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Effective multifractal spectrum of a random walk
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An infinite uniform random walk on a lattice is a monofractal, but any finite-length random walk con-
tains both bulk and surface, which cannot be easily distinguished, but which have intrinsically different
fractal dimensions. When we examine both the bulk and the surface using the sandbox method, we ob-
tain a reproducible effective multifractal spectrum that is independent of the length of the random walk.
This technique allows us to calculate the multifractal spectrum for short (~ 10000 base pairs) DNA-
sequence data sets. We show that human S globin DNA is significantly different from its length-, base-

frequency-, and dimer-frequency-matched controls.

PACS number(s): 05.45.+b, 02.70.—c

INTRODUCTION

The analysis of DNA-sequence data requires tech-
niques that allow reliable calculation of the properties of
data sequences as short as a few thousand base pairs.
Earlier work has shown that the global fractal dimension
and related global measures can provide useful but limit-
ed information concerning DNA sequences [1-3]. More
detailed measures of the distance between DNA se-
quences are needed to distinguish between introns (re-
gions that code for proteins) and exons (noncoding re-
gions) [4,5] or to reconstruct phylogenetic trees for
cladistic analysis. However, global calculations neglect
that DNA sequences are highly inhomogeneous.

Multifractal formalism is a useful way to characterize
the spatial inhomogeneity of both theoretical and experi-
mental fractal patterns [6—9]. The best known multifrac-
tal is the exactly soluble two-scale Cantor set, which is
representative of a large class of pointlike deterministic
attractors. In many cases, however, fractals are stochas-
tic and higher dimensional. The simplest example is the
random walk on a lattice, which finds many applications
in polymer physics, biology, and economics. Calculation
of multifractal spectra for random walks requires longer
data sets than are available from experiments. However,
for many purposes we are interested less in the exact
values of the multifractal spectrum than in comparing a
data set to a model which generates a set of matched con-
trols. In this case, the consistency of the analysis be-
tween data sets is important rather than the degree of
convergence for a single data set and it is desirable to use
a scaling radius that includes both the bulk and the sur-
face of the walk so as to maximize the discrimination of
the method. ‘
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In this paper we show that, even for short random
walks, we can obtain useful information from the
effective length-independent multifractal spectrum. Us-
ing this technique, we show that we can distinguish an in-
dividual DNA sequence from a variety of models which
generate matched controls.

METHOD

We calculate multifractal spectra using the sandbox
method of Tel, Fulop, and Vicsek, which converges sub-
stantially faster than box-counting for the two-scale Can-
tor set [9-11]. The multifractal spectrum by the sandbox
algorithm [10] is defined to be
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where the square brackets represent an average over a
number of randomly sampled points on the fractal, p; the
number of points within a circle of radius R around the
ith sampled point divided by the total number of points
in the fractal, and N the total number of points sampled
on the fractal. For an ideal fractal

D,=limD,(R) . | @)

(1)

In practice, we perform a linear fit on D,(R) over a range
of R, [R 0, R ey J, With R ;. representing the size of a
lattice point and R,, chosen to maximize the linearity
of the fit. We discuss the choice of R_,, below. An
effective fractal dimension exists if D, is monotonic,
nonincreasing within error, and insensitive to small
changes in the scaling range.

Alternatively we may characterize the fractal by a lo-
cal scaling exponent a. The dimension of the subset of
points that have the given value of a, f{(a), gives all the
scaling properties of the set [7]. Since scaling and dimen-
sion are equivalent concepts, the f(a) spectrum and the
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D, curves [or more correctly (¢ —1)D,] are related.
f{a) is the Legendre transform of (g —1)D, given by

_dtlq)
a dg | (3)
flay=aq—1{(q) . 4)

Positive g values correspond to the low-a side of the f (a)

curve and the negative ¢ values correspond to the high-a -

part of the curve. In practice, we can first calculate the
D, spectrum and obtain the f(a) curve by means of the
above relations. ‘

SIERPINSKI CARPET

The edges of a fractal, which are usually ill-defined,
affect the scaling exponents characterizing the distribu-
tion of points. Thus our measurements of the multifrac-
tal spectrum depend on the fractal’s size or extent. To

understand the effect of edges on the D, of pseudoran-

dom walks, we computed D, for the square Sierpinski’

carpet. The ideal, infinitely subdivided carpet is a
monofractal (D, =In8/In3=1.893). A finite-sized carpet
with a finite number of subdivisions will have an effective

_multifractal spectrum due to the inclusion of the edges of
the carpet.

