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We used a pseudorandom-walk representation in a four-dimensional embedding to estimate the global
fractal dimension D of 164 sequences from GenBank and generated length-matched control sequences of
three types: random, matched in base content, and matched in dimer content. The mean D of the se-
quences was 1.631+0.137. This D was significantly lower than the D’s for all three control types, indi-
cating the presence of significant information content in DNA sequences not explained by base or dimer
frequencies. This variation was due largely to nonuniform distribution of bases and dimers within DNA
sequences. The D of genomic DNA sequences was different from the D of messenger RN A sequences.

PACS number(s): 87.10.+e¢, 05.45.+b, 02.70.+d

INTRODUCTION

The volume of DNA sequence data available for
analysis is increasing dramatically. One of the challenges
of sequence analysis is to determine patterns in sequences
that have no current explanation and therefore potential-
ly point toward structures that require further explora-
tion. It is also useful to distinguish coding from noncod-
ing sequences. Fractal analysis is a relatively new analyt-
ical technique that has proven useful in revealing com-
plex patterns in natural objects. This paper represents
our initial application of fractal analysis to pseudoran-
dom walks derived from genomic DNA and messenger
RNA (mRNA) sequences.

The numerical relationship between two correlated
properties of an object may be simple. For example, the
area of a square increases with the square of the length of
its sides. In this case the area is said to scale as the
square of the length. The relationship may also be com-
plicated. For example, an animal’s weight may increase
as a power of its age at certain periods and be indepen-
dent of age at others. For an arbitrarily chosen pair of
properties there will generally be no simple relationship.
However, if one of them can be written as a simple
power-law function of the other with a single uniform ex-
ponent, i.e., property 1~ (property 2)% then we say that
the pair exhibits scaling with exponent a.

Many complex spatial patterns possess well-defined
scaling behaviors. One example is the global fractal di-
mension D, which is the exponent describing the increase
of an object’s mass with its size. A particular scaling ex-
ponent is often associated with a particular process that
gave rise to the pattern. Thus, scaling can be used to
define classes of patterns. The global fractal dimension is
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the most common of these scaling exponents and has
been used to study patterns in biology, physics, econom-
ics, biochemistry, populations genetics, and epidemiolo-
gy.
While D may be calculated for an arbitrary object, it is
most informative in treating structures generated by
low-dimensional deterministic rules such as period dou-
bling [1]. However, a deterministic structure is unlikely
for DNA sequences, given the large amount of informa-
tion needed to specify an organism. To a first approxima-
tion, we know that DNA behaves like a random sequence
so any direct measurement of the D of DNA sequences
will yield arbitrarily large dimensions. Nevertheless,
when a DNA sequence is treated as a list of pseudoran-
dom numbers and used to generate a pseudorandom
walk, deviations from typical random-walk behavior are
immediately apparent as long periodic, correlated, and
anticorrelated subsequences [2]. The pseudorandom
walks derived from DNA sequences in Figs. 1(a)-1(f)
show obvious qualitative deviations from the paired ran-
dom walks shown in Figs. 2(a)-2(f). The large-scale
structure of the walks reflects underlying correlations
within the sequences. The D of the walk should reflect
the overall importance of these correlations, since it
quantifies the average density of the clustering of data
points in the walk and ignores localized behavior.

Recently, there have been efforts to apply the tech-
niques of chaos theory to molecular biology. This effort
has been made at all levels from protein folding [3-8] to
three-dimensional structures of DNA [9] and RNA [10].
There also have been some limited fractal analysis of
DNA sequences. (See Note added in proof.)

Gates [2] suggested that nucleic acid sequences could
be represented as random walks in two-dimensional space

8902 ©1992 The American Physical Society



45 GLOBAL FRACTAL DIMENSION OF HUMAN DNA SEQUENCES. .. 8903

G
0
—> T
-400 450
A T
-+-300
(o]
(b)
G
\
++150
A 4 > T
} >
Iy -250 "2l
> T
+250
C
(d)
(c) G
4+ +100
G
-800 1
t > T
4 -400
(o]

(e)

()

FIG. 1. Pseudorandom walks of six human DNA sequences from GenBank using the two-dimensional embedding scheme. They
are qualitatively quite different from the random walks shown in Fig. 2. (a) Human opsin gene, accession no. K02281, 6953 base pairs
(bps), D=1.650; (b) human factor V mRNA, accession no. M16967, 6909 bps, D =1.490; (c) human T-cell receptor germline beta-
chain, accession no. M14158, 4913 bps, D =1.541; (d) human PRH]I gene (Hae II-type subfamily), accession no. M13057, 4946 bps,
D =1.532; (¢) human mRNA for apolipoprotein (a), accession no. X06696 M17399, 13938 bps, D =1.547; (f) human alpha-1-acid
glycoprotein 2, accession no. M21540, 4944 bps, D =1.671.
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FIG. 2. Pseudorandom walks of random, base-matched, and dimer-matched control sequences for the sequences shown in Figs.
1(a) and 1(b). (a) Random control for human opsin gene, D =1.891. (b) base-matched control for human opsin gene, D =1.701; (c)
dimer-matched control for human opsin gene, D =1.744; (d) random control for human factor V mRNA, D=1.779; (e) base-
matched control for human factor V mRNA, D =1.536; (f) dimer-matched control for human factor V mRNA, D =1.600.
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with the bases cytosine and guanine (C,G) on opposite
ends of one axis and adenine and thymine (A,T) on the
other. He suggested the following two methods to calcu-
late D: (i) the logarithm of the number of bases divided
by the logarithm of the Euclidean distance [11] between
end points of the random walk, and (ii) the logarithm of
the number of bases divided by the logarithm of the
Manhattan distance [12] between the end points of the
random walk.

