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Spatially Coherent States in Fractally Coupled Map Lattices
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We study coupled map lattices with a scaling form of connectivity and show that the dynamics
of these systems exhibit a transition from spatial disorder to spatially uniform, temporal chaos as
the scaling is varied. We numerically investigate the eigenvalue spectrum of the random matrix
characterizing fluctuations from spatial uniformity, and find that the spectrum is real, bounded, and
has a gap between the largest eigenvalue (corresponding to the uniform solution) and the remaining
N 2 1 eigenvalues (nonuniform solutions). The width of this gap depends on the scaling exponent.
We associate the transition to the coherent state with the appearance of this gap.

PACS numbers: 87.10.+e, 05.45.+b, 47.20.–k

Animal brains are complex networks of elements that
can perform a broad variety of information processing
tasks. Specialized areas of the brain, such as the motor
and visual cortex, are wired in specific, identifiable ways
to carry out their functions [1]. It is much harder,
however, to determine the structure of the network in
higher brain regions, which often seem rather amorphous,
but are able to perform different types of computations
without any significant change in synaptic coupling. Not
only is the computational activity in these higher brain
regions localized for a given task [2], regions allotted to
different computations, such as hippocampal place fields,
often overlap [3]. This dynamic partitioning of nodes into
domains of fixed point, oscillating, and chaotic domains
has been observed as a generic behavior in simulations of
neural networks, coupled oscillators, and coupled maps.

This segregation of activity in networks is strongly
dependent on the way the network is connected [4]. Most
existing studies employ either coupling restricted to some
neighborhood of a site or global coupling, which is a
mean field extension of local models. However, most
dendritic branching is fractal [5]. The omnipresence of
fractally connected neurons in biological neural networks
suggests that fractal coupling may be necessary for greater
efficiency in performing higher order computations.

Coupled map lattices (CMLs) are simple, computation-
ally tractable dynamical networks that display behavior
qualitatively similar to that of more complicated mod-
els [6–10]. Chaotic maps like the logistic map capture
some essential features of neuronal dynamics, such as
fixed point, oscillatory, or chaotic behavior [11], depend-
ing upon the applied stimulus, and have been used to
study clustering phenomena and coding in neural ensem-
bles [12]. We use these networks as simplified models of
neural ensembles to study the effect of connection archi-
tecture on network behavior.

We consider a CML with local dynamics described by
the logistic map

xn11sid ­ fsssxnsidddd ­ 1 2 ax2
nsid , (1)

where the indexn denotes the time andi the position on
a linear chain onN sites. Each pair of sites,i andj, are
connected according to the probability distribution

rsCijd ­ psijddsCij 2 1d 1 f1 2 psijdgdsCijd , (2)

wherepsijd is given by a simple scaling assumption for
the connection neighborhood

psijd ­ jri 2 rjj2a , j ­ 61, 62, . . . , (3)

where ri and rj are the coordinates of theith and jth
sites, respectively. This form of connectivity is different
from random connectivity models with a fixed value of
pij. The probability that two sites are connected depends
on the intersite distance and number of connections in
a d-dimensional sphere of radiusR will scale asRd2a

(for large enough lattices), which we define as fractal
connectivity. The coupled lattice is thus given by

xn11sid ­
1

Ai 1 1

"
fsssxnsidddd

1
X

j[conn
fsssxnsjdddd

#
, (4)

whereAi is the number of connections at theith site, and
the sum overj runs over all the sites connected to sitei.
We have two parameters at our disposal:a, which is like
a forcing parameter for a reaction-diffusion equation, and
a, which defines the connection neighborhood as well as
the strength of the interaction between sites.

We impose periodic boundary conditions on the lattice,
i.e., xs1d ­ xsN 1 1d. The form of the probability dis-
tribution for site-site coupling allows us to smoothly vary
the interaction neighborhood of a site. Thus,a ! ` is the
nearest-neighbor coupling limit, anda ! 0 is the global
coupling limit.

For the limiting cases ofa °! ` anda °! 0, the lat-
tice exhibits a fairly well understood range of behavior,
including pattern selection, intermittency, and spatiotem-
poral chaos [13]. In this Letter, we are mainly concerned
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with the study of the lattice dynamics fora values of
Os1d. This implies that the coupling between sites is no
longer strictly short range or infinite range. This kind of
scaling of the connectivity occurs in animal brains [14],
and the particular range of values ofa results in rather
dilute connectivity which is biologically realistic.

