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Abstract:

Dissociated aggregates of two cell types exhibit either normal
sorting, partial sorting, engulfment or mixing. We show that a simple
model including only differential adhesion and membrane elasticity
can reproduce these behaviors. The timescale for bulk sorting in
three dimensional simulations is much faster than in two dimensions
and the logarithmic time dependence of two dimensional sorting is
not observed.

Introduction:

An early embryo, or even an adult animal such as hydra, can
regenerate from an aggregate of randomly mixed cells.1-5 Even in
vivo, during embryonic development or wound healing, cells must
migrate long distances.® Biologists tend to think of this migration in
terms of its function and the evolutionary pathways which led to it.
To a physicist, the intriguing question is the mechanisms which can
cause cell migration. There are only two ways that a cell can receive
information from its environment, through bulk gradients in
diffusible substances, or through surface properties of neighboring
cells sensed by direct contact. Other information requires external
fields such as light or gravity.

The former mechanism is reaction-diffusion, with analogies in
chemical systems, flame fronts, and the Belousov-Zhabotinsky
reaction. It may dominate cell differentiation, for example
determining the sequence, or even the number, of digits in the hand.

In the latter mechanism, the sorting of cells results from cell
type dependent differences in cell-cell adhesion.8 Cells rearrange to
decrease the total cell-cell contact energy. Non-specific and/or type-
dependent surface adhesivity is present in cells from all multicellular
organisms in the form of numerous proteins outside or across the
membrane. Common adhesive molecules like N-CAM are related
(possibly evolutionary precursors) to immunoglobins, and share their
repeated highly variable recognition sequences.® Thus a cell which
expresses several N-CAM like molecules can vary its adhesivity with
respect to each other cell type almost independently. This
mechanism allows genetics, as expressed in the choice of recognition
sequences during cell differentiation to directly influence
organization, perhaps, via homeotic gene pathways.




However, the physics of cell rearrangement is still unclear. The
energy surface explored by the cells might have three possible
textures. The first has at worst saddle points, with no local minima;
so even an aggregate of passive cells could spontaneously relax to the
configuration of minimum energy.!0 The second has only weak local
minima. At least random cell-membrane fluctuations are necessary
to allow each cell to locally explore its neighborhood and diffuse to
the minimum energy configuration.?2-11 The third has deep local
minima. Cells can rearrange into the optimal configuration only if
they use their cytoskeletal apparatus for long range directed motion.

Experiments:

The typical experiment selects two cell types, e.g. the
pigmented and neural retinal cells of chicken embryo or the
endodermal and ectodermal cells of hydra. If necessary, one cell type
is stained. The tissues are then dissociated into single cells,
mechanically and/or chemically, mixed in the desired proportion,
reaggregated into a random cluster, and cultured either in hanging
drops, shaker flasks (chicken) or culture wells (hydra). The
dissociation destroys any preexisting diffusible gradients. Thus,
initial cell migration depends only on cell-cell surface recognition. If
the dissociation procedures preserves surface adhesion molecules,
cell migration begins immediately. Otherwise they must reform, and
migration begins after a few hours, indicating that the main
mechanism of migration is surface adhesion.

Cell sorting 1s the classic behavior of mixed heterotypic
aggregates. In fig. 1 we show our version of a classic experiment on
the sorting of neural (light) and pigmented (dark) retinal cells from
seven day chicken embryos.2-12 The initially free floating cells (a)
gradually coalesce to form a random aggregate (b). During the next
few hours a surface light monolayer begins to form (c¢) and the
aggregate rounds. Even after the monolayer is complete, the dark cell
clusters in the bulk remain small (d). These clusters gradually
coalesce (e) until only a single dark cell cluster surrounded by light
cells remains (f). The central cluster is often not centered in the
aggregate.® Similar sorting occurs in hydra,*> and in two-dimensional
monolayers.13

Sometimes the sorting of cell types in an initially mixed
aggregate remains incomplete. Clusters of each cell type form and
grow, but never reach the final state of two connected concentric
regions. Instead, the main clusters trap other large heterotypic
clusters.2.8,14 In large hydra cell aggregates, a monolayer of
ectodermal cells forms within 6 hours but complete bulk sorting does
not have time to occur.4 10 Partial sorting also occurs for




heterogeneous 1initial distributions of light and dark cells since
clusters are distant and have a low probability to encounter and fuse.
A more significant example occurs in chick cell aggregates in the
presence of Cytochalasin B which prevents membrane ruffling,!>
showing that membrane fluctuations are necessary for complete
sorting; however, detailed experiments on the amplitude of
membrane fluctuations and their effect on cell sorting are lacking.