Luo and Tsai [13] calculated the D of nucleic acid se-
quences from 14 different organisms to study the relation-
ship between D and the evolutionary complexity of or-
ganisms. They represented nucleic acid sequences as ran-
dom walks in a two-dimensional space using the same
scheme as Gates and calculated the D using the mean-
square separation between end points of a segment of the
sequence containing N bases. The standard deviations for
their estimates of D were generally 20% of the mean
value of D. They found that D increased with organism
complexity and that it correlated statistically with the en-
tropy measure from information theory [14]. Their study
assumed that the D of a single, relatively short DNA se-
quence is representative of all the DNA of an organism.

Jeffrey [15] investigated a graphic representation of nu-
cleic acid sequence using iterated function systems [16].
He represented DNA sequences by points within a
square, with each base represented by a corner of the
square. The first point, representing the first base in the
sequence, is plotted halfway between the center of the
square and the corner representing that base. Subsequent
bases are plotted as points located halfway between the
previous point and the corner representing the base. The
result is a bit-mapped image with sparse areas represent-
ing rare subsequences and dense regions representing
common subsequences. He found interesting visual pat-
terns in nucleic acid sequences, but did not attempt
mathematical characterization or estimation of D.

In a recent abstract, Lim [17] presented a fractal
analysis of sequence data. He found that introns and ex-
ons are distinct and suggested that fractal techniques
could be used to create a classification scheme.

These four fractal analyses of DNA sequence data have
produced suggestive results on the utility of chaos tech-
niques. However, they are limited to estimating D for a
small number of short sequences, generally in two dimen-
sions.

We present a detailed exploration of fractal analysis in-
cluding the estimation of D. We employ the technique of
pseudorandom control sequences to evaluate the D’s of
164 relatively long human sequences (4500-15 000 bases).
The issues of adequate sequence length, proper embed-
ding dimension, and scaling ranges have been addressed
in the design of our calculations and analyses.

METHODS

Methodological issues

An important rule in fractal theory involves the choice
of the embedding dimension used to represent the data.
The embedding dimension must be at least as high as the
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highest possible D rounded up to the next whole number
plus 1 [18,19]. Methods of estimating D are known to be
biased. The bias in the estimate of D increases with
embedding dimension, since higher embedding dimen-
sions require longer sequences to reduce the effect of bias
[20]. Minimizing the embedding dimension minimizes
computation time as well as bias.

The choice of DNA sequences of sufficient length is
equally important. It has been suggested that the number
of points required to estimate the correlation dimension
[21] within 5% of its true value is at least 42 where M is
the largest integer less than the correlation dimension of
the fractal [22]. However, Ramsey [20] found that for
simple models, 5000 is a rough lower bound for the num-
ber of points needed to achieve reasonable results. The
estimate obtained for deterministically generated data
sets is known to be biased high, but this bias decreases
with sequence length and estimates for random noise are
actually biased low [20]. The effect of finite length may
be reduced by applying the widest possible range of scal-
ing. The resolution is limited by the area visited by the
random walk, since the area is a function of the number
of steps in the walk.

To evaluate the effect of finite sequence length on the
estimate of D, we generated random sequences of equal
base frequencies over a range of lengths, 25 of each
length, and estimated D for each as discussed below. Fig-
ure 3 demonstrates that the average estimate of D in-
creases with length and the standard deviation of the esti-
mate of D decreases with length. The mean D of random
sequences of length 50000 is 1.93 with a standard devia-
tion of 0.03. The standard deviation of D is only 1.6% of
the mean at this length. The mean D for random se-
quences of length 5000 is 1.847 with a standard deviation
of 0.101. The standard deviation of D is 5.5% of the
mean at length 5000. Although we do not converge to
D =2 at these lengths, we can control for finite-length er-
rors by always comparing length-matched sequences.
DNA and control sequences of the same length will be
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FIG. 3. D vs length for random sequences. D increases with

the length of random sequences and its standard deviation de-
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affected by finite-length errors in precisely the same way,
which will not affect our statistical analyses. Therefore,
reasonable estimates of D are possible for random walks
at least 4000 bases in length with a standard deviation of
D less than 6% of the mean. We have addressed these
convergence issues in greater detail elsewhere [23]. To
assure convergence to a D of 1.995 we would need a se-
quence longer than 500000, which would rule out
analysis of DNA sequences, since they are typically
5000-50 000 bases in length.

