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ABSTRACT

Weaire and Phelan have shown that Kelvin tetrakaidecahedra are not the
minimal surface partition of smallest area into regions of equal area. We develop
a simple construction based on the Kelvin and the Williams partitions that generates
periodic or quasiperiodic three-dimensional partitions, which are candidates for
further improvements in surface area. It is important to distinguish between
minimal-area structures under conditions of equal volumes and equal pressures.

The discovery of a space-filling structure composed of two types of cell of equal
volume with a surface area less than that obtained by Kelvin (Weaire and Phelan 1994a)
has stimulated further theoretical interest in the unsolved problem of how to partition
three-space into equal volumes using surfaces of minimal area. The new structure may
still not be optimal. Rivier (1994) has drawn attention to the large family of
Frank—Kasper crystals, the duals of which are candidates for smaller-area structures.
In the present letter we clarify some of these issues, and describe how further families
of structures may be generated. It remains to be seen whether the surface area of these
structures can be minimized without topological changes.

The type of problem considered by Weaire and Phelan was as follows.

(A) All cells are of equal volume and the surface area is minimized
In general, we can specify only the volumes or the pressures of cells.
The pressure difference between two cells is given by the surface tension times
the derivative of total surface area with respect to the difference of their
volumes.

Case (A) is realizable in the laboratory, but it would be more convenient

to stipulate the following.

(B) All cells have equal pressure and the surface area is minimized
In this case, the mean curvature of each wall of each bubble is zero. Physically,
zero curvature implies that there is no diffusion of gas across walls because
pressures are equal; so the partition is stable against diffusion. In the trivial
special case in which the cells are all identical and are related by translations
of a lattice, their pressures are equal. Kelvin’s solution of regular tetrakaidec-
ahedra (fig. 1 (a)) falls into the following category.
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Fig. 1
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(a) Kelvin tetrakaidecahedron and (b) Williams cell (tetrakaidecahedron): (——-), plane of the
two-dimensional projections, corresponding to the bold hexagons in figs 2 and 3.

(C) All cells have equal volume and pressure, by virtue of translational symmetry,
and the surface area is minimized
However, the non-symmorphic space groups allow a further possibility, in
which cells are related by a translation and rotation so that they are identical
but with different orientation as follows.

(D) All cells have equal volume and pressure by virtue of translational and
rotational symmetry, and the surface area is minimized
The Williams (1968) cell falls into this category (fig. 1 (b)).

Some earlier writers refer to ‘minimal froths’ without defining which of the above
they mean. Kusner (1992) deals with category (A) above, while Rivier (1994) wrongly
associates both (A) and (B) with the work of Weaire and Phelan, the structure of which
has two inequivalent types of cell and cannot satisfy both conditions. In fact, this work
was devoted entirely to category (A).

Can we abandon (A) in favour of (B) and adjust a structure like that of Weaire and
Phelan to satisfy the latter? At first this question seems trivial, but it is not. The pressure
difference between the two inequivalent cells is proportional to the local curvature of
the faces which separate them, which retains the same sign as the pressure is varied
(R. Phelan 1994, unpublished), and cannot be reduced to zero, without topological
changes. An argument of Sire (1994) shows that, for polyhedra with regular polygonal
faces, the mean curvature depends only on the number of faces, while numerical
simulations of Glazier (1993) indicate that the growth rate of a bubble (which is
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Fig. 2
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Two-dimensional vertical projection of half-plane of Kelvin tetrakaidecahedra KT: ( ),
downward-pointing vertices; ( ) upward-pointing vertices. Each half-cell contains
two quadrilaterals and two hexagons.

equivalent to the pressure difference between it and its neighbours, and hence its
mean curvature) depends both on the number of faces and on their detailed topologies.
Thus it appears nearly certain that partitions consisting of cells with differing numbers
of faces cannot have uniform pressure. Partitions with similar numbers of faces but
which lack uniform detailed topology may have uniform pressures, but we do not know
of any.

We now develop a strategy to generate further candidate structures. They satisfy
the necessary topological conditions (a cellular structure, with fourfold vertices), but
in most cases we cannot say whether they survive area minimization without topological
changes. During such minimization, all free parameters of the lattice should be varied,
as well as the internal coordinates of the unit cell.

The Kelvin structure is b.c.c., with the cell shown in fi g. 1(a). The cell can be divided
in two on a plane perpendicular to the 110 axis (broken line in fig. 1(a)). The result
is a half-layer, which (projected into the plane) consists of two parallel semiregular
lattices of hexagons of long and short sides, displaced from each other by one half of
the lattice spacing (fig. 2). One such half-layer has unconnected half-faces pointing up
(light lines) while its partner has them pointing down (bold lines) (see fig. 2). We can
perform a conformal transformation, such that each hexagon becomes regular in both
lattices. In this case we denote the first half-layer by KT. Its mirror reflection we denote
by K{. Thus the simple Kelvin partition is (KTK{)". Note that each K half-layer has
a preferred orientation in its own plane (perpendicular to the displacement between the
lattices). A rotation of the lattice by an angle 6 may be designated K(6). If 6 = 0°, 60°
or 120° the hexagonal lattices correspond and may be reconnected to form
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Fig. 3

