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ABSTRACT
We study the vertical liquid profile of foam drainage using the three-

dimensional large-Q Potts model extended to include gravity. Forced drainage
with constant-rate liquid input from the top of the foam produces a constant
profile. In free drainage, without liquid input from the top, homogeneously
distributed liquid drains to the bottom of the foam until capillary effects and
gravity balance. For pulsed drainage, as liquid drains from the top of the foam
into the dry foam, a sharp interface between the wet and dry foam develops. The
fixed profile moves downwards at a constant velocity with a flat interface. The
results of our simulations are suggested in both experiments and simplified mean-
field analytical results.

Foams are of practical importance in applications as diverse as brewing, lubrica-
tion, oil recovery and fire fighting. Characterizing their structure and evolution
presents challenges to current theory and experiments. Best understood is coarsening
resulting from diffusion of gas between cells. The explanation of anomalies in coar-
sening data has focused on the role of Plateau borders, the liquid-filled regions at the
intersection of cell walls, often ignored in the study of foams with a small liquid
fraction. In the case of three-dimensional liquid foams, an additional complication is
the vertical drainage of the liquid due to gravity, until gravity and capillary effects
balance. Often drainage, rather than diffusion, determines foam stability and proper-
ties. Many applications require detailed understanding of drainage. Mysels, Shinods
and Frankel (1959) were the first to investigate the different types of thin-film
drainage, concentrating on vertical films formed by withdrawal of glass frames
from pools of surfactant solution. Princen (1986) has discussed the asymptotic ver-
tical equilibrium profile of drainage by considering the osmotic pressure of foams.
Gol’dfarb, Kann and Sreiber (1988) studied the microflow in Plateau channels in
relatively dry foams and proposed a soliton solution under a mean-field assumption
for liquid flow in foam. Because the foam is inhomogeneous and resembles a porous
medium, we might expect that the penetration of water into the foam would result in
an unstable interface or in viscous fingering. Instead, the mean-field theory predicts a
flat interface.

Experiments, measuring the drained liquid as a function of time, do not offer
much immediate insight (Bikerman 1953). Recently Weaire, Pittet, Hutzler and
Pardal (1993) and Hutzler, Verbist, Weaire and van der Steen (1995), introducing
liquid from the top of the foam, measured the velocity of the interface between the
dry and wet foams in terms of the flow rate. Their ac capacitance measurement
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provided information on the vertical liquid profiles for different types of drainage
but could not distinguish horizontal wetness changes.

Magnetic resonance imaging (MRI) offers a non-invasive method for measuring
the interior structure of foams. One-dimensional vertical wetness profiles of draining
beer foams, whipped cream, egg white, etc. have been measured by German and
McCarthy (1989) and by Heil, McCarthy, German, McCarthy, and Patino (1990).
Gonatas et al. (1995) have successfully imaged two-dimensional sections and
obtained area distributions. Prause, Glazier, Gravina and Montemagno (1995)
have taken images of three-dimensional foams with very high resolution, but full
three-dimensional drainage experiments remain to be done.

The large-Q Potts model simulates the coarsening of foams (Glazier, Anderson
and Grest 1990), especially in one-phase systems, and can be easily extended to
include drainage. In the model, the pattern is subdivided into a regular three-dimen-
sional lattice, with each cell assigned a unique `spin’ identification s ranging from 1
to Q (Q > 10000 in our simulations). A cell s is the collection of lattice sites
i = (x,y,z) with spin s(i) = s. We work with a two-phase system, where the liquid
is represented as a cell of special type. Including the gravitational field, the extended
Potts Hamiltonian of the system is then

H Potts = Js,sÂ åi,iÂneighbours
1 - ds(i),s( iÂ)( ) + åliquid

gyliquid, (1)

where Js,sÂ
is the coupling constant between different cells, in this work,

Jgas,gas > Jgas,liquid > Jliquid,liquid, d is the Kronecker delta function, g is the force of
gravity per unit density and yliquid is the height of the liquid component of the foam.
The second term in H Potts applies to the liquid only. At each time step, a site and trial
spin are selected at random. Substitutions are made with probability P:

1, D H < 0,
0´5, D H = 0,

exp - D H
T( ) , D H > 0,

ìïï
íïïî

where D H is the change in H Potts due to īpping a trial spin. One Monte Carlo step
(MCS) consists of as many trials as there are lattice sites.