We selected human sequences from GenBank version
55 for analysis based entirely on the length of the se-
quence. There were 164 human nucleic acid sequences of
length 4500 to 15000 (average length, 7178 bases) and all
were included in the study. Although 57 mRNA se-
quences are included, we loosely refer to the entire set as
DNA sequences. The mRNA sequences are composed
primarily of coding segments. The remaining 107 came
from genomic DNA and have coding segments separated
by introns and other noncoding segments that comprise
the majority of the bases in the sequence. The sequences
we analyzed are not completely representative of the hu-
man genome. Several sequences are from gene families,
some chromosomes are underrepresented, and the sample
is severely deficient in noncoding DNA. Since the se-
quences came from GenBank, our sample includes mostly
important or interesting genes rather than genomic se-
quences in general.

Random-walk representation

DNA is composed of two strands that bind together by
a specific base-pairing rule. Adenine (A) always pairs
with thymine (T) and cytosine (C) always pairs with guan-
ine (G). DNA replicates in a very specific manner. A
new strand elongates by placing the next base on what is
referred to as the 3’ end. DNA sequences are listed in 5’
to 3’ order by convention, 5’ being the “head” of the se-
quence and 3’ the ““tail.” The complementary strand runs
in an antiparallel direction. The following example illus-
trates the antiparallel nature of the two strands of DNA
and the base-pair bonding rule

5'->AACTGGGATATATTTGGG->3"'

et
3'<-TTGACCCTATATAAACCC<-5'

so the subsequence 5'—AACTGG — 3’ on one strand is
biologically identical to 5'—>CCAGTT—3’ on the com-
plementary strand. In general, DNA with both strands
bound together does not have direction, so neither stand
has precedence. When DNA is being copied to make
messenger RNA, however, the two strands are distinct.
One strand is called the sense strand and the other the
coding strand. A mRNA sequence is synthesized from 5’
to 3’ using the sense strand template read from 3’ to 5.
A protein is made from this mRNA by grouping the
bases into triplets called codons. To summarize, DNA is
double-stranded and has no direction. The two comple-
mentary strands are synonymous and biologically indis-
tinguishable; mRNA, on the other hand, is single-
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stranded and its base sequence is biologically distinct
from its reverse complement. Both direction and codon
framing are important for mRNA.

We use the following natural method to convert a
DNA sequence into a pseudorandom walk in N dimen-
sions. We represent a DNA sequence as a series of vec-
tors x; representing the four base types A, C, G, and T.
The complementary base pairing of A with T and C with
G suggests a natural embedding of a sequence into a
two-dimensional space. We chose the axis assignments to
specifically represent DNA, so the representation was
strand independent. In two dimensions, any single-base
axis assignment will produce a dimension that is the same
for a sequence and its complement. The fractal dimen-
sion of a sequence is unchanged under a transformation if
the transformation causes only a reflection or rotation of
the pseudorandom-walk structure and does not take any
nonzero length trajectories into zero length trajectories.
Higher embedding dimensions will not yield this result
for complements in all representations. The requirement
that D be unchanged for complements is the only biologi-
cal constraint on our representation. However, a natural
representation should also yield a D unchanged by cer-
tain symmetry operations. For a true random walk, our
assignment of the symbol types is arbitrary and the direc-
tion in which we read should be unimportant. Therefore,
to preserve the symmetries of the random walk in our
embedding structure, we require the following.

(i) Complementarity. The estimate of D must be the
same for both DNA strands; that is, a strand read 5’ to 3’
will produce the same D for its reverse complement read
5" to 3.

(ii) Reflection symmetry. The estimate of D must be
the same for a single strand regardless of reading direc-
tion; that is, a strand read 5’ to 3’ will produce the same
Difread 3" to 5'.

(iii) Compatibility. Representations of different embed-
dings must be compatible; that is, dimers that produce
the same trajectory in a higher dimension do so in a
lower-dimensional scheme.

(iv) Substitution symmetry. D remains unchanged un-
der the single exchange of either A«<T or G—C.

Note that (i) is a special case of (ii) and (iv). (iv) is also
suggested by the natural biological grouping of A and T
as weak-bonding bases and G and C as strong-bonding
bases.

In two dimensions, complementarity (i), reflection sym-
metry (ii), and compatibility (iii) are satisfied for any
single-base representation. Substitution symmetry (iv),
however, requires that {A}=—{T} and {G}=—{C}.
Otherwise, the sequence AG is a zero-step trajectory
while AC is not, which violates substitution symmetry
(iv). Therefore, we employ the following axis assign-
ments.

Axis 1. {A}=(—1,0)and {T}=(1,0).
Axis 2. {C}=(0,—1) and {G}=(0,1).

