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ABSTRACT
We review recent progress in understanding the coarsening of two-

dimensional soap froth and idealized grain growth (Potts) models. These are
found to be similar in the small anisotropy limit. We also discuss coarsening
in lipid monolayers, magnetic bubbles and three dimensional soap froth.

INTRODUCTION

Grain growth is an example of the general tendency of systems which
divide space into cells and have a positive interfacial energy associated with
their mutual boundaries, to lower their total energy, by coarsening. This
coarsening proceeds by the elimination of cells (grains). If it continues
without limit, we may study its asymptotic propertics. If the structure
© approaches a statistical steady state in which only the length scale changes,
we call it a scaling state. It is be characterized by the average cell diameter,

<d> defined as:
T
<a>=7 <d>2, (1)

where <a> is the average area per cell. Under rather general assumptions,
grain growth in a scaling state has <d> « tB, where p=0.5 in either two or three
dimensions, by simple dimensional arguments. However, we have no a priori
reason- to expect the existence of a scaling state.

There is a long history of measurements of the exponent P for
polycrystalline solids [1,2] which we shall not attempt to summarize. Usually
the measured P << 0.5.
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Bragg had used floating rafts of uniform sized bubbles to model
coarsening as early as 1942, however, his results were more suggestive than
quantitative [3]. Smith explored coarsening in detail [4], using two-
dimensional (two-d) soap froth, measuring P=0.5. After various challenges
this result has recently been confirmed. In the next section we summarize the
experimental work which has followed Smith's lead during the intervening
years.

Mean field theories, 'exact' boundary dynamics models, vertex models
and the Potts model have all been used to simulate grain growth in a highly
idealized form. We shall summarize this work. Although there is no complete
equivalence between the soap froth, the boundary dynamics model and the
Potts model, their results have now been shown to be quite similar in the
appropriate limits.

SOAP FROTH: EXPERIMENT AND SIMULATION

A detergent soap froth, trapped between two glass plates forms a two-d
pattern which coarsens. The average diameter and the distribution functions
for the structural properties of interest (e.g. the topological distribution
function, p(m), the fraction of cells with n sides) are easily measured. We
define the topological moments,

o0

Hm = Z p(n)(n - <n>)M, (2)
n=3
The second moment p, about its mean (which is fixed at six in two-d by
geometrical constrains) roughly characterizes the degree of disorder in the
pattern.

Two factors cause misleading effects in the coarsening of froth. First,
initially well ordered (mostly hexagonal) patterns, exhibit large transient
effects as they disorder. Second, apparently small Plateau borders
(triangular liquid filled structures at the vertices between cells [5]) can have
large effects: simple models neglect these entirely.

Figure 1 illustrates, for both experiment (a) and simulation (b), the large
transients before po reaches its scaling state value of 1.5 (as originally
observed by Smith). The distribution functions exhibit exponential cutoffs for
large n and large area [6]. However, even these expected results, suggestive of
a scaling state, failed to give p=0.5. This, and other anomalies, have now been
attributed to Plateau border effects [7,8].

New experiments in which the borders were kept to a minimum size
yield p=0.5 [9,10,11] and new simulation techniques using boundary
dynamics methods in which von Neumann's law is used to evolve the area of
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Figure 1. (a) Approach to a scaling state for the two dimensional soap
froth--by Stavans and Glazier [9]. Solid circles indicate an initially ordered
froth, open circles an initially disordered froth. (b) Computer simulation of the
approach to a scaling state for the two dimensional soap froth--by Weaire and
Lei [28]. Different lines show evolution for patterns with different initial
degrees of disorder.
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Figure 2. (a) Computer simulation of a dry soap froth (gas fraction ¢=1.0)
and (b) a wet froth with finite Plateau borders (gas fraction ¢=0.90)--by
Bolton and Weaire [8]. Note the presence of four-fold Plateau Borders.
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each bubble, together with relevant theorems, have enabled us to understand
the role of the Plateau borders [7,8,12,13,14].

