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Magnetic Resonance Images of Coarsening Inside a Foam
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Coarsening in three-dimensional polycrystalline systems such as foams, magnetic bubbles, metal
crystals, and ceramics is poorly understood because of the absence of data describing the interior of
these materials. We introducemagnetic resonance imagingto probe the interior of a foam, providing
information on topology and foam drainage. The foam does not appear to coarsen in a self-similar way
during observation periods of up to 50 h, representing over a decade of growth in the mean length scale.

PACS numbers: 82.70.Rr, 87.59.Pw

Though we encounter foams every day, their structure
and rheological properties are difficult to explain. The vis-
cosity of foam is much greater than the viscosity of its liq-
uid and gas constituents and, unlike a liquid, foams have a
nonzero yield stress. These unusual properties make foams
useful as drilling fluids in oil recovery, for fire fighting, and
for shaving. Although recent simulations explain some
properties in terms of the constraints on fluid motion due
to structure [1], the structure is rarely well characterized
and changes dynamically through coarsening.

Despite its simplicity, the structure of three-
dimensional foams is not understood, in part because of
the difficulty of visualizing their interior. Plateau borders,
the accumulation of fluid between bubbles, scatter light
so strongly that optical photographs can only probe the
surface layer of bubbles.

Recent experiments with diffusing light probes infer
mean bubble sizes and dynamics [2]. However, this tech-
nique is somewhat model dependent and does not provide
direct information on bubble size distributions or topol-
ogy. Insertion probe sampling provides additional infor-
mation but destroys the sample as measurements progress
[3]. To circumvent these difficulties, we introduce mag-
netic resonance imaging (MRI) as a noninvasive probe of
the foam interior. MRI provides nondestructive visualiza-
tion of the foam by sampling the polarization density of
the nuclear moment as a function of position. This en-
ables us to reconstruct the topology at successive stages
of coarsening.

The MRI technique is well known for its use in
hospitals; however, it has recently found applications
such as in engineering studies of porous media. In
the present experiment we used a 1.8 T medical MRI
spectrometer to image protons by selectively exciting
a two-dimensional slice and resolving the transverse
dimensions by frequency and phase encoding [4]. A foam
is a particularly difficult object to image because MRI can
only detect the liquid content, and a dry foam may contain
only 5% liquid. In addition, foams have structure on the

order of a few hundred microns or less, well below the
1 mm resolution of most medical MRI. Despite our use
of a low field instrument, we achieved 100mm resolution
by optimizing the rf antenna that detects the NMR signals
and by optimizing the pulse sequences that encode spatial
information into the NMR signal. The spatial scale was
calibrated using water-filled capillary tubes at a 2 mm
separation. Each image was acquired during a spin echo
pulse sequence consisting of 128 individual phase encode
sequences, with a spin echo time of 10 ms.

The studies used a whipped gelatin foam (Norland
Products HiPure, New Brunswick, NJ; 45% concentra-
tion). This gelatin is formulated for long life and sta-
bility, and does not separate or polymerize even after
many months at room temperature. A strongly paramag-
netic salt, DyCl3, was added in a 15 mM concentration
to null the magnetic susceptibility of the liquid, eliminat-
ing effects due to the liquidyair mismatch. We added an
equal molar amount of triethylenetetramine-hexacetic acid
(TTHA) (Sigma Chemical) to chelate the rare earth salt,
aiding its solubility. Because of the susceptibility match-
ing, the primary magnetic field through the sample was so
uniform that the NMR linewidth was only 40 Hz, negli-
gibly small compared to the 100 Hz width of each pixel
in the frequency encode axis. Finally, we added a small
quantity of CuSO4 to increase the longitudinal NMR spin
relaxation rate, enabling us to increase the repetition rate
of the NMR pulse sequence.

The solution was whipped into a cream, allowed to
evolve for several hours, and then inserted into a 1.4 cm
diameter sample cell. Samples prepared in this way
could last up to a week. Initial bubble sizes ranged
from 0.01 to 0.2 mm, as determined by inspection with
a light microscope. Average bubble diameters for the
initial state were 0.07 mm. During the first few hours,
the foam coarsened rapidly to a point where we could
measure the bubbles easily with MRI. For the run
we describe in greatest detail, we began observations
12 h after initial sample preparation. The foam drained
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continuously during observations. We monitored the
drainage periodically, using one-dimensional scans of the
liquid density in the vertical direction.