Figure 1 shows the results for a 150X 150 Sierpinski
carpet generated by the iterated function system method
of Barnsley [12]. We computed the D, curves using the
sandbox method with the sandbox centers distributed
randomly over the carpet. The spectrum thus produced
is monotonic, nonincreasing for all values of R, used.
For most centers, circles of radius R ,, avoid the edge of
the fractal completely, resulting in a regime of constant
scaling up to some value of R. As R, ,, increases, at each
center, the sandbox will cross an edge of the fractal at a
typical radius R ;. That part of the sandbox lying out-
side the fractal will not contribute additional points, so
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FIG. 1. Multifractal spectra for a Sierpinski carpet of size
150X 150. Monotonic nonincreasing spectra occur for all R,
(within error). The D, values decrease for any given g as R,

increases.
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FIG. 2. f(a) curves for a Sierpinski carpet of size 150X 150
for R, equal to (a) 20, (b) 80, (c) 120, and (d) 160. The f(a)
curves shift to lower a values with increasing R ,,, resulting in
the lowering of the D, curves. '

the rate of increase of points with the radius will drop.
Thus for R >R ., the effective scaling is less than that of
the bulk. Thus as R,,, increases, the effective a de-
creases. Therefore the computed f (a) curve shifts to the
left. '

We observed that initially an increase in R ,, reduced
the high-a part of the curve more than the low-a part
(Fig. 2), resulting in a flatter D, curve shifted to lower ¢
values. Further increase in R, reduced both the high-
and low-a parts of the curve almost equally, shifting the
D, curve lower, but not flattening it any further. For
R . greater than the size of the fractal (150), the low-a
part of the f(a) curve was decreased more than the
high-a part, broadening the D, curve. Any additional in-
crease in R, resulted in both the high- and low-a parts
of the curve being reduced almost equally. We can now
apply these ideas to calculate the multifractal spectra for
random walks. »

RANDOM WALKS

A random walk is defined as the sequence {y,}, where
i
Vi= X X (5)
j=1,

and x; is either (£1,0,0,0), (0,£1,0,0), (0,0,£1,0), or
(0,0,0,%1). We chose the direction of each step random-
ly with uniform probability. We can define quantities
that characterize the spatial extent of random walks such
as the average span

1 &, .
P=E E (lmax—lmin) ’ : (6)
i=1 : ,
where d is the embedding dimension, i, and i, are the
most distant points, maximum and minimum values,
visited on the ith axis. The mean-square displacement of
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a walk after r steps is

(R})=nb?, @)

where b is a constant.

A true random walk of infinite length is space filling in
two dimensions, i.e., D =2. Higher-dimensional embed-
dings also result in fractal dimension [13] D =2. Local
fluctuations can result in regions with fractal dimensions
greater than 2. Since we must work in a space that is at
least one dimension higher than the dimension of the
structure [14], we used a four-dimensional embedding for
our calculations.

Sampling rates above 2% in the sandbox method re-
sulted in D, values differing only by about 1-2%.
Therefore we sampled 2% of the points in the random
walk in each case. For standard box-counting techniques
the D, curve does not converge for any of the parameter
ranges discussed [15,16].

We calculated D, curves for ten random walks each of
Iength 50000, 100 000, and 250 000 over a limited scaling
range [2,40]. We expected the resulting curves to be rela-
tively flat since the sampling was local. The D, curves
were approximately monofractal with the average
D,=2+£0.1 for all g. The standard deviations ‘were
smallest at ¢ =0 for all lengths and largest at the ex-
tremes, ¢ =—15 and g =+15, with all standard devia-
tions less than 5% [9,11]. We did not observe a
monofractal behavior for the 10000-step walk for the
same scaling range. The shortest walk to yield a
monofractal spectrum was 4000 steps with standard devi-
ations of about 10%, using a scaling range [2,4] with all
line fits based on two-point fits between radii of 2 and 4.
Thus for short walks the region of monofractality is ex-
tremely small and hard to determine in a consistent
manner. In addition, to characterize the global structure
of an unknown object, we must look for correlations at
all length scales, which precludes such a small scaling
range.