In four and higher dimensions we begin a new y; for each
base in the sequence. Thus our representation is indepen-
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dent of our reading frame and each base is used in two
successive vectors. We determine our four-dimensional
embedding as follows: Complementarity (i) requires that

{AA}=—{TT}, [AC}=—(GT}, {[AG}=—({CT},
{AT}Z—{AT}, {CA]=—[TG], [CC}Z—{GG},
{CG}=—{CG}, {GA}=—{TC}, {GC}=—{GC}, and
{TA}=—{TA}]. Reflection symmetry (ii) requires that
{AC}={CA}, {AG}={GA}, {AT}=(TA}, {CG}

={GC}, {CT}={TC}, and {GT}={TG}. Thus, we
must group {AC}, {CA}, {GT}, and {TG} on one axis
and {AG]}, {GA}, {CT}, and {TC} on another axis. If
we pair {AC}={TG]}, rather than {AC}={CA}, we
violate compatibility (iii) with our two-dimensional
scheme. Similarly, we cannot set {AC]
={CA}={GT}={TG}=0 by (i) or {AG]
={GA}={CT} ={TC}=0 by substitution symmetry
(iv). So our only grouping is {AC}={CA}=—{GT}
=—{TG}#0 and {AG}={GA}=—{CT}=—{TC}
0. In four dimensions the only scheme that obeys these
conditions is the following:

Axis I. {AA}=(—1,0,0,0) and {TT}=(1,0,0,0).

Axis 2. {CC}=(0,—1,0,0) and {GG}=(0,1,0,0).

Axis 3. {AC}={CA}=(0,0,—1,0) and {GT}={TG}
=(0,0,1,0).

Axis 4. {AG}={GA}
=(0,0,0,1), {AT}={TA}

(0,0,0,—1) and {CT}={TC}
{CG}={GC}=(0,0,0,0).

Axes 3 and 4 correspond to dimers that form 45° angle
lines in two dimensions. Figure 4 gives a graphic repre-
sentation of our two-dimensional and four-dimensional
embedding schemes.

To expand to six dimensions, we can either split
{AT},{TA},{CG},{GC} or our other two quartets
({AC},{CA},{GT},{TG} and {AG},{GA},{CT},{TC})
on axes 3 and 4. We choose the latter to preserve the
compatibility of the assignments of the zero trajectories
in lower-dimensional embeddings as much as possible.
However, our choice here is arbitrary. (We do not use
the six-dimensional embedding for any of the major cal-
culations reported in this paper.) Our six-dimensional
embedding is therefore the following.

Axis 1. {AA}=(—1,00,0,00 and {TT}
=(1,0,0,0,0,0).

Axis 2. {CC}=(0,—1,0,0,0,0) and {GG}
=(0,1,0,0,0,0).

Axis 3. {AC}=(0,0,—1,0,0,0) and {CA}
=(0,0,1,0,0,0).

Axis 4. {GT}=(0,0,0,—1,0,0) and {TG}
=(0,0,0,1,0,0).

Axis 5. {AG]}=(0,0,00,—1,00 and {GA}

=(0,0,0,0,1,0).
Axis 6. {CT}=(0,0,0,0,0—1) and {TC}=(0,0,0,0,0,1),
{AT}={TA}={CG}={GC}=(0,0,0,0,0,0).

There is only one possible dimer-pair eight-dimensional
embedding. We add two axes for the AT-TA and CG-
GC pairs that were zero-step trajectories in lower dimen-
sions.
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FIG. 4. Embedding schemes in two and four dimensions for
pseudorandom-walk representations of DNA sequences.

Axis 1. {AA}=(—1,0,00,0,000 and {TT}
=(1,0,0,0,0,0,0,0).
Axis 2. {CC}=(0,—1,0,00,0,0,0 and {GG}
=(0,1,0,0,0,0,0,0).
Axis 3. {AC}=(0,0,—1,0,0,0,00 and {CA}
=(0,0,1,0,0,0,0,0).
Axis 4. {GT}=(0,00,—1,0,000 and {TG]}
=(0,0,0,1,0,0,0,0).
Axis 5. {AG}=(0,0,00,—1,0,00 and {GA}
=(0,0,0,0,1,0,0,0).
Axis 6. {CT}=(0,0,0,0,0,—1,000 and {TC}
=(0,0,0,0,0,1,0,0).
Axis 7.  {AT}=(0,0,0,0,00,—1,0 and {TA}
=(0,0,0,0,0,0,1,0).
Axis 8. {CG}={0,0,00,0,00,—1) and {GC}
=(0,0,0,0,0,0,0,1).

In future studies we can exploit the fact that our esti-
mate of D is not independent of representation by relax-
ing our symmetry conditions to allow other representa-
tions. DNA sequences that code for protein have a
strong bias for content and arrangement of certain di-
mers. We can change our axis assignments to emphasize
these dimers in the estimated fractal dimension and
evaluate whether the global fractal dimension based on a
strand-dependent scheme is useful in determining which
strand is the coding strand and which is the sense strand.

The pseudorandom walk is defined as the sequence
{y;}], where

yi—:‘ ZXj. (1)
j=1

A true random walk of infinite length is space filling in a
two-dimensional embedding and has D =2 for higher-
dimensional embeddings [24,25]. However, our represen-
tation of a DNA sequence in dimensions between 2 and 8
is not a true random walk. In two dimensions, a subse-
quence such as ATATAT produces alternating steps be-
tween two points in the random walk. In four dimen-
sions, ATATAT produces steps of size zero. Since we al-
low multiple visits to lattice sites in our calculations, this
produces small localized regions with increased density,
which decreases the estimated global fractal dimension
slightly. The graph in Fig. 3 reflects this effect with D
converging to D =1.93 rather than D=2 for a random
sequence as long as 50000 bases. Some of this error is
due to finite-length effects and some is due to our repre-
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sentation, which is not a true random walk. We address
convergence of a true random walk in detail in a separate
paper [23]. As stated before, this lack of convergence
does not affect the statistical results because finite-length
effects are the same for DNA and length-matched con-
trols. Our standard deviations are less than 7% of the
mean for the shortest sequence evaluated, which allows
reliable statistical analyses despite lack of true conver-
gence.