In Fig. 1 we show two maps at different times of the
same horizontal foam slice. The sensitivity of the instru-
ment is sufficient to resolve some of the films between
the bubbles. Figure 1(a) was taken at the beginning of
our observations, 760 min after initial sample preparation;
Fig. 1(b) was observed 3250 min after Fig. 1(a). Fig-
ure 1(b) shows very large bubbles, which are absent in
Fig. 1(a). However, small bubbles persist at all times.
In all foams, coarsening results simply from gas diffu-
sion between bubbles due to small pressure differences
caused by bubble curvature. One-dimensional NMR pro-
files have been used to probe foam structure [5], but to our
knowledge, these are the first images of coarsening inside
a foam.

The composition of the foam affects the growth rate
in two related ways. The viscosity and gas solubility of
the liquid determine the gas diffusion constant. Pressure
differences between bubbles are determined by relative
wall curvatures and the surface tension of the liquid. The
surface tension is intrinsic to the liquid, and together
with the other intrinsic factors, determines the rate of
coarsening. The sequence of topological distributions and
correlations does not depend on the rate of coarsening.
Experimentation in various 2D froths with different fixed
coarsening rates has shown that coarsening rate does not
affect the self-similar nature of growth or the values of
growth exponents [6].

The change in liquid fraction due to drainage acceler-
ates growth because gas diffuses more rapidly between
thinner bubble membranes and plateau borders, so we
consistently overestimate the natural growth rate of the
foam. However, as outlined above, change in growth rate
does not affect topology [7]. Thus our fits for growth
exponents suggest an upper bound to the natural growth
exponent (i.e., the exponent in the absence of drainage).
An accelerating time scale for coarsening does not affect
self-similarity of growth, if growth is self-similar in the
absence of drainage.

We analyze each image by fitting circles to each bub-
ble to determine its location and size. When the films
between cells are not visible, we infer the presence of a
bubble from its plateau borders. The method is approx-
imate. Because of the finite voxel resolution, described
in Table I, we could only realistically fit bubbles greater
than 250mm in diameter. Also, polygonal bubbles are
not always well fitted by a circle. Where single circles
give poor fits, we permit small overlaps in adjacent fitted

FIG. 1. (a) Horizontal foam cross section, 3 mm from bottom
of cell at 263 min from beginning of observations. (b) Same
cross section, 3250 min from beginning of observations. Scale
is given by 1.4 cm inner diameter of sample cell.

bubbles so that the area of the fitted circle equals the area
of the bubble. The resulting histograms of the size distri-
butions give a detailed description of the foam interior. In
Fig. 2 we show examples of the bubble size distribution
at 25 and 3250 min. Though both histograms show a ma-
jority of bubbles at small sizes, the late histogram shows
an extended tail of bubbles that cover most of the sur-
face area. The growth does not appear to be self-similar.
That is, we cannot simply rescale the bubble radius by
a multiplicative factor to obtain the late-time distribution
from the early distribution. In the inset to Fig. 2 we show
the drainage, which reduces the liquid fraction from 10%
to 5%, suggesting the foam is in the “dry” limit [8] as
opposed to the “wet” limit described by Lifshitz-Slyozof
growth [9].

TABLE I. Instrumental resolution.

Time (min) Slice thickness (cm) Frequency encode resolution (cm) Phase encode resolution (cm)

0–745 min 0.011 0.010 0.013
746–3300 min 0.019 0.010 0.013
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FIG. 2. Bubble size distribution at succesive times of same
cross section as Fig. 1 (a) att ­ 25 min, (b) att ­ 3250 min.
Note the extended tail of large bubbles in (b). Inset: liquid
fraction in foam slice vs time. Linear fits to drainage rates are
superposed.

