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ABSTRACT

A detailed comparison between the experimental evolution of a two-
dimensional soap froth and the Targe Q state Potts model is presented. The
pattern evolution starting from identical initial conditions will be
compared as well as a variety of distribution functions and correlations of
the two systems. Simulations on different lattices show that the discrete
lattice of the Potts model causes deviations from universal domain growth
by weakening the vertex angle boundary conditions that form the basis of
von Neumann’s law. We show that the anisotropy inherent in a discrete
lattice simulation, which masks the underlying ‘universal’ grain growth,
can be overcome by increasing the range of the interaction between spins or
increasing the temperature. Excellent overall agreement between the
kinetics, topological distributions and domain size distributions between
the Tow Tlattice anisotropy Potts-model simulations and the soap froth
suggests that the Potts model is useful for studying domain growth in a
wide variety of physical systems.

Introduction

There are many experimental systems which exhibit grain growth or
coarsening in time, dincluding metallic and ceramic recrystallization,
magnetic materials, 1ipid monolayers, biological aggregates and soap froths
[1-3]. There are a similar variety of models for coarsening including
simple mean field theories which Took only at distributions [4,5], mean
field theories which include topology [6-8], "exact" models which calculate
the motions of boundaries or vertices [9-12], and the Potts model which
takes a microscopic approach to modeling [13-17]. In all such systems
surface energy driven diffusion leads to the motion of curved boundary
walls causing certain grains to grow while others shrink and disappear.
The result is a gradual increase in the overall length scale of the grains.
This basic dynamics is influenced by the geometrical constraint that
vertices are three-fold connected to produce a family of typical patterns
of coordination number three. Independent of the initial configuration of
domains or bubbles, these systems gradually become disordered with
time-invariant distributions of the number of sides per bubble and bubble
areas (a scaling state). Besides the intrinsic interest of the transition
from order to disorder, coarsening has many technological applications in
metallurgy, for example in the design of materials with particular
mechanical properties. The coarsening properties of metals have therefore
been widely studied [2]. Unfortunately, in many cases, secondary effects
such as impurity segregation and crystalline anisotropy mask the underlying
universal features of two-dimensional coarsening.
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To try to sort out the underlying ideal coarsening behavior, we turn
to the two-dimensional soap froth which was first proposed by Smith [8] as
a particularly simple example of a cellular system which coarsens in time
[19-24]. It appears that soap froths obey a simple dynamical law known as
von Neumann’s law [25],

da
Hfﬂ = £(n-6)

where ap is the area of an n-sided bubble and & is a diffusion constant.
If von Neumann’s law were all there were to froth evolution, the problem
would be trivial; however, when bubbles disappear, their neighbors gain or
lose sides, resulting in continual changes in each bubble’s rate of growth
or shrinkage. The difficulty in most models is to treat the redistribution
of sides correctly.

There have been a number of vertex and boundary dynamics models [9-12]
which have been developed to describe the basic physics of a soap froth, in
which gas diffuses across well defined soap films. Potts model simula-
tions, on the other hand, take a quasi-microscopic metallurgical view of
coarsening in which a Tlattice 1is wused to discretize the continuum
microstructure. As in real coarsening, curvature of domain boundaries
leads to increased wall energy on the convex side and hence to wall
migration. Coarsening results because few-sided grains have larger total
curvatures than many-sided grains and hence shrink.

The Potts model is space filling, unlike some vertex models and trades
the deterministic diffusion of gas across a soap film for the probabilistic
motion of an interface between domains of-different spin types. However,
Grest et al. [15] have shown numerically that the Q = » state Potts model
obeys von Neumann’s law on average. If the redistribution of sides in the
model is similar to that in an actual froth, we expect good agreement
between the temporal evolution of the two systems.