Control sequences

We generated controls matched to the length of each
DNA sequence using a random number generator. Pair-
ing the DNA sequences with control sequences of the
same length allows us to control for the effects of finite
length. To avoid introducing sequential correlations in
our sequences, we used a linear congruential random
number generator with a randomized shuffle with a
period of at least 714025 [26]. We used the following
three types of control sequences: (i) random controls,
where each base occurs with a probability of 0.25; (ii)
base-matched controls, where the frequency of each base
is determined from the DNA sequence and that frequen-
cy is used to generate the control sequences; and (iii)
dimer-matched controls, where the frequency of each
dinucleotide pair is determined and the control sequences
are generated using the probability of what the next base
will be, given the base selected previously.

Estimating global fractal dimension

We calculated the global dimension known as the
Hausdorff dimension using the sandbox method [27]. We
used the sandbox method rather than the more widely
used box-counting method of Grassberger and Procaccia
[28,29] because it has been shown to be more accurate for
fractals with known theoretical dimensions [27]. The
sandbox method estimates D by counting the number of
data points that lie within a region of radius R centered
on a selected data point and measuring how the number
of points within the radius changes over a range of radius
lengths. Well-defined dimensions that are independent of
local behavior are obtained by averaging the results over
a number of randomly sampled points on the fractal [27].
D is defined as

&N i=1Pz
D=1 - ,
Ro0 logR @

where R is the radius of the circle, p; is the number of
points within the circle divided by the total number of
points in the fractal, and i indexes the N circles around
the randomly selected points. For our estimate of D for a
given sequence, we take the slope of the log-log plot of
the sum of the fraction of the data points within radius R
centered at each sampled point versus the radius. The
critical parameter for the sandbox method is the range of
radii [27]. The largest radius should be significantly
smaller than the size of the fractal. The smallest radius
should be slightly larger than the smallest particle size.
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In a random walk in four dimensions with each step
equal to one unit, the smallest particle size equals
(1+1+14+1"? or 2 metric units. Within these con-
straints, we want the range of radii to be as large as possi-
ble, but we need to minimize the amount of probable
overlap of radius regions. After extensive investigation of
the scaling properties of random and pseudorandom
walks, we determined that the optimum scaling range
was 2-26 for our range of sequence lengths. In our calcu-
lations, we used a radius range of 2 to 26 with an incre-
ment of 2. Thus, all random walks were evaluated over
the same range of scales, a factor of 13.

Two other parameters have an effect on the calculated
estimate—the number of points to be sampled and how
the sampling is done. Tel, Fulop, and Vicsek sampled
about 1% of the points at random locations distributed
over the points contained in the fractal [27]. The fractal
analyzed in [27] visits each location only once. However,
our random walks may visit a site multiple times, so a fre-
quently visited site may be sampled more than once in a
random sampling of data points. Thus there are three
obvious sampling options: (i) we may allow a frequently
visited site to be sampled more than once by randomly
sampling data points, (ii) we may sample among unique
sites rather than data points to avoid the possibility of ex-
amining the same radius region more than once, or (iii)
we may sample uniformly every ith data point along the
random walk. We chose to randomly sample 1% of the
data points of each random walk. The probability of ex-
amining the same radius region more than once is rough-
ly 2% at this sampling rate. Any duplicate sampling that
does occur is a function of the frequency of site visita-
tions and may help characterize the behavior of individu-
al random walks. Thus, random point sampling incorpo-
rates density into the estimate of D.

RESULTS

Effects of sequence length and embedding dimension

We evaluated the effect of sequence length on our esti-
mate of D for the 164 DNA sequences. Although length
clearly affects the error in the estimate of D for sequences
longer than 4000 bases, we found no correlation
(r2=0.024) between the length of a DNA sequence and
its estimated D. We conclude that our minimum length
cutoff of 4500 base pairs was adequate.

We randomly selected 10 of the 164 DNA sequences to
evaluate the effect of embedding dimension. A dimer-
matched random control was generated for each se-
quence and the D calculated for each pair, embedded in
2, 4, 6, and 8 dimensions. D increased between 2- and 4-
dimensional embeddings but remained relatively constant
between 4, 6, and 8 dimensions (Fig. 5). Both DNA and
random sequences demonstrated this effect, confirming
that it was appropriate to use the same embedding di-
mension for both types of sequences. Analysis of the 164
human sequences using two-dimensional embedding
yielded a mean D of 1.395 and a standard deviation of
0.146. The maximum D was 2.348, so we must use an
embedding dimension of at least 4 to satisfy the embed-
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FIG. 5. Fractal dimension vs embedding dimension averaged
for 10 DNA sequences. Increase in D from two- to four-
dimensional embeddings indicates that two-dimensional embed-
ding is insufficient. The gradual decrease in D for larger embed-
ding dimensions demonstrates the effect of finite sequence
length for higher embedding dimensions.

ding dimension rule (D =1+[2.348]=4, where the
square brackets mean next integer value). A four-
dimensional embedding yielded a mean of 1.68 and stan-
dard deviation of 0.209. The increase in D from two-
dimensional embedding to four-dimensional embedding
indicated that the two-dimensional embedding was
insufficient and a higher embedding was required.
Embeddings greater than 4 did not result in a significant
increase in the estimate of D, indicating that the four-
dimensional embedding was sufficient. The slight de-
crease in mean D for embedding dimensions higher than
4 was the result of bias due to finite sequence length.