We show the temporal evolution of the lattice in
Fig. 1 for a lattice of size 100 with the value of the
map parameter set to the band-periodic region of the
logistic map (a ­ 1.44). We see that the lattice splits
into almost periodic domains for largea (local limit) with
the selection of some characteristic stable wavelength.
The domain boundaries do not move with time. As
a is decreased, the number of domains decreases and
the motion within a domain becomes more chaotic. As
a is lowered further, the lattice trajectories are almost
band periodic and there is little spatial order within
domains, suggestive of phase turbulence, where a slow
chaotic mode prevents the system from locking. Past a
critical value ofa, the lattice becomes spatially uniform.
The uniform state is stable for all parameter (a) values
of the uncoupled logistic map (fixed point, periodic,
semiperiodic, and chaotic) though the critical value of
a shifts slightly depending upona. Scaling forms of
connectivity might result in domains with fractal structure,
which we have not explored in this Letter.

In order to locate the critical value ofa at which
the uniform state becomes stable, we sweepa, while
holding a steady, and record the size of the coherent
domain. The size of the coherent domain is defined
as the number of sites such thatjxi 2 xi11j , d, with
d taken to be10211. We average over 500 different
initial conditions for eacha and 100 time steps for each
initial condition after discarding transients. We show the
average coherent domain size for lattice sizes from262210

for two parameter values (a ­ 1.44 and a ­ 1.9) of the
logistic map in Fig. 2.

We see that for different values ofa, the critical value
for a at which the size of the coherent domain diverges,
shifts, depending on whether the single logistic map is
band periodic or chaotic. The uniform state appears to
be attracting and globally stable past the critical value of
a. The transition from an initial uncorrelated state to a
spatially uniform one becomes sharper as the system size
increases. This behavior resembles a phase transition,
where continuous variation in a parameter,a, results in
a discontinuous jump in an order parameter, here, the size
of the coherent domain.

The emergence of coherent structures in CMLs has
been studied by stability analysis and statistical mechanics
[15–19]. While, in general, temporally chaotic states in
systems with short range interactions lead to a loss of
spatial coherence with exponentially decaying correlations
in space [20], in models with asymmetric coupling and/
or open boundary conditions, a stable uniform state
can be observed [15,16]. We show below that chaotic
temporal states of systems with probabilistic, long range

FIG. 1. Space-time diagram for fractal CML witha ­ 1.44
and (a)a ­ 15, (b) a ­ 2.0, (c) a ­ 1.3, and (d)a ­ 1.1 for
random initial conditions.

interactions, which are statistically symmetric, can exhibit
long range spatial order with temporal chaos.

We examine the stability of the uniform state by means
of a linear stability analysis about the uniform solution.
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FIG. 2. Fraction of coherent sites. Results are plotted on a
log scale, averaged over 500 random initial conditions after
discarding 10 000 transient steps. (a)a ­ 1.44 (band-periodic
region of logistic map), and (b)a ­ 1.90 (chaotic region of
logistic map).

To linear order in the deviations,ensid ­ xnsid 2 xn, we
have

en11sid ­
f 0sssxsndddd
Ai 1 1

"
ensid 1

X
j[conn

ens jd

#
, (5)

where the connection neighborhood is chosen according
to Eq. (3).

The trivial solution for Eq. (5) isensxd ­ 0, which
implies that if the lattice starts from a uniform state
x0s jd ­ x0;j, the sites stay uniform. We are interested
in the long term behavior of a system perturbed infinitesi-
mally from the uniform state.

We can rewrite Eq. (5) as a matrix equation,

en11 ­ f 0sxndMen . (6)

If M is diagonalizable,en ~ sr0ldn
max, where lmax is

the largest eigenvalue ofM and lnsr0d is the Lyapunov
exponent of the map wherer0 is defined as

r0 ­ lim
n°!`

√Y
l

jf 0sxldj
!1yn

. (7)

M is an asymmetric matrix with entries picked randomly
according to the probability distribution of Eq. (3). The
conditions imposed onM are (a) the entries in every
row sum to 1 because the lattice dynamics has to
map the interval onto itself, (b)Mi,i, Mi,i11, and Mi,i21

are positive, since the connection neighborhood always
includes the nearest neighbors, and (c)Mij $ 0 ; i, j.
Condition b ensures that there exists an integerk such
that Mk is strictly positive. ThusM is irreducible and
primitive [21] and it has a nondegenerate, real positive
eigenvaluelmax such that

lmax . jlij, i ­ 1, . . . , N 2 1 , (8)

where li is any eigenvalue ofM . Condition a ensures
that lmax ­ 1 [21] and the corresponding eigenvector is
uniform. The matrixM belongs to the general class of
matrices known as stochastic matrices.