Figure 2 (a) and (b) shows some of the elegant structures produced by
the computer simulations. While inadequate in size to determine P
unambiguously, they offer many insights into the coarsening process and its
underlying topological events.

MEAN FIELD THEORIES

One approach to the modelling of coarsening is to decompose it into two
processes, a growth law defining the rate of growth or shrinkage of a grain as
a function of its area and number of sides, and a set of scattering processes
which occur when grains disappear. When these processes are applied
directly to the distribution functions (with or without correlations) the result
is a mean field theory of master equation type. There were many early
attempts to write such models for grain growth using growth laws based on
bubble radius. These were unsuccessful, because, as von Neumann showed
[15], the rate of growth of a two-d bubble depends only on its number of
sides:

da
ﬁ = (n-6), (3)

where a; is the area of a single n-sided bubble.

Fradkov et al., Beenakker, and Marder all studied models of this type
[16,17,18]. The first two also looked at evolution on a topological network,
where side rearrangement was restricted to neighbouring bubbles. None of
these models gave the correct distribution functions in the scaling state,
because all assumed incorrect forms of the redistribution correlations. They
did, however, successfully reproduce the transients observed in the
disordering of a pattern, and perforce the existence of a scaling state with
B=0.5. They also yielded distribution functions with exponential cutoffs.
Recently Stavans et al. have shown that if the correct correlations are used,
the mean field theory can yield the observed distribution functions [6]. Purely
statistical approaches to determining scaling state distributions also have a
long history, and have recently had some success [19,20,21,22].

THE POTTS MODEL AND ANISOTROPY

The two-d Potts model simulation is one of the most extensively studied
models for coarsening in two dimensions. As shown in figure 3, each grain is
defined as the region of a lattice in which vertices have a given value of
"spin” o(i, j). Bonds between unlike spins cost energy. Like spins do not
interact. The Hamiltonian is simply the surface energy:
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Figure 3. Detail of a Potts model lattice showing spin types and grain

boundaries.
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Figure 4. Comparison of topological moments for the two-dimensional
soap froth and the Potts model, plotted as a function of anisotropy--by Holm
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H = > 1- 8a(i, j), o, j). (4)
(i, j) (i", j') neighbours

In a zero temperature simulation we repeatedly select a site at random
and assign it a new spin if the change reduces the energy. This may be
extended to standard finite temperature Monte Carlo simulation. The lattice
has a surface energy that depends on boundary orientation. We define the
anisotropy (m) as the ratio between the highest surface energy per unit
length and the lowest.

The anisotropic Potts model agrees qualitatively with the isotropic two-d
soap froth. For most lattices the grains coarsen and the distribution functions
reach a scaling state with p=0.5 [9,10]. However, high anisotropy (e.g. n=1.24)
lattices produce frozen patterns and the scaling states of moderate anisotropy
lattices (e.g. m=1.15) have distribution functions broader than in soap froth,
e.g. Bp=2.4 rather than the 1.5. Also, the disordering process takes more time
than in soap froth and the grain boundaries do not have uniform curvature.
In these respects the Potts model resembles metallic grain growth more than
soap froth [1,2,23].

The time for diffusion along a grain boundary in the model is long
compared to the diffusion time across the boundary; this is reversed in the
soap froth case. Thus the soap froth is equilibrated while the Potts model and
real metals are not.

In figure 4 we plot the topological moments of the scaling state
distributions for each lattice type. All three moments increase monotonically
with the anisotropy. Any reasonable extrapolation of the Potts model results
to n=0 would agree with the soap froth [24]. Evolving to large grains does not
remove anisotropy effects, because pattern evolution is driven by side
redistribution on bubble disappearance, which always occurs at the length
scale of the lattice.

