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Abstract: Subdividing embryological development into a set of simpler interacting 
processes described by effective energies and auxilliary diffusing fields, creates a 
framework which indicates the experimental parameters needed to model a particular 
developmental phenomenon. This model agrees quantitatively with simple cell sorting 
experiments and qualitatively with aggregation, mound formation and slug migration in 
Dictyostelium discoideum. Additional biological mechanisms are easy to include. 
 
Introduction: To justify an intrusion into biology, physicist must bring humility and 
novel approachs. Our approaches must yield results meaningful to biologists or we 
reenact the old joke of the spherical cow. 
 
Naively, we can look at embryological development as a problem in pattern formation. 
How does a fertilized (or even unfertilized) egg, give rise to the complex structure of an 
animal? Clearly, the question is arrogant and too hard: animals are much more complex 
spatially and temporally than even the most complex hydrodynamics. On the other hand, 
we can recognize, at least locally and over short times, processes that resemble pure 
physical or chemical phenomena. 
 
Biologists traditionally decribe pathways, enumerating reactants and the interactions 
among them. This focus provides qualitative explanations, e.g. the expression of 
particular homeotic genes give a body segment its identity, a received signal leads to a 
particular kinase/phosphorylation cascade. The ultimate understanding of organisms will 
require this level of detail, but we still cannot model all of the reaction kinetic steps in 
even fairly simple processes because of the large number of rate constants each of which 
is a major experimental effort. (Though Arkin's paper shows that we are making rapid 
progress in this direction). More seriously, if even one layer of a detailed reaction kinetics 
pathway is missing, quantitative modeling becomes hopeless. Studies of cAMP reception 
pathways in Dictyostelium discoideum combined with those on the role of capping 
proteins in creating leading edges of actin polymerization and hence pseudopod 
formation [Hug et al, 1995] may form a nearly closed pathway for chemotaxis in 
Dictyostelium. If so, we will soon be able to develop true molecular kinetics models of 
cell motion. For the moment our goal is to develop a general framework which allows us 
to include reaction kinetics but does not require it. 
 



Physicists look for general patterns of behavior that can be captured in universal, few 
parameter models which are independent of smaller scale processes. E.g. if we have a 
model that indistinguishably reproduces the cell motion in response to chemical 
gradients, we don't ask about internal cellular processes. This emphasis on quantitative 
response rather than pathway annoys biologists, but works well for phase transitions, 
astrophysics and turbulence. We can add reaction when pathways are fully characterized. 
 
We begin by making the maximal simplifications that still have a hope to include the 
behaviors in question, then look for known mechanisms that mimic them since many 
categories of pattern formation like spiral wave oscillations occur in numerous different 
materials. Our experiments try to separate out individual mechanisms and our models try 
to reproduce the experiments quantitatively. When we have understood all processes 
individually, we recombine them and look for novel effects arising from interactions. 
 
We can conveniently describe cell motion and differentiation by fields and what a 
physicist would call an effective energy, E. Some of the fields are material, e.g. the local 
concentration of a diffusant, others, like an orientation vector field, are not. Similarly, the 
effective energy will be a mixture of true energies, like cell-cell adhesion, and terms that 
mimic energies, e.g. the response of a cell to a chemotactic gradient. The names are 
merely a shorthand for the mathematical structure. Given an effective energy we can 
calculate the resulting cell motion, since differences in energy produce forces,  

r 
F = −

r 
∇ E . 

Since we are in an extremely viscous regime, the velocity, not acceleration is 
proportional to force, with mass replaced by an effective cell mobility,   

r 
v = m

r 
F : 

 
(1)      
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∇ E . 

 
Equation (1) implies that cells move in such a way that they minimize the total effective 
energy. Our cells generalize as well; we can treat additional materials, e.g. medium, 
substrate, extracellular matrix (ECM) simply as cells with special properties. 
 
We can begin our subdivision as shown in figure 1. Development results from the 
interaction of four main processes, cell division, cell migration, cell differentiation, and 
the formation of extra cellular structures. While cell division is inherently complex, the 
final result, two daughter cells, can be simulated easily if we neglect cell polarity. The 
key is to define a rate of cell growth. The secretion of ECM can be expressed naturally in 
our formalism. Differentiation involves two processes, temporal changes in cell 
properties and spatial changes leading to anisotropy in cell behavior, e.g. cell elongation. 
Both of these involve large numbers of experimental parameters, and we will initially 
restrict ourselves to cases in which cells are effectively isotropic and static, though we 
can relax the latter within the formalism. Differentiation is the most difficult biological 
process for a physicist. The information determining differentiation can be internal (e.g. 
cascades of gene expression, information carried in asymmetric components of cytoplasm 
during cell division e.g. selection of body axis after fertilization) or external (e.g. contact 
signaling or external diffusible morphogens). Cell migration is the easiest process to 
model, its causes subdivide into short and long range signaling mechanisms, the former 



including differential adhesion, contact inhibition and haptotaxis, the later including 
chemotaxis, galvanotaxis and gravity. 
 