Estimate of D for DNA sequences and controls

We compared the estimated D’s for the 164 human se-
quences using the four-dimensional embedding scheme to
three control types: (i) random, (ii) base-matched, and
(iii) dimer-matched. All controls match the paired se-
quences in length. We generated 30 of each type of con-
trol for each DNA sequence to estimate the statistical
distribution of D for each. We then calculated a z score
for each DNA sequence

_ D _Bc

B @

z

where D is the estimated D of a sequence, D, is the mean
D for its matched controls, and o(D,) is the standard de-
viation of the controls. The z score describes the approx-
imate position of D for each DNA sequence within the
distribution defined by its controls. To evaluate the
group of sequences as a whole, a ¢ test was performed us-
ing the mean and standard deviation of the z scores.
Thus, D for each DNA sequence is compared to the

probability distributions of its controls.

The mean D for our 164 human DNA sequences was
1.631 with a standard deviation of 0.137. The lowest D
was 1.300 and the highest D was 2.253. The standard de-
viation was 8% of the mean D. The standard deviation
for random controls was 1.8% of the mean D, for base-
matched controls 7.5% of the mean D, and for dimer-
matched controls, 6% of the mean D. Therefore, at least
75% of the variation found in D for the DNA sequences
is due to intrinsic properties of their random walks and
not stochastic variation.

We present the aggregate results for all 164 DNA se-
quences evaluated together in Table I. The mean D was
significantly lower than for random controls
(t=—20.813, N=164, p <1073°), base-matched con-
trols (t=—6.111, N=164, p<10~%), and dimer-
matched controls (r=—10.280, N=164, p <107 !).
The histogram in Fig. 6 shows a predominance of nega-
tive z scores.

Nonparametric statistics using the rank of D among its
matched controls are also revealing. The rank of a se-
quence is one plus the number of matched control se-
quences that have a lower estimated D. The histogram in
Fig. 7 indicates that over 50% of the 164 sequences have
a rank below 8 when compared to 30 base-matched or 30
dimer-matched controls. The number of sequences with
a D rank of 1 was significant (p =0.0001 by a x? test) in
both cases with 23% (38/164) ranking lowest among
their base-matched controls and 25% of the sequences

TABLE I. Global fractal dimensions for DNA sequences and
controls. Both the genomic DNA and mRNA subgroups show
significant differences from random, base-matched, and dimer-
matched controls.

Genomic
Combined DNA mRNA
N 164 107 57
DNA sequences
Mean D 1.631 1.641 1.613
o(D) 0.137 0.140 0.130
Random controls
Mean D 1.863 1.865 1.859
o(D) 0.027 0.027 0.027
Mean z —2.624 —2.603 —2.665
o(z) 1.615 1.665 1.530
t value —20.813 —16.171 —13.152
p value <10™% <107% <1018
Base-matched controls
Mean D 1.702 1.709 1.690
a(D) 0.127 0.126 0.129
Mean z —0.865 —0.833 —0.925
a(z) 1.812 2.004 1.397
t value —6.111 —4.298 —5.000
p value <1078 <1074 <1073
Dimer-matched controls
mean D 1.702 1.718 1.672
o(D) 0.109 0.105 0.111
Mean z —1.068 —1.193 —0.834
o(z) 1.331 1.444 1.059
t value —10.280 —8.543 —5.950
p value <1078 <1071 <1077
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FIG. 6. Distribution of z scores for D of 164 DNA sequences
compared to random, base-matched, and dimer-matched con-
trols. The distribution is shifted in the negative direction indi-
cating that D of human DNA is significantly lower than for all
controls.

(41/164) ranking lowest among their dimer-matched con-
trols. 75% of the sequences had a rank lower than 16 for
both base and dimer-matching.

We expected dimer-matched controls to match the
DNA sequences better than base-matched controls. That
dimer-matching increased the magnitude of the difference
rather than decreasing it requires further explanation.
The base-matched and the dimer-matched controls had
bases and dimers distributed uniformly within each se-
quence. The increased differences for dimer-matched
controls reflect nonuniform base and dimer distributions
within the DNA sequences, with greater differences in di-
mer distributions than base distributions. We divided
each DNA sequence into 500-base subsequences and
compared the base and dimer content in these subse-

40

Base-matched
304 21 Dimer-matched

% of Sequences

FIG. 7. Distribution of D rankings for 164 human DNA se-
quences. Rank of D indicates how many matched control se-
quences had a lower D.
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TABLE II. The distribution of bases within sequences. Bases
within DNA sequences are not uniformly distributed.

