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We analyze the dynamics of a spatially extended system with bistability between a homoge
stationary state and an unstable fixed point surrounded by an oscillatory state. We show that
front extinguishes homogeneous oscillations, replacing them with unsteady oscillations. A tra
wave solution connects the unsteady oscillations to the stationary state. The difference in poten
the fixed points alone determines the velocity of the wave-front fixed points. We apply our result
generic model of neuronal bursting. [S0031-9007(99)08785-2]
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Bursting characterizes a variety of biological oscilla
tors [1]. Typically, the electrical potential of a bursting
cell undergoes a succession of alternating active and sil
phases. In the active phase, the membrane potential
cillates rapidly, and in the silent phase, it evolves slow
without oscillations. Single cell models of bursting con
sist of a set of ordinary differential equations governin
the behavior of the fast variable and at least one slow va
able. The presence of a slow variable in single cell mod
allows us to take the singular limit, to decompose the a
tivity into a fast subsystem which treats the slow variabl
as parameters, and a slow subsystem [2]. Models with
single slow variableS burst when the fast subsystem i
bistable between a low voltage rest state and high volta
oscillations for a range of values ofS. As the slow vari-
able evolves, the trajectory exhibits hysteresis between
silent phase and the active phase oscillations.

Several models describe the activity of single cells
various situations, but the study of coupled bursters is
complete. We consider a model from neurobiology [3
that exhibits bursting oscillations and study the dynami
of a field of bursters with a weak resistive coupling be
tween neighboring cells. This situation arises in the stu
of bursting activity in theb-cell islets of the pancreas,
which secrete insulin in response to glucose in the bloo
Experimental measurements of the coupling strengths
tween cells [4], which indicate that the coupling is wea
raise the following questions: Does the spatially extend
model still exhibit well-defined bursts; i.e., does the who
domain synchronously switch between active and sile
phases? Note that oscillations within the burst need not
synchronous. A recent study [5] of a model with a sim
lar phase portrait shows strong spatiotemporal interm
tency. Does intermittency occur in a model of diffusivel
coupled bursters as well? If so, and if the gap junctio
coupling is indeed weak, pancreatic islets should secr
in chaotic bursts, which would have physiologically dis
astrous consequences. We answer these questions f
minimal (generic) model for bursting, using singular pe
turbation theory and techniques developed for reactio
diffusion equations.
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The Hindmarsh-Rose equations [3] are a simp
polynomial model of bursting in thalamic cells, whic
capture certain generic features of more complicated b
physical models. The equations for a continuum coup
Hindmarsh-Rose model are

yt ­ w 1 3y2 2 y3 2 m 1 Dyxx , (1)

wt ­ 1 2 5y2 2 w , (2)

mt ­ e

µ
y 2

sm 2 zd
4

∂
, (3)

wherey is the voltage,w is a recovery variable,D is the
strength of diffusive coupling,m is a slow variable, andz
is a slow subsystem parameter that controls the natur
bursting. In order to understand the behavior of Eqs. (1
(3), we first take the singular limite ! 0, msxd ­ m,
which results in a planar reaction-diffusion equation. T
dynamics on this fast subspace then carry over to the
model whene is nonzero.

We conveniently write Eqs. (1) and (2) in a Liénar
form, i.e., as a nonlinear oscillator with a small dampin
term. The governing equations then become

ytt 1 Gsy, md 1 Fsydyt ­ Dyxx 1 Dyxxt , (4)

whereGsy, md ­ y3 1 2y2 1 m 2 1, which can be con-
sidered as the gradient of a potentialV sy, md, and a damp-
ing term Fsyd ­ 1 1 3y2 2 6y. The roots ofGsy, md
give the fixed points of the equations, which typical
have either one or three real roots depending on
parameterm.