Model: Our goal is to develop a set of standard terms describing individual processes, 
which can then be combined as necessary. This brief overview cannot show the details of 
implementing each mechanism. However, the references in each section point to full 
information. Similarly we will not discuss the many other approaches to tissue modelling 
of many types [Graner, 1993; Agarwal, 1995] 
 
The minimal definition of a cell: Label each cell under consideration by a unique index 
σ. At any time, t, a cell, of type, τ, has a volume v(σ,t). Since we know that cell volume is 
not absolutely fixed (e.g., due to changes in osmotic pressure) we describe the cell 
volume in terms of an effective pressure or membrane elasticity, λσ, and a target volume 
vtarget(σ,t): 
 
(2)  Evolume = λ σ v σ,t( )− v target σ, t( )( )2

all cells
∑ . 

Equation (2) has the form of an elastic volume constraint with membrane elasticity, 
λ [Weaire et al.. 1991]. If we neglect cell polarity and assume that growth of cells is 
simple and deterministic, both strong assumptions, we can model cell growth by setting:  
 
(3) 

  
vtarget σ, t( )= v0 σ( )+ g nutrient supply  *   cell cycle factors ( ) d t∫ . 

 
To reduce the number of parameters we will usually assume that all the cells of a given 
type have the same λ and v0, and that the growth rate of a cell is constant. Where cells are 
not growing or dividing, we simply take vtarget(t)=v(τ). These simplifications are 
reasonable in homogeneous tissues and in plants, but are far from the true situation in 
early stage embryos. 
 
Mitosis: Mitosis can occur either when the cell reaches a fixed type dependent volume, 
or when the ratio between cell surface area and cell volume reaches a critical value (since 
cell nutrient absorption is roughly proportional to surface area and metabolism is roughly 
proportional to volume). In yeast and in other simple organisms as well as in cancer cells, 
the growth rate depends mainly on the supply of nutrients. Cell division is triggered only 
after the cell reaches a critical size [Hayles et al., 1986]. As the cell enlarges in volume, 
the concentration of a diffusible chemical will fall and the decrese of concentration below 
a certain critical threshold could be the signal to flip the molecular swithch that triggers 
cell division. In the model, we create two daughter cells when this critical stage has been 
reached, with the plane of separation along the cells longest axis and new target areas 
vtarget/2. 
 
Contact between cells: Cells express surface adhesion molecules on their membranes, 
e.g. integrins, cadherins, N-Cams, some highly specific, others nonspecific. If we bring 
two cells together, pulling them apart requires work. Since they are only now being 



measured (Engel), we neglect changes in binding strength due to diffusion of adhesion 
molecules into the contact area, local reorganization of adhesion molecules, e.g. into 
adhesive plaques, and changes in the number or adhesivity of the binding molecules 
induced by the adhesion itself. We can describe the net interaction between two cell 
membranes by an effective binding energy per unit area, Jτ,τ', which depends on the 
types of the cells. We can measure Jτ,τ'  with laser tweezers [Sato-Maeda et al., 1994], a 
shaker, a compression apparactus or  a Taylor-Couette shear cylinder. The effective 
surface energy is: 
 
(4) 

  
EContact = Jτ , ′ τ d s

cell surface
∫ . 

 
Based on this Differential Adhesion Hypothesis (DAH), Steinberg predictied that in an 
aggregate of two cell types, in which the heterotypic energy is greater than the 
homotypic, the lowest energy configuration has the more cohesive cell type in a sphere 
completely surrounded by the less cohesive cell type. This classic cell sorting is seen in 
hydra endoderm and ectoderm, and in embryonic chicken neural and pigmented retinal 
cells.  If the heterotypic energy is less than the homotypic energy the lowest energy 
pattern is the checkerboard as seen in Japanese quail oviduct. If the cell-medium energy 
is less than the heterotypic energy but greater than the homotypic energy then the cells 
divide into discrete homotypic clusters (as seen in mixtures of hydra viridiana and hydra 
vulgaris cells in which it results in self-nonself identification). 
Complications arise becuase the cell adhesion molecules may change both in quantity and 
identity, e.g. in Dictyostelium, at least four different adhesion molecules are significant at 
different stages of aggregation and mound formation (Bozzaro and Ponte, 1995). We 
model all these complex changes as variations in cell specific adhesivity 
 