If homotypic aggregates of two types that normally sort (e.g.
chicken heart and pigmented retinal cells or hydra endoderm and
ectoderm) are brought into contact, one cell type engulfs the other
yielding the same final configuration as a random aggregate.2

If the difference in adhesivity between the two cell types is
greater than either homotypic adhesivity, spontaneous mixing occurs.
For instance, during the sexual maturation of avian oviduct,16 when
the epithelial sheet of gland cells and ciliated cells forms a two-
dimensional checkerboard of almost rectangular cells with minimal
homotypic contact. However, the configuration retains many defects.

Simulations:

People have long tried to explain the patterns of tissues by
soap froth models.17-18 Soap froths minimize surface energy, so all we
need to do to make a soap froth model into a differential adhesion
model is to stabilize the cell volume as in magnetic bubbles,!9 and
introduce a type dependent surface energy. There are many ways to
implement this dynamics, including vertex, center, and boundary
models.14

We use an extended large-Q Potts model?0 on a 100x100x100
next nearest neighbor square lattice,2! with a spin, o(i,j), defined at
each lattice site, (i,j). We assign a separate spin, ¢ € {1,...,2004}, to
each of the 2004 cells in the pattern, with all lattice sites with a
given o composing the cell . Each cell contains approximately 120
lattice sites.

Each cell has an associated cell type t(c). Bonds between like
spins have energy 0O, so the energy inside a cell is zero. Mismatched
spins at cell boundaries contribute a cell type dependent surface
energy J(t,t'). We include the cell size as a target area, Arg, with

membrane elasticity, A. The total energy is thus:
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where a(c) is the area of a cell 6. The cell types are low surface
energy, dark, cells, high surface energy, light, cells and a fluid
medium of unconstrained volume.

The initial condition is a random round aggregate: to obtain it,
we begin with an array of rectangular cells of a single cell type and
allow it to round; we then randomly reassign the cell types. We
evolve using a standard Montecarlo Boltzmann algorithm at fixed
temperature, allowing the nucleation of medium filled vacancies but
not heterogeneous cells. One MCS is 16 times as many time steps as
there are lattice sites.

The biological limit corresponds to very low temperatures.!?
The thermal membrane fluctuations are too small to be relevant. The
model temperature T thus corresponds to the much bigger
cytoskeletally driven membrane fluctuation amplitude. Varying it
allows us to explore the energy landscape. The rate of spontaneous
(AH < 0) processes is nearly independent of T, since they have a
temperature-independent probability in the Montecarlo dynamics.
On the other hand, thermally activated processes depend
exponentially on T. Artefacts include pinning at low temperatures
and cell splitting at high temperatures.??2

The model is simple but realistic, in that the position and
diffusion of the membrane determine the dynamics as they do for
real loosely aggregated cells. Relative contact energies and boundary
curvatures drive all motion. Thus vertices are always close to their
equilibrium condition and all topological rearrangements happen
automatically and rapidly.

The model has two main defects from the perspective of
biological realism. The cells are nonpolar, whereas real cells in two-
dimensional tissues (epithelia) have strongly orientation dependent
mechanical and adhesive properties. However, this polarity can
temporarily vanish in dissociated cells. More seriously, the cell-cell
adhesivity is time independent. In actual cell-cell contact, adhesion
molecules diffuse into the contact region, at a rate depending on the
way they are anchored in the membrane, and causing an increase in
adhesion with time, which 1is not well understood. Long time
adhesion, through adherens junctions and regeneration of the
extracellular matrix are additional complications.