For the casea ! `, each site is connected only to its
nearest neighbors and the matrix becomes symmetric and
tridiagonal, with additional entries in the upper right and
lower left corners due to the periodic boundary conditions.
In this case the eigenvalue spectrum of the matrix is

lsid ­
1

A 1 1

"
1 1 2 cos

√
2ip
N

!#
, i ­ 0, 1, . . . .

(9)

For the eigenvalue spectrum of Eq. (9), the eigenvector
corresponding to the largest eigenvalue represents the
state of uniform fluctuations which is unstable ifr0 . 1.
Since the eigenvalue spectrum is continuous, there is a
band of unstable nonuniform modes which destroys the
spatial coherence of the system.

For cases wherea is of Os1d, we calculate the
eigenvalues of the stability matrixM numerically for
a large number of matrices with fixed values ofa,
in order to make general statements about the nature
of the uniform state. We find that the matrices have
all real eigenvalues and the largest eigenvalue is 1
corresponding to the uniform solution, as expected. The
eigenvalue spectrum has a gap which separates the largest
eigenvalue from a continuous band ofN 2 1 eigenvalues
corresponding to nonuniform solutions (Fig. 3), which is
a surprising result. The size of the gap is determined by
the value ofa. Fora . 2, the gap goes smoothly to zero
and the eigenvalue spectrum approaches that of Eq. (9) as
a increases. Fora , 1, the gap is large. Intermediate
values ofa result in gaps which depend upon the system
size. In the thermodynamic limit of an infinite system,
we expect the gap to appear discontinuously fora , acrit

which is reflected in the divergence of coherent domain
size. While the size of the gap is related to the system
size, the actual appearance of the gap depends only on the
particular form of the coupling. The origin of the gap as a
result of the particular matrix structure is not entirely clear
but is an interesting unsolved problem from the standpoint
of random matrix theory.

Thus, we can relate the stability of the spatially uniform
but temporally chaotic states to the connectivity exponent
a. If we consider a gap of widthg, then for states
such thatr0 . 1 and r0s1 2 gd , 1, the uniform mode
is spatially stable (in the sense that any small initial
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FIG. 3. Eigenvalue spectrum of connectivity matrixM of size
512 3 512; (a) a ­ 1.5, (b) a ­ 1.0, and (c)a ­ 0.75. Bars
show the gap in the eigenvalue spectrum.

nonuniformity will lie in the gap and will die out) and
temporally chaotic. The remainingN 2 1 nonuniform
modes are stable since their eigenvalues are less than
1. The instability to uniform fluctuations remains but
does not destroy the spatial coherence of the system.
A similar gap in the eigenvalue spectrum was observed
in Ref. [16] for a nearest-neighbor coupling CML with
open boundary conditions, which was responsible for a
stable uniform state. For temporally periodic states (r0 ,

1), the uniform solution is always stable for all values
of a, and any infinitesimal perturbation from an initial
uniform state dies out, which we observe numerically.
However, for random initial conditions, the temporally
periodic, spatially uniform state does not appear fora .

acrit, implying a lack of global stability aboveacrit,
which would not be indicated by a local, linear stability
analysis. The above results for stability of the uniform
state also hold qualitatively if we choosepsijd in Eq. (2)
to be a constant (CyN), with psi, i 6 1d ­ 1 and varyC
instead ofa. However, this probability distribution is not
independent of system size, resulting in finite size effects
which are not present when using the scaling form of the
distribution.

We can also interpret the dynamic behavior of the
fractal CML in light of the relationship between structure
and function of a network, in particular, the effect of
network connectivity on stability [22]. The stability of
a dynamical system with a given Jacobian matrix with
randomly chosen elements is usually addressed in the
framework of the Wigner-May theorem [23,24] which
states that for a random connection matrix of zero mean,
the system is almost surely unstable if the connectivity
exceeds a threshold. However, the chaotic fractal CML
with all non-negative elements in the Jacobian matrix is
unstable for low values of connectivity (and therefore
interaction strength) but is stable for connectivity larger
than some critical value. We will study extensions of
the structure-stability relationship to neuronal populations
with probabilistic connections to determine the effect on
network performance during associative recall, coding,
and computation.
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