Membrane Fluctuations: How do cells move from their initial random positions to the 
lowest energy configuration? Do they have time to reach the lowest energy 
configuration? In mixtures of liquid droplets, the thermal fluctuations of the droplet 
surfaces cause diffusion (Brownian motion) leading to energy minimization. 
Cytoskeletally driven cell membrane ruffling of a few µm have no need to be thermal and 
the dynamics might depend sensitively on their fluctuation spectrum. In addition, we are 
neglecting cells like keratocytes as described by Anderson, which move in straight lines 
over long distances. Such highly correlated cell motion seems to depend on the presence 
of a substrate. In  aggregates, cell motion is more random, in our ignorance of the actual 
spectrum, the simplest assumption is that the cell membrane behaves like an effective 
temperature, T, of about a million degrees. If we neglect all filopodia and other 
cytoskeletal structures. We can describe these fluctuations statistically using Monte Carlo 
Boltzman dynamics, where T  defines the size of the typical fluctuation: if a proposed 
change in configuration produces a change in effective energy, ∆E, we make it with 
probabilty: 
 



(5)  
  
P ∆E( )=

1 : ∆E ≤ 0
e−∆EkT  : ∆E > 0

 
 
 

 , 

 
where, k ,is a constant converting T into units of energy. 
 
One consequence of this dynamics is that if the energy fluctuates up and down greatly as 
cells rearrange, as it does in a random aggregate, then the cells will not be able to reach a 
globally optimal configuration if T is too small, i.e. the liquid freezes into a glass. 
Freezing, or partial cell sorting, occurs experimentally when cell membrane fluctuations 
are eliminated either with cytochalasin-B or by holding the cells at 4°C. In our model, 
low values of T, also lead to partial sorting. However, if two compact tissue fragments are 
brought into contact, when one surrounds the other, the contact energy decreases 
smoothly, so freezing should not occur. As predicted, experimental engulfment requires 
much smaller membrane fluctuations.  
 
Chemotaxis: Chemotaxis requires an additional field to describe the local concentration 
of the chemotractant,   C(

r 
x ), which diffuses in extracellular space (or, in the presence of 

gap junctions, through cells as well) with diffusion constant, d, decays at a rate, Γ, and is 
secreted or absorbed at the surface of cells in a complicated history dependent way, 
  sC (σ,

r 
x , t), which is difficult to measure and requires a detailed description of the internal 

processes of the cell. The equation for the field then is: 
 

(6)          
  

∂C
r 
x ( )

∂t
= d∇2C

r 
x ( )− ΓC

r 
x ( )+ sC σ,

r 
x , t( )

σ
∑ . 

Fortunately, a few simple approximations to  sC (σ,
r 
x , t) work well for Dictyostelium.. 

[Levine et al., 1996; Hofer et al., 1995] We then describe the cell's response to the 
chemical field by an effective chemical potential, µ(σ), which may be time dependent, 
e.g. in a refractory period µ will be nearly 0. µ>0 yields repulsion, and µ <0 attraction. 
The effective chemical energy is: 
 
(7)  

    
EChemical = µ

Surface of σ  ∫ σ( )
σ
∑ C

r 
x ( )ds . 

 
The cell executes a biased random walk, which averages to directed motion in the 
direction of the gradient: 
 
(8)    

r 
v σ( ) = −µ σ( )

r 
∇ C

r 
x ( ), 

 
which has the same form as equation (1), justifying our energy treatment. 
 
Unfortunately, the final configuration for an aggregate composed of two cell types is the 
same whether they exhibit differential adhesion or differential chemotaxis. Only the 
kinetics differs. Experiments on slug phase Dityostelium suggest that the cell sorting that 



occurs between prestalk and prespore cells is primarily chemotactic (Takeuchi et al.  
1988; Traynor et al.  1992). But the quantitative experiments to check the kinetics have 
not been done. 
 