A larger sampling region inevitably includes the edge
of the walk. An infinite-length random walk will have
edges at infinity which have no effect on its fractal dimen-
sion. For finite-length walks, however, there is no way to
totally avoid the edge while computing D,. Though
there has been some work on adjusting measures of frac-
tal dimensions for edge effects [17], these adjustments ap-
ply to graphs of continuous functions when using the
box-counting method to compute D, and not for finite
unit-step random walks. Unlike the Sierpinski carpet, the
random walk does not have regions within the fractal
which have distinct edges. However, random walks typi-
cally have holes within the bulk of the walk of varying
shapes and sizes. These spaces are difficult to predict,
though we expect the same flattening and lowering of the
D, curve. Thus the only way to calculate the multifractal
spectrum of a random walk is to randomly sample points
over the walk using a scaling range that can be applied
consistently.

We generated 30 random walks each of various lengths
and calculated their mean-square displacements and aver-
age spans. To avoid sequential correlations while choos-

. results, increasing R ,, decreased the D

ing the steps of the walk we used a random-number gen-
erator based on a subtractive method [18]. The average
span and the mean-square displacement both scaled by
the square root of the walk length, with b =0.868n'/2
and P =0.764n /2, differing only by a constant with aver-
age span slightly smaller than the mean-square displace-
ment. For real fractals like DNA, which is nonuniform
in extent along different axes, the mean-square displace-
ment is an indicator of the maximum extent while the
average span is more representative of the true scaling
range. This difference would not be an issue under condi-
tions of ideal scaling, since D, is invariant under confor-
mal transformations. For effective dimensions we must
pick a scaling range in a systematic manner. The average
span is less sensitive to the aspect ratio than the max-
imum radius. t

Figure 3 reveals that there is some change in the aver-
age multifractal spectrum over a range of R, values for
the 50 000-step random walks with sampling radii set to
0.8R, R, and 1.2R, where R is the average span of the
walk along the axes. The average D, values for 0.8R and
1.2R differ from the D, values for R by only about +0.04
for all g values used (i.e., a 20% change in the scaling
range gives only a 2% change in D, ).

The edge effect on the multifractal spectrum of the ran-*
dom walk is similar to the effect.on the spectrum of the
Sierpinski carpet. As expected from the Sierpinski carpet
; curve. An in-
crease in R, .. from 0.8R to R caused a greater shift in
the positive g values of the D, curve. An increase from R
to 1.2R had the same effect but to a lesser degree, con-
sistent with the behavior of the D, curves of the Sierpin-
ski carpet. However, since the R, used were rather
close to the average span, the amount of edge included
was not significantly different at each scaling range.
Therefore small changes in the scaling range around the

FIG. 3. The average D, curves for 20 random walks of 50000
steps with R, set to 0.8R, R, and 1.2R, where R is the average
span of the walk. The D, values decreases for a given g as R,
increases in a manner similar to the D, curves for the Sierpinski
carpet due to the inclusion of the edges of the walk. Error bars
offset for clarity.



average span had only a small effect on the spectrum, so
we could consistently analyze the walks.

