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Waves in Diffusively Coupled Bursting Cells
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We analyze the dynamics of a spatially extended system with bistability between a homogeneous
stationary state and an unstable fixed point surrounded by an oscillatory state. We show that a wave
front extinguishes homogeneous oscillations, replacing them with unsteady oscillations. A traveling
wave solution connects the unsteady oscillations to the stationary state. The difference in potentials of
the fixed points alone determines the velocity of the wave-front fixed points. We apply our results to a
generic model of neuronal bursting. [S0031-9007(99)08785-2]

PACS numbers: 87.16.—b, 02.60.Lj, 05.45.—-a, 87.10.+e

Bursting characterizes a variety of biological oscilla- The Hindmarsh-Rose equations [3] are a simple
tors [1]. Typically, the electrical potential of a bursting polynomial model of bursting in thalamic cells, which
cell undergoes a succession of alternating active and silestipture certain generic features of more complicated bio-
phases. In the active phase, the membrane potential oghysical models. The equations for a continuum coupled
cillates rapidly, and in the silent phase, it evolves slowlyHindmarsh-Rose model are
wlthout oscnlatlons._ Smg[e cell models of bursting con- vi=w+ 302 — v3 — u + Du,, 1)
sist of a set of ordinary differential equations governing
the behavior of the fast variable and at least one slow vari- we=1-5v>—w, (2)
able. The presence of a slow variable in single cell models
allows us to take the singular limit, to decompose the ac- _ _(p—2)

o . . My = €l v , 3)
tivity into a fast subsystem which treats the slow variables 4

as parameters, and a slow subsystem [2]. Models with §herey is the voltage is a recovery variable is the
single slow variableS burst when the fast subsystem is strength of diffusive couplingy is a slow variable, and
bistable between a low voltage rest state and high voltagg 3 sjow subsystem parameter that controls the nature of
oscillations for a range of values 6f As the slow vari-  pyrsting. In order to understand the behavior of Egs. (1)—
able evolves, the trajectory exhibits hysteresis between th@) e first take the singular limig — 0, u(x) = x,
silent phase and the active phase oscillations. _ which results in a planar reaction-diffusion equation. The
Several models describe the activity of single cells ingynamics on this fast subspace then carry over to the full
various situations, but the study of coupled bursters is inpodel where is nonzero.
complete. We consider a model from neurobiology [3] e conveniently write Egs. (1) and (2) in a Liénard

that exhibits bursting oscillations and study the dynamic§orm, j.e., as a nonlinear oscillator with a small damping
of a field of bursters with a weak resistive coupling be-term. The governing equations then become

tween neighboring cells. This situation arises in the study

of bursting activity in theB-cell islets of the pancreas, vy + Glv,u) + Fw)v, = Duy + Duyyy, (4)
which secrete insulin in response to glucose in the blood.

Experimental measurements of the coupling strengths bavhereG(v, u) = v? + 2v?> + u — 1, which can be con-
tween cells [4], which indicate that the coupling is weak,sidered as the gradient of a potentidl, ), and a damp-
raise the following questions: Does the spatially extendedhg term F(v) = 1 + 3v? — 6v. The roots ofG(v, u)
model still exhibit well-defined bursts; i.e., does the wholegive the fixed points of the equations, which typically
domain synchronously switch between active and silenhave either one or three real roots depending on the
phases? Note that oscillations within the burst need not bparametei..

synchronous. A recent study [5] of a model with a simi- We show the bifurcation diagram of Eqgs. (1) and (2) as
lar phase portrait shows strong spatiotemporal intermita function ofu in Fig. 1 (we compute all bifurcation dia-
tency. Does intermittency occur in a model of diffusively grams using the bifurcation softwaxeTo [6]). The upper
coupled bursters as well? If so, and if the gap junctionbranch of steady states loses stability by a Hopf bifurcation
coupling is indeed weak, pancreatic islets should secretat u ~ —11.5. At u ~ —0.1815, a saddle-node bifurca-

in chaotic bursts, which would have physiologically dis-tion creates two additional steady state branches (middle:
astrous consequences. We answer these questions fosaddle; lower: sink). A increases, the amplitude of the
minimal (generic) model for bursting, using singular per-periodic orbit increases until it disappears through an An-
turbation theory and techniques developed for reactiondronov homoclinic bifurcation att* ~ 0.8. Bistable be-
diffusion equations. havior is common, with examples from biology, chemical
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-3 1 2 2 1 1 L FIG. 2. Numerical integration of Egs. (1) and (2). Light and
-2 -1 -8 -6 -4 -2 Y 2 dark regions indicate high and low values of the variable
u Length is 40 units and total time is 200 units. Space increases