Two-dimensional vertical projection of half-plane of Williams tetrakaidecahedra WT: ( ),
downward-pointing vertices; ( ), upward-pointing vertices. Note that both hexagonal
lattices cannot be made regular. Each half-cell contains two quadrilaterals and two
hexagons.

tetrakaidecahedra. If we have a sequence KT(O)Ki(GO)KT(l20)K~L(180) ..., we have
a regular periodic lattice composed of twisted Kelvin cells (Weaire and Phelan 1994b).
Such cells, which occur in thin sandwiches of foam, have four quadrilaterals, six
hexagons and four pentagons and have a chirality, if we do not allow reflection in the
110 direction. However, we are free to choose the orientation of each half-layer
independently. Sequence KT(0)K{(6) give a layer of Kelvin tetrakaidecahedra,
KT(OKL(0 + 60) (or KLOKT(H + 120)) give right-handed twisted Kelvin cells, and
KT@KL(O + 120) (or KLO)KT(O + 60)) give left-handed twisted Kelvin cells.
Any sequence KT(O)KI(0 + n160)KT(8 + n,60)KL(6 + n360) ... is admissible and
generates candidates for our category (C). If the sequence {#;} has additional symmetry,
for example, {1,2,3,...}, then we have an example of case (D).

Williams (1968) proposed a structure which A. Kraynik (1994, unpublished) has
shown is stable under area minimization, contradicting the claim of Ross and Prest
(1986). It is of type (D) with two equivalent cells (fig. 1 (b)) whose centres lie on ab.c.t.
lattice but have perpendicular orientations in consecutive layers perpendicular to the
¢ axis. Again, we can divide the Williams cell into two halves (broken line in fig. 1 (b))
to create a sheet of irregular hexagons, which we project on to the plane (fig. 3; the bold
hexagons correspond to the broken line). Williams constructed his lattice by making
topological changes in an isolated Kelvin cell and then packing the resulting cells.
We use our hexagonal lattice notation to generate the structure. Consider the lattice
shown in fig. 2. Leave the bold lattice unchanged and perform a T1 (side swap), on the
parallel light lines at the centre of each hexagon. As before, we now have two hexagonal
lattices: one regular and the other of elongated hexagons (fig. 3). We cannot make this
second lattice regular by conformal transformation in a flat space, unless we destroy
the regularity of the first, since the diagonal length of a hexagon is not equal to its height.
Only in a curved space, where cos (30°) = 0-75, do both lattices become regular. We
call the lattice with the regular hexagons upward pointing W7, and the lattice with the
unconnected regular hexagons downward pointing W{. As before, we have three
allowed orientations of the lattice, at n60°. The normal Williams cell consists of
repetitions of WT(®)WL(0). A second T1, applied to the first lattice, regenerates the
K lattices.

Alternatively, we may generate the Williams cell directly from the Kelvin
tetrakaidecahedron by an elementary topological change (Schwartz 1964) applied to all
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Two-dimensional quasiperiodic half-plane G@A59)T: ( ), downward-pointing vertices;
( ), upward-pointing vertices.

the quadrilateral faces perpendicular to the 001 direction, rotating them in successive
layers towards the 110 and 110 lines, respectively. The construction shows the relation
between the b.c.t. lattice and the b.c.c. lattice of the Kelvin structure. However, the
lattice of the structure as a whole is simple tetragonal.

As before, we can combine W half-planes of different orientations and W and K
half-planes. However, because of the broken symmetry, W(6) must be followed by
WT(6). However, WT(8) may be followed by any other d half-plane.

The sequence WT(O)WI(0) yields Williams polyhedra with two square, eight
pentagonal and four hexagonal faces. WT(H)W»L(O + 60°) yields the barrel with 12
pentagonal and two hexagonal faces (in our hypothetical curved space with
c0s (30°) = 115, the barrel is space filling). wWT(OKI(H) yields four squares, four
pentagons and six hexagons. WT(@KL(0 + 60°) yields two squares, eight pentagons
and four hexagons, but in a different arrangement from that of the Williams cell
(different detailed topology). This cell, like the twisted Kelvin cell, has two chiralities.
All these structures are entirely tetrakaidecahedral and hence it may be possible to
construct partitions of equal pressure using combinations of them.

If we are willing to abandon our requirement that we have only one cell type, we
can generate an infinite family of periodic and quasiperiodic structures starting with our
two simple hexagonal lattices. If we misalign two regular hexagonal lattices by an angle
¢, we obtain a tiling of the plane, G(¢) with multiple cell types (there are 11 possible
hexagonal unit-cell topologies). If (tan ¢)/3"> = p/q in lowest terms, where p and q are
integers, then the lattice G(¢) is periodic with period p in the direction of 0° and g in
the direction 90°. If (tan ¢)/(3) is irrational, the lattice G(¢) is quasiperiodic (fig. 4).
In either case, because the lattice consists of two regular hexagonal grids, we can
combine G(¢)T(0) with G(¢')(8 = n60°) and G(p)(8) with G(¢')T(6 = n60°) for
any ¢ and 6’. Since the sequences {¢; € [0,360]} and {n; € 1,2, 3} are arbitrary, we
have a mechanism to generate large families of periodic or quasiperiodic minimal
partitions. Again, the existence of the sequence need not imply the stability of the
topology under minimization.

The next step should be to test these partitions under minimization, since their
topological stability is difficult to predict.
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