Number
of sequences

Base nonuniform Yo
A 126 76.8
C 135 82.3
G 131 79.9
T 127 77.4
No base 8 4.9
Only one base 10 6.1
Any two bases 15 9.2
Any three bases 46 28.1
All four bases 85 51.8

quences to the overall base and dimer content. We found
wide fluctuations in base and dimer content within se-
quences. Table IT summarizes the results of base distri-
bution analysis. Only 8/164 (4.9%) of the sequences
show uniform distribution of all four bases while 85/164
(51.8%) show significant nonuniformity of all four bases.
Over 75% of the sequences show significant nonuniformi-
ty for each of the four bases. The distribution of dimers
within sequences was even more divergent (See Fig. 8).
Over 95% of the sequences showed significant nonunifor-
mity of AA or its complement TT, or of CC or its com-
plement GG. Two-thirds of the sequences showed
significant nonuniformity of AT, CG, GA-TC, GC, or
TA. There is also a symmetry in the frequency of nonun-
iformities between mirror image dimers. The frequency
of CG nonuniformity is approximately equal to the fre-
quency of GC nonuniformity and the frequency of AT
nonuniformity is equal to the frequency of TA nonunifor-
mity. AG-CT nonuniformity is as frequent as GA-TC
nonuniformity. AC-GT nonuniformity and CA-TG
nonuniformity are the least frequent. This symmetry be-
tween the nonuniformity of mirror image dimers provides
a biological justification for our requirement of reflection

% of Sequences with Nonuniformity

AG or CT
AT
CA or TG
CC or GG
CcG

E 5
5 5
< O
< <

FIG. 8. Distribution of dimers within sequences. Distribu-
tions shows marked nonuniformities with symmetries between
mirror image dimers.
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symmetry (see above) in our embedding scheme.

The 164 nucleic acid sequences in our sample consist of
two types: (i) mRNA sequences composed primarily of
coding segments but with 5° and 3’ untranslated seg-
ments, and (ii) genomic DNA sequences in which introns
and other noncoding segments are predominant. The
mean D for the genomic DNA group was 1.64110.14
and for mRNA 1.613%0.13. However, this difference
was not significant (p =0.20 by an unpaired ¢ test).
Therefore, we compared the z scores of DNA and
mRNA groups for random, base-matched, and dimer-
matched controls to determine if there was any difference
in D between genomic DNA and mRNA. We found that
both groups showed significantly lower D estimates than
random controls (p <107?° for genomic DNA and
p <1078 for mRNA), base-matched controls (p <104
for genomic DNA and p < 10~° for mRNA), and dimer-
matched controls (p <107!3 for genomic DNA and
p <1077 for mRNA). The mean z score for genomic
DNA (—1.193+1.444) was significantly (p =0.05) lower
than the mean z score for mRNA (—0.834+1.059).

DISCUSSION

Matching for base frequencies and even dimer frequen-
cies does not explain the nonrandomness of DNA se-
quences. The D estimates for the DNA sequences are
significantly lower than the D’s found for all three types
of random controls (length-matched only, base-frequency
matched, and dimer-frequency matched), indicating the
presence of regions in the pseudorandom walks generated
from DNA that are relatively more linear or less
clustered than in the controls. It appears that much of
the nonrandomness revealed by fractal analysis is due to
nonuniform distributions of bases and dimers within se-
quences. Quasilinear segments may result from single-
base runs, dimer runs of GT, CT, GA, or CA, and other
oligo-n-mers. Runs of CA and other short tandem re-
peats in mammalian DNA are frequent, as are n-mers
composed of periodic short runs of T or A that have been
associated with nucleosome formation sites [30-33]. This
finding correlates with the results of Markov chain analy-
ses [34-38], which found strong nearest-neighbor effects
in DNA sequences. There are also families of repetitive
elements present in human DNA that often contain inter-
nal short repeats.

The D’s of sequences composed primarily of noncoding
segments (genomic DNA) are different from those com-
posed primarily of coding segments (nRNA). Using an
unpaired ¢ test on the z scores, which includes dimer-
matched controls, distinguishes the populations at
p=0.05. Using an unpaired ¢ test directly on the esti-
mates of D fails to distinguish the populations (p =0.20).
Genomic DNA and mRNA are not totally distinct since
their sequences contain both coding and noncoding seg-
ments, reducing our power to discriminate between cod-
ing and noncoding populations.

This difference in D between genomic DNA and
mRNA sequences agrees with the findings of Blaisdell
[39] that coding sequences generally contain a significant
excess of runs of length 1 or 2 of weak-bonding bases (A
or T) and of strong-bonding bases (C or G). Noncoding

CG:GC

AG:GA GT:TG
AA:CC GG:TT
AC:CA CT.TC

AT:TA

Second four-dimensional embedding

FIG. 9. Second four-dimensional embedding scheme in
which all dimers step.

sequences generally contain a significant excess of long
runs of purine (A or G) and pyrimidine (C or T). Long
runs produce linear regions in the random walk that de-
crease D. Short repeated sequences should decrease D
less than long repeated sequences. We found that both
genomic DNA and mRNA have significantly lower esti-
mates of D than all three types of matched controls.
However, sequences of genomic DNA have significantly
lower dimer-matched z scores than those of mRNA.
Thus this difference cannot be due to differences in dimer
frequencies [40]. Other methods of DNA sequence
analysis (such as Markov chains) have failed to show
much difference beyond strong nearest-neighbor
influences.

