explorations. The general approach that
we develop for these workflows can be applied to other
models. Cell sorting is a well-known biological process
and can be described as the reorganization of a random mix
of two cell types. The cell types differ in their cell
adhesivities (stickiness). One canonical outcome of a cell
sorting simulation is that cell types with lower adhesivity

(Noncondensing) will engulf cell types with higher
adhesivity (Condensing). However, as we shall see, by
exploring a range of parameters associated with the model,
we can obtain a wide variety of outcomes. Figure 1 depicts
the CompuCell3D application displaying a snapshot of the
time evolution for the 2D cell sorting model, showing
Condensing cells (green), Noncondensing cells (red), and
the background Medium (blue).

One goal in performing a workflow evaluation is to
minimize the changes needed to run a simulation.
Therefore, we wish to keep the basic approach of using an
XML model-definition file as input. Our strategy will be to
create workflows that automate the parameter exploration,
edit the relevant XML values, execute the core
CompuCell3D code and output raw data. The visualization
of the data will be performed by VisTrails, in addition to
managing the workflow data. For this initial study, we will
only output simulation data at the end of some specified
time.

Figure 1. CompuCell3D application showing cell sorting

3. VISTRAILS
VisTrails is a scientific workflow and provenance

management system [6]. Workflows are expressed as
dataflows (pipelines) – a set of modules, with links
connecting input and output ports, that get executed, in the
simplest case, from top to bottom. In the most recent
version (1.3, used here), it also provides constructs for
functional loops and conditionals. As a standalone
application, VisTrails provides an interactive Builder
window in which one constructs a pipeline (via drag and
drop), sets parameters and executes it. Figure 2 illustrates a
very simple pipeline that performs an arithmetic binary
operation and outputs the result to a console panel. On the
left side of the Builder window, we have categories of
built-in modules from which to drag and drop. The

primary center panel is used to graphically build the
pipeline and the smaller picture-in-picture panel in the
upper-right is the (graph) history associated with this
pipeline. Provenance data associated with a workflow (a
vistrail) is maintained via XML files or a relational
database. As mentioned before, VisTrails is capable of
performing visualizations. These appear in a separate
Spreadsheet window which is also interactive. The built-in
visualization packages include VTK, matplotlib and Image
Magick. VisTrails is written in Python, is open source and
cross-platform.

Figure 2. VisTrails Builder window and simple workflow

4. PARAMETER SWEEPS
Our primary goal in using a workflow system is to

perform parameter sweeps for CompuCell3D models. We
begin by taking a manual approach in VisTrails, illustrated
in Figures 3-5: grab three Float modules, rename them to
p1,p2,p3 and connect them to another module, edit_xml
which is a renamed instance of a general-purpose
PythonSource module that can contain any user-specified
Python script. In this case, it will contain the necessary
script to edit the input XML model-definition file,
replacing three chosen parameters with the values in p1-p3.
It is quite easy to create input and output ports for a module
(Figure 4). The ports will appear as small squares at the
top (input) and bottom (output) of a module. When a user
tries to connect an output port of one module to an input
port of another, VisTrails will enforce datatype matching.

Figure 3. Drag & drop modules and renaming

Figure 4. Defining input and output ports

Next, we create another PythonSource module,

run_cc3d, that simply executes CompuCell3D with the
edited XML file as input. This writes output data to a file,
which is then processed by the MplPlot module (uses the
matplotlib package) and is then rendered in the
Spreadsheet. Figure 6 shows the results of two
qualitatively different cell sorting results after a user has
tediously entered a variety of values for p1-p3 and
manually executed the workflow.

Figure 5. Pipeline to manually set parameters

Figure 6. Spreadsheet results for 2 sets of parameters

The first improvement we make to our workflow is to

use the Cross module (in the Control Flow category). This
module will take the cross-product of two lists, offering a
convenient method for performing parameter sweeps. By
connecting multiple Cross modules together, we can easily
build up sets of parameter values (Figure 7).

Figure 7. Combining Cross-product modules for

parameters

The next improvement we make to the workflow is to
use the Map module (also in the Control Flow category).
This module will apply a generic function to a given input
list, resulting in a sequence of results. Figure 8 depicts
usage of the Map module. The generic function associated
with the Map is a Group module that was created by
graphically grouping all modules in Figure 5, except p1-p3.
Rather than having the user manually supply parameter
values as done previously, the workflow now generates a
list of (5-tuple) parameters from combined Cross modules
that will be inserted into the appropriate XML parameters.