One difference between the Potts model and a real soap froth is the
Potts model’s orientationally anisotropic boundary energy. We show the
anisotropy in a Wulff plot (Fig. 1) at T = 0 for three different ranges of
interaction. The effect of the anisotrophy is to absorb wall curvature at
vertices and hence to reduce the effective force driving boundary motion.
In the case of the nearest-neighbor square Tlattice (Fig. 1(b)), the
anisotropy is so strong that the boundary walls flatten, and coarsening
rapidly slows and stops [13]. We therefore work with nearest and next-
nearest-neighbor triangular and next-nearest-neighbor square lattices which
have lower anisotropy. Another difference between the froth and the Potts

®)

Figure 1 Potts model anisotropies. Energy per unit surface length as a
function of surface angle (a) for a nearest-neighbor hexagonal lattice (b)
for a nearest-neighbor square lattice and (c) for a next-nearest neighbor
square lattice. The labelled arrows show energy extrema and values.
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model is that the diffusion time of gas across a soap film is much sTower
than the equilibration time of the film along its length, while in the
Potts model and most metals the two times are the same. Thus, soap films
are closer in shape to true equilibrium surfaces than are grain boundaries
in the Potts model and metals. In this respect our model differs signifi-
cantly from that of Wejchert et al. [16], who used a double time step,
first applying von Neuman’s law to fix target areas for each grain and then
using Potts model evolution to relax the grain boundaries to an equilibrium
configuration.

In this paper, we show that while lattice anisotropy is unquestionably
present in the Potts model, the main features of domain growth (e.g., the
temporal scaling of domain size) are unaffected by small changes in
anisotropy. In fact, the overall agreement between the evolution of a soap
froth and a Potts model starting from similar conditions is very good.
Lattice anisotropy does have an important effect on the scaling state
topological and area distribution functions. We [17] find that all moments
of these distributions decrease with decreasing anisotropy and approach the
results for soap froth in the 7limit of zero anisotropy, suggesting that
there is an underlying ’universal’ grain growth which 1is often masked by
anisotropy effects.

Experimental Procedure and Model

In the soap froth experiments, a cell (typically 8.5 x 11.5 x 1/8
inches) is filled with a well ordered array of small bubbles (typically
10,000 bubbles) [20]. The excess fluid in the films accumulates on the top
and bottom plates of the cell in Plateau borders, which are much broader
than the films themselves. These borders may change the evolution of the
froth (there is no reason to suppose that they have a linear bending energy
for example) but they do allow one to easily record the pattern by placing
it level on a photocopier, and photocopying periodically. Photocopying
heats the froth and can occasionally cause walls to break. The total
number of walls broken during a run is less than 0.1% of the total side
redistribution, but nevertheless results in a slightly greater number of
very many-sided bubbles. The only real control parameters are the tempera-
ture, type and pressure of the gas and the total volume of fluid in the
Plateau borders. The detailed properties of the fluid are not important as
long as its viscosity is small.

In the Potts model, a spin o(i,j) is defined for each lattice site.
A1l lattice points Tying with a given grain are assigned the same value of
spin, with a different spin for each grain. Since we denote the number of
different degenerate spins in the model by Q, we have Q = number of grains
Potts model. However, since each grain is separately labelled, we gener-
ally refer to it as the Q = « model. The Potts Hamiltonian is

H=1J ¥ 1-6 0 oy gse - 1)
(1,0 (i3 othelindn)

where J is a positive constant, § is the Kronecker delta function,

1 < o(i,j)< Ng denotes the orientation of the spin at site (i,j), Ng is
the number of domains in the system at the beginning of the simulation, and
(i,3), (i",3°) represents (i,j),(i",J") neighbors. Evolution proceeds by a
Monte Carlo procedure in which a spin is selected at random and converted
to a new random orientation with probability p=exp(-AE/kT) where AE is the
change in system energy produced by the reorientation. After each
reorientation attempt, time is incremented by 1/Ng Monte Carlo steps (MCS),
where Ng is the number of lattice spin sites in the system. At T > Tc the
system is disordered, while at T < T a well-defined domain structure
evolves. At T = 0, these domains are simply connected; however, at finite
temperatures small domains may nucleate within a larger domain. In order
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to alleviate the effects of these fluctuations, we quench each finite
temperature simulation to T = 0 for a short time prior to enumerating the
domain size and side distributions. Since the average number of sides per
domain {n> = 6 for simply connected domains, the duration of the quench is
adjusted such that 5.98 <{n><6.02.