The results we obtained in this study were based on
one of many possible axis assignments. Do our results
and conclusions change when we use an alternate four-
dimensional scheme? To address this issue, we studied a
subset of 33 DNA sequences randomly selected from our
original set and calculated D using a second alternative
embedding scheme in which all dimers step (Fig. 9).

2.2
2.1
2.0
1.9
1.8
1.7 .
1.6

1.5 e . o
L]

Second 4D Scheme

1.4 1 .
1.3 1

1.2 L] L) T T T T T T T 1
1.21.31.41.51.6 1.7 1.81.92.02.12.2

First 4D Scheme

FIG. 10. Scatter plot for a subset of 33 DNA sequences.
There is no correlation between estimates of D using the first
embedding scheme in Fig. 4 and the second embedding scheme
in Fig. 9.
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TABLE III. Global fractal dimensions for DNA sequences
and controls using a second four-dimensional (4D) embedding.
The estimated global fractal dimension for a 33-sequence subset
of original data using the embedding scheme in Fig. 9 is
significantly different from that obtained using the scheme in
Fig. 4. However, it is still significantly lower than D for base-
matched controls.

First 4D Second 4D
embedding embedding
N 164 33
DNA sequences
Mean D 1.631 1.519
o(D) 0.137 0.085
Base-matched controls
Mean D 1.702 1.580
o(D) 0.127 0.128
Mean z —0.865 —1.338
o(z) 1.812 2.171
t value —6.113 —3.540
p value <10”® 0.0006
Axis 1. {AA}={CC}=(—1,0,0,0) and {GG}={TT)}
=(1,0,0,0).
Axis 2. {AT}={TA}=(0,—1,0,0) and {CG}={GC}
=(0,1,0,0).
Axis 3. {AC}={CA}=(0,0,—1,0) and {GT}={TG}
=(0,0,1,0).
Axis 4. {AG}={GA}=(0,0,0,—1) and {CT}={TC}
=(0,0,0,1).

This embedding preserves D for complements, reflections
and substitutions, but it is not compatible with our two-
dimensional representation. For example, the sequence
CC and AA are equivalent in this representation but not
in our two-dimensional representation. We found a
significant difference (p =0.005 by paired ¢ test) in our es-

timate of D for individual DNA sequences from that ob-
tained using our first embedding scheme and there was no
correlation (r2=0.159) between the two estimates of D
(Fig. 10). We compared D for DNA to base-matched
controls using the second embedding scheme (Table III).
The mean global fractal dimension of the DNA sequences
(1.519£0.085) was significantly lower than for base-
matched controls (1.580+0.128). The mean D was also
lower for both DNA and controls using the second
embedding scheme and the standard deviation of D for
the DNA was smaller (+0.085 versus +0.137). The
mean z score for the second embedding scheme was
—1.338 with a p value of <10~ * compared to —0.865
with a p value of <1078 for our first scheme. In other
words, the second four-dimensional embedding scheme
produced the same general result—that the average frac-
tal dimension of DNA is significantly lower than that of
base-matched controls (Fig. 11). It is impressive that
despite the absence of correlation between the individual
D values for DNA sequences in the two schemes, the
differences between the DNA sequences and their con-
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FIG. 11. Distribution of z scores for D of 33 DNA sequences
compared to base-matched controls using the second four-
dimensional embedding scheme. The distribution is shifted in
the negative direction indicating that D of human DNA se-
quences is significantly lower than controls, agreeing with the
results in Fig. 6.

trols and their ensemble statistical properties are
unaffected by the change in representation. While we do
not propose that all axis assignments will produce the
identical result (some may be more or less discriminating
than the two we used), this equivalence is strong evidence
that the qualitative differences between random controls
and DNA will persist regardless of the embedding
scheme.

The global fractal dimension of DNA sequences clearly
demonstrates that there is significant nonrandom organi-
zation within the sequences that is not explained by base
or dimer frequencies. Future analyses of D using controls
that match for trimer and longer n-mer frequencies may
be quite revealing, as may investigation of the effects of
nonuniform distribution of oligomers within sequences.
Investigation of D for DNA of other species and organ-
isms may reveal differences that have not been measur-
able by other methods of sequence analysis. Finally,
studies that evaluate the multifractal spectrum [21,41] of
DNA may reveal information of a more localized nature.

Note added in proof. Two papers have been published
since we submitted this paper involving fractal analysis of
DNA sequences [42,43]. Their results appear to support
our conclusions.
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FIG. 11. Distribution of z scores for D of 33 DNA sequences
compared to base-matched controls using the second four-
dimensional embedding scheme. The distribution is shifted in
the negative direction indicating that D of human DNA se-
quences is significantly lower than controls, agreeing with the
results in Fig. 6.
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FIG. 6. Distribution of z scores for D of 164 DNA sequences
compared to random, base-matched, and dimer-matched con-
trols. The distribution is shifted in the negative direction indi-
cating that D of human DNA is significantly lower than for all
controls.