We show the bifurcation diagram of Eqs. (1) and (2)
a function ofm in Fig. 1 (we compute all bifurcation dia-
grams using the bifurcation softwareAUTO [6]). The upper
branch of steady states loses stability by a Hopf bifurcat
at m , 211.5. At m , 20.1815, a saddle-node bifurca-
tion creates two additional steady state branches (mid
saddle; lower: sink). Asm increases, the amplitude of th
periodic orbit increases until it disappears through an A
dronov homoclinic bifurcation atmp , 0.8. Bistable be-
havior is common, with examples from biology, chemic
© 1999 The American Physical Society 2991
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FIG. 1. Bifurcation diagram for the Hindmarsh-Rose equa
tions. Heavy lines indicate stable fixed points and thin lines i
dicate unstable fixed points. The equations have another H
bifurcation atm , 0.8 which terminates in a homoclinic bifur-
cation nearby, but these bifurcations play no role in bursting
front propagation.

reactions, and models of fluid dynamics [7,8]. We restri
our attention to values ofm, where Eqs. (1) and (2) are
bistable between a sink and a limit cycle. We label th
three equilibria as the unstable fixed point (UFP) (unstab
focus) surrounded by the stable limit cycle, a SP (sadd
point), and the lower fixed point (LFP) (sink).

We consider the homogeneous oscillations (the acti
phase for bursting) that emerge from the Hopf bifurcatio
of the UFP. With nonzero coupling, the periodic orbit lose
stability to localized perturbations. In Fig. 2, we show
numerical integration of the reaction-diffusion equation
(we reduce the partial differential equations to a set of o
dinary differential equations by finite difference and us
Gear’s method [9] for integration for all of the numerica
integrations). Initial conditions are homogeneous oscill
tions, with a small phaselike perturbation at the left en
The perturbation grows and moves into the oscillatin
regime, leaving behind a region of unsteady oscillations

We give a qualitative explanation of the origin of the
unsteady oscillations by an analysis similar to [10], an
examine the dynamics of the front in a later publication
Although the coupling is only iny, the oscillators can
differ in both y and w along the limit cycle. The SP
deforms the phase flow along the periodic orbit. If th
trajectories of two interacting oscillators are close to th
limit cycle, but their phases are different, the interactio
drives them away from the limit cycle. The lagging
oscillator is pushed out and slows down as it trave
along the stable manifold of the saddle point. The leadin
oscillator is pushed in and departs from the limit cycle
Away from the saddle point, the limit cycle attracts nearb
points and synchronizes the oscillators. The phase port
[a plot of ysxd versuswsxd] for any location behind the
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FIG. 2. Numerical integration of Eqs. (1) and (2). Light an
dark regions indicate high and low values of the variabley.
Length is 40 units and total time is 200 units. Space increas
from left to right and time from top to bottom.D is 0.2 andm
is set to20.15. The front separating the unsteady oscillation
from the homogeneous oscillations moves with a velocity
approximately 0.2.

front is dense and completely fills the region bounded
the phase portrait of the periodic orbit of the diffusionles
equations. The above approach is valid if the diffusiv
term is sufficiently weak [11] (more precisely, if the
diffusive term does not perturb the limit cycle), which i
the case we consider.

Figure 3 shows the numerical integration of the equ
tions, with the initial conditions set at the LFP, with a sma
patch excited close to the UFP. We see a front advancing
the right with a constant velocity, leaving behind a regio
of unstable oscillations, much like the ones observed
the case of the propagation of a phaselike disturbance i
the homogeneously oscillating region. A uniform sta

FIG. 3. Numerical integration of Eqs. (1) and (2). Light an
dark regions are as in Fig. 2. Space increases from left to ri
and time from top to bottom. Grid size is 200, with domai
length of 20. Total time is 200 units.D and m are the same
as for Fig. 2. The initial conditions are mentioned in the tex
The front velocity is approximately 0.055 which is close to th
value obtained from the perturbation analysis.
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corresponding to UFP cannot be established since t
state is unstable for the original reaction equations.
modulated oscillatory state is also ruled out since t
wave-number selection by the front competes with the d
phasing interaction and renders the oscillations unstab
Therefore, the front leaves behind a region of irregul
oscillations.

Instability of the homogeneous oscillations sugges
that we approximate the front connecting the unstea
oscillations by the front between the UFP and the LF
instead. The potentialV sy, md has two minima at the
UFP. Form , mp, V sLFP, md , V sUFP, md indicating
that the front switches the domain from the metastable st
to the stable state, and the front velocity is positive.
front solution is a stationary solution in the moving frame
hysjd, wsjdj, with j ­ x 2 ct, andc . 0. The equations
now become

x0
1 ­ x2 , (5)

x0
2 ­ x3 , (6)

Dcx0
3 ­ 2Gsx1, md 1 cFsx1dx2 1 sD 2 c2dx3 , (7)

where0 denotesd
dj , andx1 ­ y, x2 ­ yj , andx3 ­ yjj.