We study the anisotropy of the Potts model by performing identical
simulations on a variety of lattices with different anisotropies and at a
variety of temperatures. We characterize the anisotropy by the ratio of
the highest-to the Towest-energy domain boundary orientations. The highest
possible anisotropy occurs for the nearest-neighbor honeycomb 1lattice.
However, steady state domain growth does not occur on this lattice at any
temperature. We therefore confine our study to the nearest- and next-
nearest-neighbor square lattices [s(1l) and s(1,2), respectively] and the
nearest-and next-nearest-neighbor triangular Tlattices [t(1) and t(1,2),
respectively]. The 1lattice anisotropies 15 for these lattices are
ns(1)=1.414, ng(1,2)=1.116, ny(1)=1.154, and n¢(1,2)=1.057. We used two
different types of Potts models in our simulations. For direct comparison
to experiments on soap froths, we used a second nearest neighbor
interaction on a 600x500 square lattice with open boundary conditions. To
check the effect of anisotropy, we used a 200x200 lattice with periodic
boundary conditions. Results for the nearest neighbor triangular lattice
on a 200x200 Tattice agreed very well with earlier work on a 1000x1000
lattice with Q=48 [15]. These 1latter simulations were performed by
quenching from T>>Tc to T<Tc. The results presented are averaged over ten
independent simulations.

Kinetics

The basic measure of the evolution of domain structure is the average
domain size as a function of time. Any system obeying von Neumann’s Taw
reaches a scaling state in which

Qe - )l - 1, (2a)
@)y ~ t* (2b)

where Eq. (2b) is valid for (a(t)>>> <a(0)), v is a positive constant, and
a=1. Deviations from a=1 are common experimentally and indicate the
presence of additional effects: for example, finite fluid fraction in soap
froths [21] and impurities in metals [2] result in Tower growth rates at
long times and hence Tlower exponents. Generally, the domain growth
exponent & gradually increases as the system approaches steady state [20].

Figure 2 shows the temporal evolution of the mean domain area (a). In
the t(1,2), s(1,2), and t(1) Tlattices at all temperatures, the rate of
growth of a increases monotonically in time to a value consistent with
the large-system asymptotic exponent a=1 [15]. For the s(l) lattice, zero
temperature domain growth halts when the domain vertices absorb all initial
wall curvature; however, domain wall fluctuations which occur at any finite
temperature enable domain growth to proceed to completion [13,26]. The
effect of lattice anisotropy on domain growth is shown in Fig. 2a. Assum-
ing that the anisotropy is not too large for domain growth to occur [as in
s(1) at T=0], increases in lattice anisotropy decrease the growth rate at
early time (t < 102 MCS). Following this very early growth rate dependence
on lattice anisotropy, the domain coarsening rate becomes independent of
anisotropy; hence, all of the curves in Fig. 2a are parallel at later times
(t > 102 MCS). Results for T # 0 are shown in Fig. 2b for the nearest
neighbor triangular lattice. In this case, finite T has little effect on
the kinetics.
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Figure 2 Mean domain area versus time for the Potts model (a) t(1), t(1,2)
and s(1,2) at T=0 and (b) t(1) for three temperatures.

These results clearly show that the discreteness of the lattice is
unimportant to domain growth kinetics in the long-time regime, since all of
the simulations tend to the same scaling behavior at long times or large
domain size. In contrast, at early times, decreasing lattice anisotropy or
increasing temperature tend to reduce the kinetic effects of lattice
discreteness and increase growth rates. Likewise, the discreteness of the
atomic lattice in grain growth, in effect, decreases with increasing
temperature, as evinced in the experimentally observed increase in grain
growth exponents with increasing temperature [27]. However, we also find
that temperature and lattice anisotropy are not equivalent variables.