; ; ; : ) _from left to right and time from top to bottomD is 0.2 andu
FIG. 1. Bifurcation diagram for the Hindmarsh-Rose equa is set to—0.15. The front separating the unsteady oscillations

tions. Heavy lines indicate stable fixed points and thin lines in- L - :
dicate unstable fixed points. The equations have another Hogggot)l(ﬁi%;gr;ooggneous oscillations moves with a velocity of

bifurcation atu ~ 0.8 which terminates in a homoclinic bifur-
cation nearby, but these bifurcations play no role in bursting or
front propagation. front is dense and completely fills the region bounded by
the phase portrait of the periodic orbit of the diffusionless
reactions, and models of fluid dynamics [7,8]. We restrictequations. The above approach is valid if the diffusive
our attention to values oft, where Egs. (1) and (2) are term is sufficiently weak [11] (more precisely, if the
bistable between a sink and a limit cycle. We label thediffusive term does not perturb the limit cycle), which is
three equilibria as the unstable fixed point (UFP) (unstabl¢he case we consider.
focus) surrounded by the stable limit cycle, a SP (saddle Figure 3 shows the numerical integration of the equa-
point), and the lower fixed point (LFP) (sink). tions, with the initial conditions set at the LFP, with a smalll
We consider the homogeneous oscillations (the activ@atch excited close to the UFP. We see a front advancing to
phase for bursting) that emerge from the Hopf bifurcatiorthe right with a constant velocity, leaving behind a region
of the UFP. With nonzero coupling, the periodic orbit losesof unstable oscillations, much like the ones observed in
stability to localized perturbations. In Fig. 2, we show athe case of the propagation of a phaselike disturbance into
numerical integration of the reaction-diffusion equationsthe homogeneously oscillating region. A uniform state
(we reduce the partial differential equations to a set of or-
dinary differential equations by finite difference and use
Gear's method [9] for integration for all of the numerical
integrations). Initial conditions are homogeneous oscilla-
tions, with a small phaselike perturbation at the left end.
The perturbation grows and moves into the oscillating
regime, leaving behind a region of unsteady oscillations.
We give a qualitative explanation of the origin of the
unsteady oscillations by an analysis similar to [10], and
examine the dynamics of the front in a later publication.
Although the coupling is only irnv, the oscillators can
differ in both v and w along the limit cycle. The SP
deforms the phase flow along the periodic orbit. If the
trajectories of two interacting oscillators are close to the
limit cycle, but their phases are different, the interaction
drives them away from the limit cycle. The lagging
oscillator is pushed out and slows down as it travelsFIG. 3. Numerical integration of Egs. (1) and (2). Light and
along the stable manifold of the saddle point. The leadinglark regions are as in Fig. 2. Space increases from left to right
oscillator is pushed in and departs from the limit cycle.and time from top to bottom. Grid size is 200, with domain

. - length of 20. Total time is 200 unitsD and u are the same
Away from the saddle point, the limit cycle attracts nearby,¢ o, Fig. 2. The initial conditions are mentioned in the text.

points and synchronizes the oscillators. The phase portrafthe front velocity is approximately 0.055 which is close to the
[a plot of v(x) versusw(x)] for any location behind the value obtained from the perturbation analysis.
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corresponding to UFP cannot be established since thisition (w) being the value ofx where the potentials are
state is unstable for the original reaction equations. Aequal),
modulated oscillatory state is also ruled out since the _ _ _
wave-number selection by the front competes with the de- *1(€) = all + expl agVS/N2)] - b, ®
phasing interaction and renders the oscillations unstabld/herea andb are constants. Fqu close touy, a solv-
Therefore, the front leaves behind a region of irregula@bility condition, following standard perturbation tech-
oscillations. niques, determines the front velocity,~ 0.092(wy —
Instability of the homogeneous oscillations suggestgt): Which agrees with the average velocity of the
that we approximate the front connecting the unstead§font computed from the direct numerical integration
oscillations by the front between the UFP and the LFPf Eas. (5)—(7) (not shown), indicating that only the
instead. The potentiaV (v, x) has two minima at the difference in p_otentlal of the two flxed points dete_rmlnes
UFP. Foru < u*, V(LFP, u) < V(UFP, 1) indicating the frc_)nt velocny._ The fron't velocny computed using thg
that the front switches the domain from the metastable staeh0oting method is approximate (Fig. 4), and agrees with
to the stable state, and the front velocity is positive. Athe velocity computed using the perturbation method, for
front solution is a stationary solution in the moving frame, # > #*, Wherex™ is the homoclinic point.