Fradkov et al. [16] measured po=2.9+0.8 for two-d grain growth in

Al+104 Mg foil at 460°C, close to the high anisotropy limit for the Potts model.
Thus it seems that the lattice anisotropy is the chief cause of discrepancies
between the Potts model and soap froth.

VERTEX MODELS

Fullman proposed a third type of simulation [25] which has been pursued
by Kawasaki and others [26]. The vertices at which cells meet are treated as
pseudo-particles with well defined mobilities (velocity/force) and subject to
forces determined by the positions of the neighbouring vertices. The
connections between the vertices are assumed to be straight and the
deviations from the ideal 120° angles are related to an effective curvature,
but these derivations have not yet been made rigorous. The great advantage
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of this method is that it is computationally efficient. Fullman did his
computations by hand. The models reach a scaling state with p=0.5, but the
scaling state distribution functions, in spite of the presence of many free
parameters, never come close to the experimental results. Typically
u2=2.8+0.5.

WHERE WE STAND

We can now say that we understand the evolution of an ideal soap froth
from a theoretical, experimental and computational perspective. The
experimental results of Glazier er al. [9,10] and Stavans [11] make it clear that
ideal froth reaches a scaling state characterized by a growth exponent of
p=0.5 and well defined moments with u,=1.5. Both the boundary dynamics

model of Weaire et al. [7,8,12,27,28], that of Frost and Thompson [23] and the
zero anisotropy limit of the Potts model can reproduce these results. Recent
work on mean field theories by Stavans ef al. has shown that the distribution
functions can also be obtained by a mean-field theory [6]. Thus we have an
adequate understanding of ideal two-d grain growth. However, we need
direct extensions of our models and experiments to include true metallic
anisotropy, impurity pinning, zone refining, and other secondary effects.

LIPID MONOLAYERS

When a monolayer of an amphiphilic molecule (e.g. pentadecanoic acid)
floats on a water surface it can undergo a two-d phase transition from a gas
to a liquid. Adding a dye that is fluorescent only in the liquid phase makes
domains visible [29]. When the pressure is gradually increased through the
phase transition, small bubbles of gas appear, surrounded by a continuous
background of liquid. Sometimes the gas bubbles contain small liquid drops,
but these do not seem to affect the subsequent evolution [30]. The basic
topology is identical to that of the soap froth. However, the weak repulsive
dipole interaction which prevents bubbles from coalescing also allows the
formation of labyrinthine stripe patterns [31] with a weak crumpling
transition seen in magnetic bubbles [32]. Depending on the liquid fraction, the
pattern may contain separated, round gas bubbles as shown in figure 5 (a), or
polygonal, close-packed bubbles as shown in figure 5 (b). For large fluid
fractions the bubbles interact with a background mean field. This is the
Lifschitz-Slyozov limit, a radius-based model of form:

=) ). ®

1y . . . . .
where (;) is a mean radius characterizing the effective pressure in the

system and a(r) is the area of a bubble of effective radius r (as defined in
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Figure 5. (a) Separated lipid monolayer bubbles, and (b) close packed
lipid monolayer bubbles--by Berge et al. 19,30].

Figure 6. Evolution of a magnetic froth with increasing applied magnetic
field (a) H=0 Oe., (b) H=54.1 Oe., (c) H=73.8 Oe., (d) H=85.2 Oe.--by Molho

[9,39].
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equation 1) [33]. In the long-time limit the growth exponent differs from that
for von Neumann's law, yielding p=0.33 [34].

Berge et al. [30] find for a froth of round bubbles (liquid fraction 50%),
B=0.3, with a power law tail in the distributions, such that pg=co. In the close

packed case (liquid fraction 25%) they observe B=0.5 and von Neumann
distributions, with po=1.4. Stine, et al. [35] working with an intermediate fluid

fraction, find B=0.4 and np=1.9540.6, with distributions intermediate between

Berge's two results. Apparently, the lipid monolayer interpolates between the
von Neumann regime and the Lifschitz-Slyozov regime. While the filling
fraction is not necessarily constant during a real experiment, it would be
worth investigating the simplest combination of the two growth laws as an
approach to a mean field theory:

Q%P{’qu(n-é) + (1-e)x((rl) -%), (6)

where a(n,r) is the area of a bubble with n sides and radius r, and & increases
from zero to one with the filling fraction. In experiments, changes in & can
cause substantial changes in the growth exponent, just as Plateau borders do
in the soap froth.