To compare more directly the temporal evolution of the soap froth and
the Potts model, we [1] carried our two runs using digitized soap froth
images at t=0 minutes (2490 grains) and t=2044 minutes (1175 grains) as the
starting patterns. The t=0 minutes initial pattern was composed almost
entirely of hexagonal bubbles of nearly equal area while the t=2044 minute
pattern had evolved sufficiently that there were few islands of six-sided
bubble remaining from the initial fill. The qualitative features of the
disordering were similar for the two simulations and the experiment. We
compare the experiment and the t=2044 minutes simulation in Fig. 3, though
the differing boundary conditions (the sample of the froth was taken from
the bulk whereas the simulation had open boundary conditions) resulted in a
rapid divergence between the actual patterns. In the simulation starting
from the t=2044 minutes soap froth image the disappearance of residual
order occurred 1in both systems at comparable length scales (after an
increase of approximately one order of magnitude), and the qualitative
patterns remained comparable (We use the conversion that time is the number
of MC steps times 0.32, t=tpc*0.32). Regardless of the initial random
seed, the simulation starting from the t=0 minutes soap froth image re-
tained its hexagonal pattern for much longer than the froth. This
difference in side redistribution comes about because of angle effects due
to lattice anisotropy in the Potts model. These simulations were run on
the square lattice with nearest- and next-nearest neighbor interactions.
Due to the lattice anisotropy (ns{1,2)=1.116) for this case, six-sided
bubbles are less likely to change their number of sides in the model than
in the experimental soap froth. Once the blocks of hexagons disappeared
however, the rate of evolution caught up and the long term states of the
t=0 and t=2044 minutes square lattice Potts model simulations are
indistinguishable. In Fig. 4 we compare the average bubble size versus
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3263 Minutes 4000 MCS

4284 Minutes 8000 MCS

7259 Minutes 16000 MCS

Figure 3 Evolution of soap froth (left) and the square 1attige Potts model
(right) using the state of the soap froth at t = 2044 minutes as the
initial condition.
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Figure 4 Average bubble area versus time for soap froth (bullets), square
Tattice Potts model simulation starting from the digitized soap froth image
at t = 2044 minutes (open circles) and square lattice Potts model
simulation starting from the digitized soap froth image at t=0 minutes
(triangles).

time for the froth and Potts model simulations on a square lattice s(1,2).
We found essentially exact agreement between the froth and the t=2044
minutes simulation up to 20,000 minutes where the statistics are best,
after which both showed fluctuations. The initial rate of area growth of
the t=0 minutes simuTation was significantly slower than the froth, due to
the Tattice anisotropy. In both cases the typical qualitative dynamics for
coarsening of an initially ordered froth appeared: slow initial evolution,
followed by rapid growth during which any residual order disappeared, and a
long term tail with sTower power 1law growth [20]. The growth exponent of
both simulations was slightly higher than in the froth, but all were
consistent with Tinear growth in time, i.e. a=1. Bolton and Weaire [12]
have shown from their simulations for a soap froth with Plateau borders
that the experimentally measured Tlower growth exponent is due to an
increase of Plateau border width during experiments in sealed cells.
Earlier experiments [21] in small sealed cells gave exponents o<l.
However, our experiments [1] on larger cells and those of Stavans [24] on a
drained cell, give a=1 consistent with the Potts model.

Distribution Functions

Besides the mean bubble area, the two basic measures of the state of a
froth are the distribution of the number of sides (p(n), the probability of
a randomly selected bubble has n sides) and the normalized area distribu-
tion (p(a/<a>), the probability that a bubble has an area which is a given
fraction of the mean bubble area). We define the mth moment of the side
distribution as:

I an)(n-<n>)", (3)

n=2,w

o (T)

where <n> is the average number of sides of a bubble in the pattern (for
infinite patterns <n>=6). We sum from n=2 because two-sided grains can
occur in metallic and other materials. Moments higher than uy are sensi-
tive to the large n tail of the distribution, which is subject to counting
error. A similar integral expression can be used to determine pp(A), the
mth moment of the area distribution.
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Figure 5(a) Side distribution in the scaling state for soap froth (solid)
and triangular lattice Potts model (dashed). (b) Fractional area
distribution in the scaling state for soap froth (solid) and triangular
lattice Potts model (dashed).
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At approximately 10,000 minutes (see Fig. 4), just after the rate of
evolution rolls over to a power law, the experimental distribution becomes
essentially time independent, confirming the existence of the scaling state
noted by Stavans and Glazier (Q=48) [21]. We plot the scaling distribution
for the nearest neighbor triangular lattice Potts model simulation (Q=48)
and for the froth in Fig. 5a. While p(n) for the simulation lies within
the range of experimentally measured values for each n, the froth has fewer
four-and many-sided bubbles. Interestingly, the Q=48 triangular Tlattice
Potts model with wall breakage gives nearly identical distributions to the
Q=o square lattice Potts model without. Results for the fractional area
distribution are shown in Fig. 5b.