To reduce lattice anisotropy effects, we use the fourth-nearest-neighbour inter-
action, which is known to evolve in a manner very close to ideal isotropic grain
growth (Holm, Glazier, Srolovitz and Grest 1991).

In our simulations, applying a periodic boundary condition for the liquid in the y
direction (the direction of gravity) corresponds to adding liquid at the top of the
foam at a constant rate, called forced drainage. Free drainage has no input of liquid
over time and the liquid has a homogeneous initial distribution in the y direction. In
pulsed drainage, the foam is initially dry and a fixed amount of liquid initially placed
above the dry foam drains under gravity. Note that we start our simulations from a
very ordered initial condition of stacked parallelepipeds, which affects the shape of
the interface between the wet and dry foam in pulsed drainage. We study draining
processes by monitoring the liquid profiles of drainage, that is the liquid fractions as
a function of height.

Theoretical calculations of the liquid flow during foam drainage assume that the
liquid flows through a system of interconnected, randomly oriented Plateau chan-
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nels, with negligible flow through the soap films. When the gravitational force pre-
dominates over the capillary forces, as is usually true in foams, the outflow process
may be regarded as a kinematic wave described by Burgers’ equation (Gol’dfarb et
al. 1988, Verbist and Weaire 1994). Since we do not consider the details of foam
properties such as bubble size distribution, bubble density and liquid viscosity, this is
indeed a mean-field approximation.

In analysing liquid motion along the channels and films in foam, difficulties arise
in determining the conditions at the interphase boundaries. In order to make a stable
foam, surfactants are usually added to the liquid. A monolayer of surfactant on the
surface interacts with the liquid molecules, which not only reduces the surface ten-
sion but also stabilizes the surface layers of the liquid, retarding the liquid motion.
Thus we assume, as a first approximation, non-slip conditions on the boundaries.

The capillary pressure, the pressure across the liquid surface, is

Pl - Pg =
2g cos µ

r , (2)

where g is the surface tension, µ is the contact angle between liquid and gas, r is the
radius of curvature of the lateral surface of the Plateau border, and Pl and Pg are the
pressures of liquid and gas respectively. Since dPl is usually negligibly small com-
pared with Pg, the relation between the change dP in gas pressure and the change ds
in the channel area is:

dP = gas- 3/ 2 ds, (3)

where a is a constant determined by r. For ideal Plateau borders, µ = p/3, and r can
be related to the area of the Plateau border s by s = (31/ 2 - p/ 2)r2, yielding
a= (31/ 2 - p/2)1/2 in this special case.

If we treat the internal hydrodynamics of foams on the basis of the continuum
mechanics of multiphase media, namely, if we assume the motion of the liquid in the
Plateau channels to be microscale flow and ignore the detailed structure of the foam,
we can apply the continuity equation to the channel flow:

¶s
¶t

+ u ¶s
¶x

+ x¶u
¶x

= 0, (4)

with u being the velocity of the ¯ow, and the liquid being treated as incompressible.
The ratio of the pressure due to gravity to the pressure due to capillarity is

Pgravity : Pcapillary = qgh :
2g cos µ

r

<qghr
2g , (5)

in which q <103 kgm- 3, g <10kgms- 2. For a moderately wet foam (about 10%
liquid) both h, the height of the liquid channels, and r, the radius of curvature of the
lateral surface of Plateau borders, are of the same order of magnitude as the size of a
single cell. Thus h <r <10- 2 m. The surface tension g is lower than that of water,
10- 2 Nm- 1. By a crude order-of-magnitude argument, we show that Pgravity is at
least two orders of magnitude larger than Pcapillary. Hence capillary effects are neg-
ligible compared with gravity in wet foams. Only in the dry foam limit or in the late
stages of drainage, when r can be as small as the ®lm thickness, will the capillarity
contribution to the driving force be signi®cant.
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Following the derivation given by Gol’dfarb et al. (1988), we consider the solu-
tion of the Navier±Stokes equation for a tube of arbitrary cross-section in the case of
a ponderable fluid:

u = - s
bh

1
3

¶P
¶x - qg( ) , (6)

where h is the dynamic viscosity of the ¯uid, the factor 1
3 comes from averaging over

the directions of motion of the liquid, and b is a numerical coef®cient depending only
on the shape of the cross-section of the channel. For example b = 8p for a tube of
circular section; b = 49´1 is obtained for a cross-section in the form of a Plateau
triangle by carrying out a numerical integration of the Navier±Stokes equation.
Combining eqns. (4) and (6) yields the evolution equation of the sectional area of
the Plateau border;