In these initial experiments we reduced the amount of
data by averaging between 20 and 50 individual images at
a time and by tracing the evolution only of single image
slices. Thus, we miss effects due to rapid rearrangements,
and we introduce a systematic shift in the distribution be-
cause of the sectioning. Given a bubble of radiusr, the
apparent radiusrproj depends on where the section inter-
sects the bubble. Sectioning results in a distribution of
rproj up to a maximum ofr, with krprojl ­ pry4. Mod-
eling showed that projection increases the higher moments
of the distribution by a multiplicative constant nearly in-
dependent of the distribution. Most importantly, in self-
similar growth wherertruesr , td ­ rtruesg 3 r , t0d, with
g a constant,g also scales the observed distribution
as rprojsr, td ­ rprojsg 3 r , t0d. Thus, without decon-
volution we can estimate scaling exponents and higher
moments, and determine whether or not growth is self-
similar.

A simplifying assumption for 3D froth, which holds
for 2D froth at long enough times [10], is that the
mean radius obeys power law growth given bykrl ,

st 2 t0db. Although our dynamic range of growth is
limited, we estimateb ­ 0.3 6 0.1, consistent among
several independent runs. A scaling argument predicts the
growth exponent for the mean bubble area,a ­ 2b ­ 1,
so we can compare the growth ofkAl to a line with
positive slope, regardless of assumptions fort0. We show
the growth in mean bubble area,kAl, in Fig. 3.

The most significant characteristic of the bubble size
distribution is its dimensionless second moment

m2 ;
p

kr2l 2 krl2

krl
, (1)

where k l denotes an average over the bubble size dis-
tribution. For self-similar growth,m2 is constant. In
Fig. 4 we show the evolution ofm2. Even after 1000 min
of observation,m2 continued to increase. We conclude
that our sample did not attain self-similar growth within
50 h, representing over a decade of growth from the initial
preparation.

In Fig. 3 we illustrate the effect of systematic er-
rors by measuring the bubble sizes two different ways.
In the first, the fitting permitted significant overlaps of
bubbles (asterisks). In the second, the fitting excluded
overlaps except for large, obviously polygonal bubbles
(triangles). The mean sizes calculated, allowing over-
laps, are systematically larger, but the relative growth is
the same.

The finite resolution of our current measurement in-
troduces a potential source of systematic error. If we
miss substantial numbers of very small bubbles, our es-
timates of mean bubble sizes and higher moments could
be skewed. Microscope photographs of newly prepared
foams indicate that all bubbles are initially smaller than
200 mm, only twice the size of our minimum resolution
pixel. The foam coarsens rapidly during an initial period,
so that 4 h after sample preparation, sequences of micro-
scope photographs reveal that only 25% of the bubbles
are smaller than 200mm. This fraction declines to 15%
at 12 h, corresponding to the initial time of NMR obser-
vations, and declines imperceptibly for the next 12 h. To
model the effect of the missing bubbles, as a severe case

FIG. 3. Growth of average bubble areakAl vs time.

575



VOLUME 75, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 17 JULY 1995

FIG. 4. Plot of second moment of distribution,m2, vs time.
Linear fit is superposed.

we added 15% more bubbles to the size distributions, all
at 50mm diameter. The first moments decrease system-
atically by about 15% for all times. The second moment
m2 increases by 10% to 20%, depending on the evolution
time. The tendency of the missing bubbles to increase
m2 at late times relative to the early times is small (about
15%), compared to the large increase inm2 we observed
throughout several different NMR runs. We conclude that
the missing bubbles do not affect the moments very much,
so that undercounting does not materially change the most
important observation of this paper. It has been suggested
that all dry foams attain self-similar growth [10]. This
expectation derives in part from the observation of a scal-
ing state at long times in 2D foams [6]. However, 3D
simulations suggest that the three-dimensional foam takes
much longer than a two-dimensional foam to reach a scal-
ing state, equilibrating only after the characteristic length
increases by two orders of magnitude [11,12]. Light scat-
tering measurements of 3D foam [2] suggest that a scaling
state is reached with exponenta ­ 1y2 after an increase
of only 10% in length scale occurring within 10 min (for
Gillette Foamy Regular). While we do not exclude the
possibility of self-similar growth at long times, our mea-
surements are more consistent with the recent simulations
than with the recent inference of a scaling state in Gillette

Foamy Regular. The foam length scale in our experi-
ment increases by about an order of magnitude from initial
preparationwithoutreaching a state of self-similar growth.
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