Results:

Normal Sorting:

We begin with a random aggregate (fig. 2(a')). Isolated cells are
rapidly expelled and small clusters form within ten MCS (fig. 2(b"))
and white cells rapidly begin to fill the boundary (fig. 2(b)). By 70



MCS the surface monolayer is almost complete(fig. 2(c)) and the
black cells form a connected cluster (fig. 2(c")). From this point on,
the sorting slows greatly. At 300 MCS only one unconnected white
cell cluster remains (fig. 2 (d")) and this reconnects by 400 MCS (fig.
2 (e")). The final rounding of the dark cell cluster is very slow (fig. 2
(f)), and is not completed by 2500 MCS.

The evolution is much faster than for comparable two
dimensional sorting21.22, where the light cell monolayer requires 600
MCS, the single cluster forms at 5000 MCS, and rounding requires
13,500 MCS. Thus the ratio between monolayer formation time and
sorting time is much smaller in three dimensional aggregates. Unlike
for two dimensions, all lengths saturate and there is no long time
logarithmic growth.

Partial Sorting:

We have not yet simulated partial sorting in three dimensions.
In two dimensions,2?2 we exchange J;; and J;,;., keeping all other

surface energies the same. The initial rapid clustering is nearly
identical to normal cell sorting, though the dark cell clusters are
smoother and rounder. However, the partial cell sorting does not
form a monolayer, and even after 1000 MCS the clusters still contain
many small heterotypic inclusions. The main contribution to the
decrease in heterotypic contact length now comes from slow, steady
cluster rounding, rather than the coalescence of diffusing clusters.
Evolution is logarithmic at all times.

Engulfment:

In figure 3 we show a simulation of engulfment where we
begin with our equilibrated pattern with the top half assigned to
light cells and the bottom half to dark cells (fig. 3(a)). At 100 MCS the
white cells have crawled around three cell diameters around the
dark cell cluster (fig. 3(b)). Engulfment is complete by 700 MCS (fig.
3(c)). However, the dark cell cluster does not move to the center of
the aggregate even at very long times. Engulfment is much faster
than in two dimensions, where, for comparable conditions, it requires
about 13,000 MCS. because a contact line is much more effective than
a contact point at pulling cells, and the area to be covered decreases
as the square of the distance traveled rather than linearly.2?2

Mixing:

We use experimental relative surface adhesivities to simulate
the formation of a checkerboard, beginning with a random aggregate
(fig. 4 (a)). Small patches of checkerboard appear immediately and
grow as the two cell types rapidly intercalate. After this initial rapid
reorganization, defect annealing requires long range cell motion over
substantial energy barriers, and further evolution is very slow. The




surface is essentially defect free by 2100 MCS (fig. 4 (b)), but the
bulk still contains long range inhomogeneities (fig. 4(b)). Timescales
are similar to those observed in comparable two dimensional
simulations.2?2 However, unlike the two dimensional case, the growth
slows faster than the logarithm. Biological checkerboards have been
observed only in two-dimensional tissues.l©

Cavities:

In two dimensions, we can simulate the nucleation, though not
the stabilization, of a fluid filled hole by changing the target areas of
the cell types to be unequal. In three dimensions we have not yet
been able even to nucleate a cavity, because the configuration fills
vacancies by relaxation too rapidly. Simulating cavity nucleation is a
major topic of our current research.

Temperature and Elasticity Effects:

We have not yet studied the effects of temperature and
membrane elasticity in three dimensions. In two dimensions there
are three temperature regimes: low-temperature freezing, a "normal"
regime which is qualitatively independent of the temperature, and a
high temperature disordered regime. The existence of this broad
normal band suggests that the lattice anisotropy is not too important
and that we are seeing the true local minima of the pattern.

During monolayer formation, higher temperatures evolve more
rapidly. These differences suggest that monolayer formation depends
on thermally activated processes. However, the final state is
temperature independent over a fairly wide range.

In mixing, regions of ordered checkerboard are effectively
frozen at moderate temperatures. At high temperatures, cells move
freely, allowing long range annealing.