¶s
¶t

+ s
¶s
¶x

= b
¶
¶x

s1/2 ¶s
¶x( ) , (7)

where all the variables are reduced, that is dimensionless. The steady pro®le solution
to eqn. (7) is

s = 2v tanh2 v1/ 2

b
(x - vt)( ) . (8)

The solution to the channel area is a hyperbolic tangent squared, namely a solitary
wave that moves at a constant velocity.
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Fig. 1

Liquid profiles for forced drainage (constant for all time).



In fig. 1, we plot the liquid profile for simulated forced drainage. Unlike in the
experiments of Hutzler et al. (1995), the forced drainage studied here has an initial
condition in which liquid is homogeneously distributed in the vertical direction. The
profiles stay the same over time within their fluctuation amplitude, indicating equi-
librium between the constant liquid input from the top of the foam and gravity.
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Fig. 2

Liquid profiles for free drainage as a function of time: (a) Potts model simulation; (b) MRI
experiment data.

(a)

(b)



Figure 2(a) shows the time evolution of the liquid profiles in free drainage. With
no liquid input, the initially homogeneously distributed liquid drains downwards
until gravity balances capillary effects, when an equilibrium profile is reached.
Drainage profiles from MRI experiments by German and McCarthy (1989) and
Heil et al. (1990) and from our group (fig. 2(b)) are very similar, although it is
hard to compare them quantitatively. Effort has been made to quantify the slope
of the linear part of the profile without much success.

For pulsed drainage, a fixed amount of liquid is put on top of the dry foam at
time zero. The pulse is monitored as it moves downwards. The time evolution of the
liquid profiles is shown in fig. 3. The high-frequency structure of the pulses is due to
the ordered structure of the simulated foams, as can be seen from fig. 4, which shows
snapshots of the vertical cross-section of pulsed drainage. The leading edge of the
pulse, despite the fact that it decays slightly in height over time, is quantitatively
identical with the soliton in the experiments of Hutzler et al. (1995). In fact, in fig. 3,
we fit the leading edges of profiles at 4000 MCS and 6000 MCS with the same
solitary solution (eqn. (8)). A longer time simulation (long travelling distance for
the pulse in the y direction) should be able to see liquid transfer from the peak of the
soliton to the tail, causing the pulse to spread out. Thus, over the time scales that we
investigated, the leading edge of the pulse behaves indistinguishably from a soliton.
We are currently simulating true solitons in disordered froths. The ordered structure
of the foam is a much larger perturbation. The wave-front position of the pulse is
plotted against time in fig. 5, showing a constant velocity. We also observe that,
when the coarsening of the foam is comparable with draining, the interface between
the wet and dry foam is not sharp owing to the disordered structure. The liquid
forms clusters in the middle of the foam, resembling viscous fingering. Only when the
draining process is much faster than coarsening can we see a sharp interface. In this
case the interface is indeed flat, ranging within a very narrow vertical band (smaller
than the dimension of a bubble), which has not been observed before. We are
currently studying pulsed drainage starting from an initially coarsened foam to see
how the foam configuration affects the shape of the interface between the wet and
dry foam.

Thus the extended large-Q Potts model simulations, assuming only energy mini-
mization, produce results comparable with experiments and also validate the mean-
field drainage theory. Modification of the extended Potts model should allow the
quantitative comparison of liquid profiles with experiments, study of the effects of
foam density, liquid viscosity and surface tension on the foam drainage, and quan-
titative simulations of the properties of industrial foams.
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Fig. 3

Liquid profiles for pulsed drainage as a function of time. Simulation time is in terms of MCSs.
The leading edges of pulses at 4000 MCS and 6000 MCS are fitted with the soliton
solution (*).
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Fig. 4
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Snapshots of vertical cross-section of pulsed drainage: (a) 3000MCS; (b) 8000MCS; (c)
11000MCS.

(c)

Fig. 5

The wave-front propagation of the solitary wave for pulsed drainage.
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