Differentiation: Classic reaction-diffusion equation models of differentiation look at 
pairs of continuous fields rather than individual cells. However, their formalism carries 
over to our cellular model. If A and B are diffusing morphogens, which evolve like the 
diffusants in chemotaxis [Turing, 1952]: 

(10)  

  

∂A
r 
x ( )

∂ t
= dA∇

2 A r x ( )− Γ ΑA r x ( )+ f A r x ( ), B r x ( )( ),
∂B r x ( )

∂ t
= dB∇2 B

r 
x ( )− ΓΒ B

r 
x ( )+ g A

r 
x ( ), B

r 
x ( )( )

. 

A is excitatory if   ∂ f σ,
r 
x , t( ) ∂A > 0  and inhibitory if  ∂ f σ,

r 
x ,t( ) ∂A < 0 . Turing, [1952] 

showed that if A is excitatory and B inhibitory and B diffuses faster than A, dA<dB, then 
an initial uniform distribution of A and B is unstable and the concentration field will 
evolve into domains. Cells, instead of moving, change their parameters,e.g. λ, in response 
to A  and B,, as a function, h, of the surface concentrations of the chemotractants: 
 

(11)  

  

∂λσ

∂ t
= h( Ad2 s

Surface of
σ

∫ , B d2 s
Surface of

σ

∫ ,K) . 

If the cells differentiate primarily as a result of their history and not due to positional 
signals (as appears to be the case with prestalk/prespore selection in Dictyostelium 
(Takeuchi et al. 1988)), then the cell carries a set of order parameters with it which 
evolve according to a set of internally defined ordinary differential equations.  
 
A gradient based on purely reaction diffusion mechanisms can be maintained only  in 
small tissues ~ 1mm, otherwise the time required for diffusive exchange of molecules 
would be too long. In larger organisms and tissues,  particular genes have to be activated 
in response to signals, setting off a gene cascade. This requires an autocatalytic activation 
of genes (Meinhardt H., 1978). A simple example of a  such a biochemical switch is :  
 
 
More complex interactions allow the space-dependent activation of several genes under 
the influence of a single gradient (Meinhardt H., 1978).  
 
Cell Signalling: Cell signalling has been studied widely in  Dictyostelium . Tang and 
Othmer (1995) have modelled cAMP response of these cells - adaptation to stimuli, 
amplification of extracellular cAmp and the time scale of response to stimuli, as well as 
travelling wave chemotaxis. In a mathematical model, the variation of a parameter related 
to biochemical propoerties of a cell can be used to simulate changes in the developmental 
stage of that cell. Such parameters can be introduced very naturally in the Potts model. 
Concentrations of chemicals or gene products can be assigned to each cell and the 



evolution takes place at the level of a cell. _As opposed to continuum models one can 
describe the phenomenon in terms of cellular     
 
Gravity: Gravity is usually too weak to be important, but may play a role in 
Dictyostelium slug formation. It is simply a potential energy depending on the local cell 
mass,   ρ

r 
x ( ), and the vertical height, z: 

 
(9)   

    
EGravitational = ρ

r 
x ( )

Space
∫ zd3 r 

x . 

 
 
Extracellular Matrix: In many tissues non-cellular materials provide much of the 
mechanical stability, e.g. bone in vertebrates, mesoglea in Hydra, and the slime sheath in 
dictyostelium.. In some cases cell sorting requires the secretion of ECM compounds (e.g. 
sorting between chick embryo cardiac mesenchyme and myocytes, Armstrong, 1985). 
ECM is similar to a secreted signalling molecule except that the secreted material does 
not diffuse. Instead of treating it as an auxiliary field, we treat it as a new cell with the 
property that the target area is always fixed to its current area. If a cell secretes a unit of 
ECM, the target area is increased by one unit. Similarly if a cell absorbs it, the target area 
decreases by one. If the ECM is solid, then local concentrations of ECM cannot fluctuate 
or move, if liquid, it behaves exactly like a normal cell. As before, we need to define the 
interaction energy between each cell type and the ECM. 
 
Cell Polarity: Our assumption of a uniform distribution of adhesion molecules is an 
oversimplification. In many cases, e.g. aggregating Dictyostelium or myxobacteria (in 
which the apical/basal cell ends are much more cohesive than the sides (Bozzaro and 
Ponte, 1995; Kuspa et al., 1992) or in vertebrates (where surface cells in embryos or 
epithelial cells in adults both are non-adhesive on the apical/luminal surface, Roberson et 
al., 1980), the cell's membrane adhesivity varies over the surface of the cell and may have 
local maxima at junctions. Such cell polarity is more difficult to treat in our framework. 
Two possible approaches are to create a physical cell membrane, by defining patches of 
membrane at the surface of each cell (computationally expensive), which allows locally 
variable properties, or assigning an orientation vector to each cell, which gives a cell axis 
and hence allows angular variation of parameters in  compact form. The axes in turn must 
evolve, possibly using a flock interaction formalism [Sano et al. 1996]. 
 