MAGNETIC DOMAINS

That garnet films can produce a bubble pattern which coarsens has been
known for a long time [36,37]. While the Hamiltonian contains a term
proportional to the total boundary length in the froth, the dominant term is
the dipole interaction between patches of bulk magnetization. An external
magnetic field, H, applied to favour one direction of magnetization sets the
balance between them, and hence a length scale. The patterns are static. An
increasing applied field corresponds to the passage of time in soap froth as
shown in figure 6. On the other hand, bubbles cannot nucleate when the
applied field decreases. Instead, the walls crumple into a labyrinth. If the
field is restored slowly, the original pattern is regained. The rate of
coarsening - diverges near an critical field strength. Near this field, the
dominant process is the disappearance of small, uniform-sized, dipole-field-
stabilized five-sided bubbles. Normal coarsening has recently been observed
in ferrofluids, which also exhibit labyrinthine phases [38].

Weaire et al. [39] treat the long range interaction as a perturbation to a
boundary dynamics soap froth model, where the dipole interaction is a
function of the areas of the neighbouring bubbles. This simple model gives
the correct qualitative loss of stability for few-sided bubbles, and reasonable
values for the distribution functions and length scale as a function of H. It
also correctly predicts the stabilization and clustered disappearance of small
bubbles. It cannot, however, create the more exotic labyrinths and other
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textures which characterize magnetic bubble patterns, particularly when the
applied field is decreased.

THREE DIMENSIONS

Most cellular materials and hence most applications for a theory of
cellular patterns are three-dimensional. The problem is difficult both
experimentally and theoretically. There is no equivalent to von Neumann's
law since the growth rate of a bubble is not determined by its number of
faces. The minimum information needed to determine the growth rate is not
known. Rivier has suggested a reasonable ad hoc form for the three-d analog
to von Neumann's law:

dvg
37 = M<f>-h, )]
where f is the grain's number of faces, vg its volume, and <f> is the mean for

all grains.

The Potts model can be extended to three dimensions provided that
sufficient computer time is available. Anderson, Grest and Srolovitz [40] have
run simulations on an 100 x 100 x 100 lattice. For a high anisotropy lattice,
grain growth ceases after a short time. For low anisotropy, p=0.48+0.04 and
for moderate anisotropy B=0.28+0.02. They made a variety of distribution
function measurements, obtaining <f>=12.9. The agreement with experimental
values for metal grains is good with the residual discrepancy compatible with
anisotropy effects.

Nagai et al. [41] used a simple vertex model to obtain a scaling state with
<f>=13.6 and P=0.5. While the model permits larger patterns, its derivation is
ad hoc and the agreement with the Potts model and metal grains is poor.

In metals, serial sectioning gives the length scale and two-d distribution
functions. P varies between 0.25 and 0.5 (reassuringly it never exceeds 0.5),
apparently due to impurity and anisotropy effects since it increases at higher
temperatures [1]. Durian et al. [42] monitored the evolution of shaving cream
using spectroscopy. Their froth reaches a scaling state with =0.4710.05. Film
draining does not seem to be a problem, but their technique does not allow
them to measure distributions. Perhaps the best experiment would use
multiple samples of a photo-setting polymer froth, which could evolve and
set, and then be sectioned and analyzed at leisure. Confocal microscopy is
defeated by the froth's specular reflections. CAT, NMR, or even optical
tomography, might be useful, provided that their rate of scanning is
sufficiently fast compared to the rate of froth evolution.
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