Except for very low values, which do not conserve cells,
migration occurs for all A. However, A strongly affects the relative
timings of bulk and surface sorting. Bulk sorting for A=10 is ten times

slower than for A=0.5, but monolayer formation slows by a factor of
50.

Conclusion:

Even simple mixtures of two cell types can exhibit several
experimental behaviors, complete and partial cell sorting, engulfment
and mixing. We wish to distinguish the behaviors explained by
adhesion from behaviors which mix adhesion with other mechanical
or chemical mechanisms, e.g. cytoskeletal activity, or which are not
linked to adhesion at all.

Our simple model of isotropic cells, including only differential
surface energies and an area constraint, can reproduce all of the




sorting behaviors of random aggregates. Thus, the energy landscape
suffices to explain many aspects of biological cell sorting. Small
membrane fluctuations suffice to find the optimal configuration,
though the energy surface has weak local minima that trap in the
absence of fluctuations.

In the simulations, the relative time dependence of the sorting
depends on the fluctuation temperature and the membrane
elasticity. We are currently repeating the experiments of
Armstrong!5 on chicken cell sorting in the presence of Cytochalasin B,
to measure comparable quantities.

The current model suggests several biological experiments. At a
fundamental level, the effective temperature of cell membrane
fluctuations and the nature of the cell-cell adhesion energy need to
be clarified.23.24 For example, what are the changes in cell-cell
adhesivity as a function of contact time? We are trying to directly
measure the cell-cell time dependent adhesivity using atomic force
microscopy.

The substantial differences between two and three dimensional
simulations include much faster bulk sorting in three dimensions and
non-logarithmic time development. However, in our small simulated
aggregate, surface cells form a substantial fraction of the total cell
volume. We expect that bulk sorting will be much slower for
aggregates with more cells.

We are trying to improve our Hamiltonian to provide more
biological realism, adding a mesoglea, time or situation dependent
surface energies and mitosis. Sine these additions take us away from
the simple, physical model which motivated our initial simulations,
we try to introduce as few complications as possible, and only
experimentally measurable quantities.

Acknowledgments:

This research has been supported by N.S.F. grant DMR 92-
57011, the Ford Motor Company and the Exxon Educational
Foundation.

References:

a Department of Physics, University of Notre Dame, Notre
Dame, IN 46556, USA.DP Laboratoire de Physique Statistique de
I'ENS, associé au CNRS, Universités Paris 6, Paris 7, 24 rue Lhomond,
75231 Paris Cedex 05, France. ¢ Research Institute of Electrical
Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai
980, Japan.

1 J. Holtfreter, Rev. Can. Biol. 3, 220 (1944). J. Holtfreter, J. Morph.
80, 25 (1947). P. Townes and J. Holtfreter, J. exp. Zool. 128, 53
(1955).




[\

P. Armstrong, Crit. Rev. Biochem. and Mol. Biol. 24, 119 (1989).

H. Wilson, J. Exp. Zool. 5, 245 (1907). M. Dan-Sohkawa, H.

Yamanaka, and K. Watanabe, J. Embryol. exp. Morph. 94, 47

(1986).

4 K. Noda, Zool. Mag. 80, 99 (1971) (in Japanese).

5 A. Gierer, S. Berking, H. Bode, C. N. David, K. Flick, G. Hansmann, H.
Schaller, and E. Trenkner, Nature New Biol. 239 98 (1972).

6 R. Keller, Zool. Science 4, 763 (1987). D. Fristrom, Tissue & Cell 20,

645 (1988). R. Keller and J. Hardin, J. Cell Sci. Suppl. 8s, 369

(1987).

W

7 A. Gierer, and Meinhardt, Kybernetik, 12, 30-39 (1972). A. Turing, Phil.

Trans. Roy. Soc. Lond. B237, 37 (1952).
8 M. Steinberg, Science 141, 401 (1963). M. Steinberg, J. Theor. Biol.
55, 431 (1975) and references therein. See also references in 14.
9 M. Takeichi, Science 251, 1451 (1991).