When characterizing the information content of DNA
sequences we rarely have long sequences of DNA avail-
able. Typical DNA sequences are 5000-50000 bases in
length. Therefore the measures used to distinguish DNA
from its controls should be independent of the length of
the DNA sequence. We calculated D, spectra for 20 ran-
dom walks each of lengths 10000, 50000, 100000, and
250000 with the maximum scaling radius R ,, set to the
average span of each walk (Fig. 4). The spectra clearly
exhibited multifractal behavior. The standard deviations
decreased with the length of the walk (from 8% for the
10000-step walks to 3.5% for the 250000-step walks).
The D, curves were essentially similar and the differences
between them were well within one standard deviation.
We did a two-dimensional Kolmogorov-Smirnov (KS)
test [19] comparing the D, curves for 20 random walks
each of length 10000, 50000, and 100000 steps to the D,
curves for the 250000-step walk. The two-dimensional
KS test allows us to estimate whether distributions
characterized by two variables differ. Small values of the
KS significance indicate that the distributions are
different. The significance levels for the 100 000-, 50 000-,
and the 10000-step walks were 0.778, 0.542, and 0.438,
respectively, indicating that the distributions were not
significantly different. Thus the multifractal spectrum
calculated by setting R, as the average span does yield
consistent results from walk to walk and is essentially in-
dependent of the length of the walk.

Thus the average span of the walk along its axes pro- .

vides a consistent scaling range that can be applied to cal-
culate an effective, length-independent multifractal spec-
trum, even for short walks. We can use these spectra to
compare different sequences or sequences to their con-
trols. '

2.2} ' —— 10,000 base walk
-~-- 50,000 base walk
—=+-- 100,000 base walk
J0'Y = T I I S —— 250,000 base walk
L —
‘‘‘‘‘‘‘‘‘‘ Iy
1.9 ol
o i b mq N
1.8} 1 W
i N
) “!‘h
17k \\[m
-|| "o !ll
rl-\\\;;"f
1.6 |I [Ii
] (] (] 1 (] ] 1
.15 .10 .5 0 5 10 15
q

FIG. 4. The average D, curves for 20 random walks each of
length 10000, 50000, 100000, and 250000 over a scaling range
equal to the average span of the walk are essentially similar and
independent of the length of the walk. Error bars offset for clar-

ity.
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MULTIFRACTAL SPECTRUM OF DNA

We mapped DNA into four-dimensional pseudoran-
dom walks according to the mapping procedure and
embedding scheme discussed in Ref. [1]. We then com-
puted the multifractal spectra of these walks using the
sandbox algorithm with R, . set equal to the average
span of the walk. We employed three control sequences
for comparison: (1) random, where each base has an
equal probability of occurring; (2) base-matched, where
the control sequences are generated according to the pro-
portion of bases in the DNA sequence; and (3) dimer-
matched, where the control sequences are generated us-
ing the probability of each dimer pair occurring accord-
ing to the proportion of dimers in the DNA. The mul-
tifractal spectra of these control sequences were calculat-
ed. Figure 5 shows a clear difference between the human
B globin gene and all three control sequences. We com-
pared the length-, base-, and dimer-matched controls
with the actual sequence using the two-dimensional KS
test. The tests yielded significance levels on the order of
~1073 indicating a clear distinction between the DNA
and its controls, showing the existence of long-range -
correlations in the DNA than is present in random con-
trol sequences. The base-matched controls had a higher
KS significance level (107°) than the dimer-matched con-
trols (1077), consistent with the result in Ref. [1]. We re-
port a cladistic study of the species relations of mitochon-
drial DNA using these techniques elsewhere {20].

CONCLUSION

A finite unit-step random walk on a lattice is
monofractal over a severely limited scaling range (a max-
imum radius of 10% of the average span on the axes).
Larger scaling ranges yield an effective multifractal spec-
trum that characterizes the perimeter of the walk in addi-
tion to the bulk. The sandbox algorithm gives converged

—— human beta-globin gene
—e— length matched controls
------- base matched controls

e=e- dimer matched controls

1.2 1
-15 -10 -5 0 5 10 15

FIG. 5. The multifractal spectrum of the human B globin
gene (length 73 326 base paris). Significant differences exist be-
tween its D, curve and the average curves of the random, base-
matched, and dimer-matched control sequences.
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spectra for much shorter random walks than does box
counting. The converged effective multifractal spectrum
allows the analysis of short experimental data sets such as
DNA sequences, and the characterization of DNA se-
quences in a length-independent, robust manner. With
this method we can distinguish the human S globin DNA
from length-, base-, and dimer-matched controls.
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