At this point, the workflow has become quite
computationally (and data) intensive. For the cell sorting
model system being studied, our sample workflow
generates 72 sets of parameters that affect the biological
cells’ (and Medium’s) adhesivities.

Figure 8. The Map module

To address the computational bottleneck, we modify

our workflow so that the CompuCell3D execution is
performed on a remote cluster as described in previous
work [7]. Using Indiana University’s Big Red cluster (a
TeraGrid resource), together with Globus clients (globus-
job-run and globus-url-copy) and the MyProxy service, we
split the original workflow into two. The first automates
the parameter sweep and job submissions to Big Red. The
workflow submits a series of, in this case, 72 jobs that can
be run simultaneously. Data files from the simulations are
written to GPFS. Once the simulations have completed, the
user executes a second workflow that automates retrieval of
the data files and rendering into the VisTrails Spreadsheet.
Figure 9 shows a portion of the 72 rendered results,
obtained via the Export (an image) functionality of the
Spreadsheet. These results reveal the two expected
qualitative outcomes that were depicted in Figure 6,
engulfment and dissociation. But they also reveal a third,
checkerboard, pattern and variations of these three,
including a checkerboard pattern where Condensing cells
form the border (i.e., stick better to the Medium) and one
where Noncondensing cells form the border.

At this point, we should state the obvious. The
rendered results do not represent steady state solutions. We
only know that these results represent a single solution at
the same time T. Nevertheless, we are hopeful that such a
study can offer some insight into model parameters being
mapped into qualitative outcomes.

Figure 9. Exported image of Spreadsheet in Interactive

mode

The VisTrails Spreadsheet window offers two modes,
Interactive and Editing. Until now, we have only used the
Interactive mode, which allows for graphical interaction
within each rendered image (or geometry, if we had used
VisTrails VTK modules, for example). In Figure 10, we
show the first two rows of the Spreadsheet in Editing mode.
This mode makes it possible to rearrange the layout of the

rendered viewports and also provides a mapping to the
underlying workflow (vistrail). In Figure 11, we show the
top two rows of the Spreadsheet after rearranging so that
distinctly different qualitative results are displayed.

Figure 10. Spreadsheet in Editing mode

Figure 11. First two rows of Spreadsheet after

rearrangement

5. FUTURE WORK
There are many different possibilities that one could

explore in the future. The basic workflow approach used
here was to programmatically edit an XML input file, run a
simulation until time T and write data, thereby capturing a
single solution. The next logical step might be to extend
this to capture solutions at multiple time steps and generate
movies for the parameter sweeps.

A more challenging task would be to devise techniques
for classifying the qualitative outcomes – a taxonomy of
solutions. If such a metric were possible, it might allow for
programmatic workflow steering.

We have glossed over many details of using
CompuCell3D as a general-purpose modeling framework.
But a key idea is to select predefined plugins that map to
specific behaviors of cells. One very significant challenge
is to find appropriate values for these plugins’ parameters
that will result in the desired dynamics and structure.
Whether or not we can incorporate VisTrails parameter

sweeps within the system remains to be seen, but it would
seem to be a worthy goal.

Faster, larger, and longer computations are always
desirable. We are currently exploring options to address
some of these challenges, including parallelizing
CompuCell3D using MPI and looking at GPUs for
speeding up parts of the code.

6. CONCLUSIONS
We have performed a parameter exploration for

biological cell sorting, using CompuCell3D to perform the
simulations and VisTrails to create and maintain a
workflow. VisTrails was a natural choice for a workflow
package since it is Python-based and CompuCell3D also
makes extensive use of Python.

Both systems, CompuCell3D and VisTrails, are open
source software (as is Python). A user can freely download
and inspect all of the underlying code. This helps eliminate
algorithm uncertainty that may be associated with closed
source software. A user can, for example, see how a PDE
solver is implemented in CompuCell3D and, moreover,
insert their own solver into their copy of the code (and
perhaps make it available to the community).