10 F. Graner, J. theor. Biol., 164, 455 (1993).

1l H. Phillips and G. Davis, Am. Zool. 18, 81 (1978).

12 M. Steinberg, J. Exp. Zool. 173, 395 (1970). W. Thomas and J.
Yancey, Development 103, 37 (1988).

13 D. Garrod and M. Steinberg, Nature 244, 568 (1973). M. Steinberg
and D. Garrod, J. Cell Sci. 18, 385 (1975). A. Nicol and D. Garrod, J.
Cell Sci. 38, 249 (1979); 54, 357 (1982).

14 F. Graner and Y. Sawada, J. theor. Biol., 164, 477 (1993).

15 P, B. Armstrong and D. Parenti, J. Cell. Biol. 55, 542 (1972). M.
Steinberg and Wiseman, J. Cell Biol. 55, 606 (1972).

16 H. Honda, H. Yamanaka, and G. Eguchi, J. Embryol. Exp. Morph. 98,
1 (1986).

17 D'A. W. Thompson, On Growth and Form, 2nd edition, Cambridge
University Press (1942). F. T. Lewis, Anat. Rec. 38, 341 (1928). E.
B. Matzke, Proc. Natl. Acad. Sci. (USA) 31, 281 (1945). N. Rivier, R.
Occelli, J. Pantaloni, and A. Lissowski, J. Physique 45, 49 (1984).

18 J. A. Glazier, The Evolution of Cellular Patterns, Ph.D. dissertation,
University of Chicago, 1989.

19 D. Weaire, F. Bolton, P. Molho, and J. Glazier, J. Phys. Condens.
Matter 3, 2101 (1991).

20 G. Grest., D. Srolovitz, and M. Anderson, Phys. Rev. Lett. 52, 1321
(1984). M. Anderson, D. Srolovitz, G. Grest, and P. Sahni, Acta.
Metall. 32, 783 (1984). D. Srolovitz, M. Anderson, P. Sahni, and G.
Grest, Acta Metall. 32, 793 (1984).

21 F. Graner and J. A. Glazier, Phys. Rev. Lett. 69, 2013 (1992).
22 J. A. Glazier and F. Graner, Phys. Rev. E, 47, 2128(1992).



23 E. Evans, in Physical Basis of Cell-Cell Adhesion, Chap. 4 & 7, P.
Bongrand ed., CRC Press: Boca Raton (1988). D. McClay and C.
Ettensohn, A. Rev. Cell Biol. 3, 319 (1987).

24 M. Sato-Maeda, M. Uchida, F. Graner, and H. Tashiro, Developmental
Biology, in press.(1994)

Figures:

Figure 1. Cell sorting between pigmented (dark) and neural
(light) retinal cells in 7th day chick embryo in three dimensional
aggregates. (a) Initial dissociated cells. (b) Formation of random
aggregate (7 hours). (c) Monolayer formation (8 hours). (d) Rounding
of aggregate, completion of surface layer (15 hours). (e) Bulk sorting
(60 hours). (f) Final sorted state (>60 hours). Pictures show top views
of several different three dimensional aggregates.

Figure 2. Simulation of Three Dimensional Cell-sorting. (a, a')
Initial configuration: random aggregate. (b, b") 10 MCS. (c, ¢') 70 MCS.
(d, d) 300 MCS. (e, ¢) 400 MCS. (f, ') 2500 MCS. Parameters: J;;=7,
Jdd=2, Jld=5, JlM=JdM=8, T=32, r=1.

Figure 3. Simulation of Three Dimensional Engulfment. (a, a')
Initial configuration. (b, b") 100 MCS. (c, ¢') 700 MCS. Parameters:
I=7, Jdd:2’ Jld:5’ JlM:JdM:& T=32, A=1.

Figure 4. Simulation of Three Dimensional Checkerboard.

random initial cell type assignment. (a, a') Initial configuration. (b, b")
2100 MCS. Parameters: J;;=6, J37=4, J;4=2, Jipg = Jgpg = 8, T=32, A=1.