Putting it All Together--Simulation: If we sum the effective energies in equations  (2), 
(4), (7) and (8) we obtain: 
 
(12)    ETotal = EVolume + EContact + EChemical + EGravitational + EOther . 
 
To simulate, we simply superimpose a lattice on the cells, where the value at a lattice site 
is σ if the site lies in cell σ [Srolovitz et al., 1984, Grest et al., 1984]. We select a lattice 
site at random and propose to reassign it from cell σ to a cell σ'  (usually a neighbor). We 
calculate the change in effective energy caused by the proposed reassignment and accept 



it according to equation (5) [Graner and Glazier, 1992. Glazier and Graner, 1992]. 
Similarly we discretize any auxilliary fields and evolve them according to equations (6) 
or (10). The parameters of each cell evolve according to equations (3) and (11), and any 
other equations we may have defined for the internal states of cells. 
 
Experimental Verification: How well does it work? 
 
Extensive previous work has shown that this simulation method reproduces the evolution 
of fluids and foams subject to energy gradients [Glazier, Anderson and Grest, 1990, Jiang 
and Glazier, 1996]. 
 
The simple mitosis model (equations (2), (3), (4) and (5)) has been used by Mombach 
(1993) to quantitatively repoduce the observed cell arrangements in a variety of plant 
tissues. Dirk Drasdo has presented his approach to tumor growth using a reduced version 
of this formalism, while Elizabeth Stott of University of Bath is using the complete 
formalism to model tumor growth and angiogenesis as a function of nutrient supply. 
 
The DAH component of the simulation (equations (2), (4) and (5)) has been verified in 
experiments using embryonic chicken cells [Mombach et al., 1995]. In this case, if we 
begin with a random aggregate of neural and pigmented retinal cells, and use the best 
available values for cell volumes, fluctuation amplitudes and surface energies, we are 
able to quantitatively reproduce the evolution of the dark-light contact length. (figure). In 
addition, as we hypothesized, if we reduce the fluctuation temperature in the simulation, 
or suppress membrane fluctuations in the experiment (with cytochalasin-B) the sorting 
halts (freezes). Restoring the fluctuations leads to normal sorting. 
 
While we have not yet been able to verify that the cell membrane really does undergo 
thermal fluctuations, we have shown that the spectrum of velocities of a single pigmented 
cell in a neural cell aggregate is identical to that of a simulated cell when the fluctuation 
amplitude is matched [Mombach and Glazier, 1996], i.e. the experimental cells execute a 
thermodynamic random walk. (figure). 
 
More complex processes have been qualitatively verified in Dictyostelium. Levine has 
shown that the chemotactic mechanism presented here qualitatively reproduces the 
patterns of aggregating Dictyostelium amoebae. Jiang has shown that the peculiar tipped 
shape and cell sorting of Dictyostelium mound formation is due to the competition 
between chemotaxis and differential adhesion. (figure). Finally, Saville and Hogeweg 
have used equation (12) to simulate qualitatively the entire aggregation process from 
single amoeba through migrating slug.  
 
The continum reaction-diffusion equations (10) and (11) have been succesful in 
describing a large number of differentiation phenomena, e.g. head formation in hydra, but 
have not yet been simulated in conjunction with equation (12). 
 



Remaining Problems: The main problem with modeling biological processes is the vast 
number of parameters that must be experimentally determined to have any hope of other 
than accidental agreement. The particular task is to determine which mechanisms 
combine in any developmental processes and their relative rates.The energy formalism 
provides insight into which parameters are important, e.g. cell-cell adhesivities, rate of 
cell motion in response to specified chemotactic gradients, cell membrane amplitude 
fluctuations, etc... In addition, our understanding of basic thermodynamic processes like 
phase separation and freezing gives us confidence that even if our parameters are 
somewhat inaccurate the qualitative behavior of the model will be correct. We should not 
observe phenomena wildly divergent from experiment. This robustness allows us the 
chance to begin with rough qualitative models and gradually refine them into quantitative 
models as our experimental measurements improve. In this sense, though we are still far 
from being able to reproduce even such basic phenomena as gastrulation, we have made a 
true step towards a comprehensive model of cellular patterns. 
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