VisTrails is an easy to use workflow system. It lets a
user graphically construct a pipeline of connected modules
that can then be executed. Many useful modules come
predefined in the system, including a general-purpose
PythonSource that lets a user create their own Python
script. Modules are user-configurable, allowing for the
creation of (additional) input and output ports, easy
selection of predefined datatypes on those ports, and
subsequent type-checking when connecting one port to
another. Two control flow modules were especially useful
for our parameter exploration, one to generate a cross-
product of parameters and another to map a generic
function to a list of input values. Finally, it was critical that
VisTrails provided visualization functionality. Fortunately,
the bundled visualization packages were some with which
we were already familiar. It was very exciting to see the
variety of solutions, from our parameter sweep, appear in
the Spreadsheet. Clearly, it is advantageous to be familiar
with Python when using VisTrails. However, even if this is
not the case, one can still construct useful workflows quite
easily.

We have not truly compared CompuCell3D with other
multi-cell modeling packages. The greatest obstacle to
doing so has been the lack of having a standard modeling,
e.g. markup, language, which in turn relies on having an
underlying ontology. These are areas we have recently
begun investigating.

7. ACKNOWLEDGEMENTS
We would like to thank the VisTrails developers for

user support and the Research Technologies Division at IU
for user support with Big Red.

This work was sponsored by National Institutes of
Health, National Institute of General Medical Sciences,
grant 1R01 GM076692-01 and the Biocomplexity Institute
at Indiana University. The Open Systems Lab, as part of
the Pervasive Technology Institute, gratefully
acknowledges the generous support of the Lilly
Endowment, Inc.

References
[1] Dubois, P. F. 2007. Python for Scientific Computing,

Computing in Science & Engineering, vol. 9, no. 3,
May/June 2007.

[2] Cickovski, T., Aras, K., Swat, M., Merks, R. M. H.,
Glimm, T., Hentschel, H. G. E., Alber, M. S., Glazier,
J. A., Newman, S. A., and Izaguirre, J. A. 2007. From
Genes to Organisms Via the Cell: A Problem-Solving
Environment for Multicellular Development.
Computing in Science and Engineering, 9: 50-60
(2007).

[3] Glazier, J. A., Balter, A., and Poplawski, N. J. 2007.
Magnetization to Morphogenesis: A Brief History of
the Glazier-Graner-Hogeweg Model. In Single-Cell-
Based Models in Biology and Medicine, A. R. A.
Anderson, M. A. J. Chaplain, and K. A. Rejniak, Ed.
Birkhäuser, Basel, Boston and Berlin, 79-106.

[4] Swat, M. H., Hester, S. D., Balter, A. I., Heiland, R.
W., Zaitlen, B. L., and Glazier, J. A. 2009. Multicell
simulations of development and disease using the
CompuCell3D simulation environment. In Systems
Biology, I. V. Maly, Ed. volume 500 of Methods in
Molecular Biology, pages 361--428. Humana Press,
Clifton, N.J.

[5] Graner, F. and Glazier, J. A. 1992. Simulation of
Biological Cell Sorting Using a Two-Dimensional
Extended Potts Model. Physical Review Letters 69,
2013-2016 (1992).

[6] Callahan, S. P., Freire, J., Santos, E., Scheidegger, C.
E., Silva, C. T., and Vo, H. T. 2006. VisTrails:
visualization meets data management. In Proceedings
of the 2006 ACM SIGMOD international Conference
on Management of Data (Chicago, IL, USA, June 27 -
29, 2006). SIGMOD '06. ACM, New York, NY, 745-
747. DOI=
http://doi.acm.org/10.1145/1142473.1142574

[7] Heiland R., Mooney, S. D., Boverhof, J., Jackson, K.,
Swat, M., Balter, A., Christie, M., and Insley, J. 2007.
Python for Scientific Gateways Development. In

Proceedings of the International Workshop on Grid
Computing Environments, Reno, NV, November 2007.

Biography

Randy Heiland is a Research Scientist in the Open
Systems Lab at Indiana University. He received his M.S.
in Computer Science at the University of Utah and his
M.A. in Mathematics at Arizona State University.

Maciek Swat is a Research Scientist in the
Biocomplexity Institute at Indiana University. He received
his Ph.D. in Physics at Indiana University.

Benjamin Zaitlen is a Research Scientist in the
Biocomplexity Institute at Indiana University. He received
his M.S. in Physics at UC-Santa Cruz.

James Glazier is a Professor in the Department of
Physics and Director of the Biocomplexity Institute at
Indiana University. He received his Ph.D. in Physics at the
University of Chicago.

Andrew Lumsdaine is a Professor in the School of
Informatics and Computing and Director of the Open
Systems Lab at Indiana University. He received his Ph.D.
in Electrical Engineering and Computer Science at MIT.