{v(f),W(f)},Wlth.f =X — Ct,andC > (0. The equa‘[ions We can now apply the results obtained for the fast
now become subsystem to study a field of diffusively coupled bursters.

, The Hindmarsh-Rose equations have a bursting solution
Xy = X2, (5)  known as square wave bursting from the shape of the burst
, envelope. Pernarowski [12] studied a polynomial model
Xy = X3, 6)  of coupled bursting cells distributed on the unit interval
, ) with strong coupling and has shown that for certain initial
Dexy = =G, ) + cFlx)xa + (D = ¢)xs, (7)) conditions, the model tends to burst uniformly. However,
where/ denotes%, andx; = v, x, = vg, andx; = vy, S We show below, weak coupling results in very different

We use a numerical shooting method to compute th@ehavior. We seth = 0.2 to denote weak diffusion,
velocity of the front as a function oft, using Gear's althoulgh the results are qualitatively the same as long as
method for numerical integration of the equations [9], and? << ¢- The front speeds increase d® [13], but the
show the dependence ofon  in Fig. 4. The front speed €Xistence and stability of the fronts are unchanged.
tends to 0 near the Maxwell point (the value @fwhere Figure 5 shows the bifurcation diagram of the fast
the potentials of the two steady states are equal). subsystem with the nulicline of the slow subsystem su-

We also computed the velocity of the front separatindoer'mposedv along with the phase portrait of the bursting

the LFP from unsteady oscillations by a simple perturba-
tion analysis of the stationary front connecting the UFP 3
and the LFP. Numerical computations show that the fron
velocity is rather small, suggesting that we us&s a small P TTTR
parameter, with the singular limit = 0. Settingc = 0,
u = upy in Egs. (5)—(7) gives us the stationary front so-
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N FIG. 5. Numerical solution of the full Hindmarsh-Rose equa-
or oo T tions (with D = 0) projected onto the fast subsystem bifurca-
' tion diagram. The dot-dashed line is thenullcline. Heavy
0.0 o1 0 o1 02 03 04 05 lines indicate stable steady states and thin lines indicate un-
n stable steady states. Open circles represent stable periodic or-

bits. The silent phase tracks the lower branch of steady states
FIG. 4. Variation of front velocity with the parametar. The  and is excited into the active phase near the saddle-node point.
broken line is calculated from the perturbation analysis and th@he active phase tracks the periodic orbit of the fast subsystem
full line is the velocity calculated using the shooting method. and terminates at the homoclinic orbit.
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that synchronous bursting in the intact pancreatic islet re-
quires strong coupling. Moreover, the nucleation driven
chaos found in [5] does not occur in generic models of
bursting. Simulations of other model equations, with both
polynomial and more complex kinetics for the fast sub-
systems, show that the above behavior is generic. Since
the Hindmarsh-Rose equations are closely related to the
normal form for a codimension-3 Takens-Bogdanov bi-
furcation [15], which is the topological model for the fast
subsystems of most types of bursters [16], our results ap-
ply to more general models of square wave bursters in-
cluding other bursters constructed from this codimension-3
—— e normal form.

e Y This research was supported by the MEFI DMR-
FIG. 6. Numerical integration of Egs. (1)—(3) wih = 0.2. 9257011 and the American Chemical Socj@&gtroleum
v is indicated by light and dark regions as in Fig. 2. SystemR€séarch Fund.
length is 20, increasing from left to right, and the total time

is 1000, increasing from top to bottom. A spatial wave of
bursting spreads across the system.
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