We find that the moments up are sensitive to the anisotropy and
approach the results for the soap froth only in the limit 7»1. Results for
the first three moments increase monotonically with increasing anisotropy.
In Fig. 6a, we show the results from simulations on four lattices as well
as experimental data obtained from the soap froth experiments. The soap
froth results are in good overall agreement with the simulation data on the
t(1,2) lattice. This is not surprising since the anisotropy for soap froth
should be identically unity (i.e., isotropic) and the t(1,2) has the
smallest anisotropy of any of the lattices investigated (i.e., about 1.06).
The experimental topological moments obtained by Fradkov et al. [28] for
two-dimensional grain growth in Al + 10-4 Mg foil at 460°C are substan-
tially larger than all corresponding scaling state Potts-model values. The
large values of the moments may reflect an equilibration transient, growth
retardation due to the interaction of the grain boundaries with the sur-
face, retardation due to impurity drag, or inherent anisotropy associated
with the atomic lattice.

In Fig. 6b we also plot the moments of the domain area distributions
#m(A) as a function of lattice anisotropy. The moments tend to increase
monotonically with the lattice anisotropy, although the scatter in the data
is much more pronounced than for the topological moments. Comparison with
the soap froth data again shows that best agreement is obtained in the
limit that the lattice anisotropy tends to one. Unfortunately, the moments
of the Al thin film area distributions are not available.

Correlations

Of the aggregate quantities derivable from the area distribution
functions, the average radius of an n-sided bubble as a function of n is
the most useful. If we plot ry = <apl/2>/<al/2> (Fig. 7) the graph is

25 T
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0 2 4 & 8 10 12 14

n
Figure 7 Fractional radius in the scaling state of an n-sided grain versus
n for the soap froth (circles) and the square lattice s(1,2) with nearest
and next nearest neighbor interactions (diamonds) and triangular lattice
t(1) with nearest neighbor interaction (triangles) Potts models.
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essentially linear, with just a hint of S-curve rollover for large n
[29,30]. In this case, because of the scarcity of many-sided bubbles, we
may well be observing a selection effect: large many-sided bubbles are
more likely to intersect the frame boundary than small bubbles and are
hence more likely to be excluded from consideration, resulting in a low
apparent size for large n. The soap froth and s{1,2) and t(1) Potts model
simulations give essentially identical results in the scaling regime. The
metal foil of Fradkov et al. has slightly larger many-sided grains [28].

The simplest side correlation function to measure is the average
number of sides of the neighbors of an n-sided bubble, m(n). Weaire has
argued on physical grounds that:

m(n)=6-a+(6a+up)/n, (4)

where s is the second moment of the side distribution and a is a constant
of order one [31]. Peshkin, Strandburg and Rivier [8] have recently shown
that this result follows directly from a maximum-entropy approach. It is
observed to hold both in the froth and the Potts model [1,22]. Other
distributions, including pp(n), the probability that a bubble next to an
m-sided bubble has n sides, have also been determined for both the soap
froth and Potts models. The results are presented in Ref. [1]. As
expected we find that few-sided bubbles tend to be near many-sided bubbles.
The converse is not true, however. Six-sided bubbles cluster together and
seven-sided bubbles attract six-sided bubbles. Even more surprising, the
distribution of neighbors of eight-sided bubbles is essentially the same as
the total distribution. Discounting the bias towards many-and few-sided
bubbles that we have noted in the simulation, the behavior of the distribu-
tions as a function of m is identical for the Potts model and the froth.

Conclusions

The excellent overall agreement (kinetics, topolegical distribution,
domain size distributions) between the Tow lattice anisotropy Potts-model
simulations and the soap froth show that the Potts model is a useful analog
system for studying domain growth in a wide variety of physical systems.
Additionally, the similarity between soap froth evolution, grain growth,
and Potts-model domain growth demonstrate the universality of domain growth
in highly degenerate systems and the general applicability of the von
Neumann construction. A discrete lattice causes deviations from universal
domain growth behavior by weakening the vertex angle boundary conditions
which form the basis of von Neumann’s law. The anisotropy inherent in
discrete lattice simulations can be overcome by smoothing the Wulff plot
of the lattice (e.g., by extending spin interactions to longer range) or by
elevating the temperature at which the simulation is performed.
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