We use a numerical shooting method to compute t
velocity of the front as a function ofm, using Gear’s
method for numerical integration of the equations [9], an
show the dependence ofc on m in Fig. 4. The front speed
tends to 0 near the Maxwell point (the value ofm where
the potentials of the two steady states are equal).

We also computed the velocity of the front separatin
the LFP from unsteady oscillations by a simple perturb
tion analysis of the stationary front connecting the UF
and the LFP. Numerical computations show that the fro
velocity is rather small, suggesting that we usec as a small
parameter, with the singular limitc ­ 0. Settingc ­ 0,
m ­ mM in Eqs. (5)–(7) gives us the stationary front so

FIG. 4. Variation of front velocity with the parameterm. The
broken line is calculated from the perturbation analysis and t
full line is the velocity calculated using the shooting method.
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lution (mM being the value ofm where the potentials are
equal),

x1sjd ­ af1 1 exps2aj
p

5y
p

2 dg 2 b , (8)

wherea andb are constants. Form close tomM , a solv-
ability condition, following standard perturbation tech
niques, determines the front velocity,c , 0.092smM 2

md, which agrees with the average velocity of the
front computed from the direct numerical integration
of Eqs. (5)–(7) (not shown), indicating that only the
difference in potential of the two fixed points determine
the front velocity. The front velocity computed using the
shooting method is approximate (Fig. 4), and agrees w
the velocity computed using the perturbation method, fo
m . mp, wheremp is the homoclinic point.

We can now apply the results obtained for the fa
subsystem to study a field of diffusively coupled burster
The Hindmarsh-Rose equations have a bursting soluti
known as square wave bursting from the shape of the bu
envelope. Pernarowski [12] studied a polynomial mod
of coupled bursting cells distributed on the unit interva
with strong coupling and has shown that for certain initia
conditions, the model tends to burst uniformly. Howeve
as we show below, weak coupling results in very differen
behavior. We setD ­ 0.2 to denote weak diffusion,
although the results are qualitatively the same as long
D ø

1
e . The front speeds increase as

p
D [13], but the

existence and stability of the fronts are unchanged.
Figure 5 shows the bifurcation diagram of the fas

subsystem with the nullcline of the slow subsystem s
perimposed, along with the phase portrait of the burstin

FIG. 5. Numerical solution of the full Hindmarsh-Rose equa
tions (with D ­ 0) projected onto the fast subsystem bifurca
tion diagram. The dot-dashed line is them nullcline. Heavy
lines indicate stable steady states and thin lines indicate u
stable steady states. Open circles represent stable periodic
bits. The silent phase tracks the lower branch of steady sta
and is excited into the active phase near the saddle-node po
The active phase tracks the periodic orbit of the fast subsyste
and terminates at the homoclinic orbit.
2993
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FIG. 6. Numerical integration of Eqs. (1)–(3) withD ­ 0.2.
y is indicated by light and dark regions as in Fig. 2. Syste
length is 20, increasing from left to right, and the total tim
is 1000, increasing from top to bottom. A spatial wave o
bursting spreads across the system.

oscillations. The slow subsystem parameterz controls the
nature of bursting in the full model [14]. Forz ­ 4.5, the
single cell bursts with nine spikes. We show the evolutio
of the full model in Fig. 6. The entire domain is set in th
active phase with a small patch at the left end advanced
phase along the active phase oscillation. A wave of bur
ing sweeps across the domain with well-defined active a
silent phases, but the oscillations in the active phase
now irregular and the bursting does not terminate at t
same value ofm for all x. The burst period is also larger
than for the single cell model. A well-defined wave fron
separates the bursting region from the silent region.
second, irregular wave front switches the domain from th
active to the silent phase.

A phase portrait forx ­ 10 shows that the irregular
oscillations persist form . mp, strongly suggesting that
the homoclinic bifurcation no longer plays a role in burs
termination. Instead, the active phase continues untilm

reachesmM and the upper and middle branches in Fig.
disappear in a saddle-node bifurcation, leaving the low
fixed point as the only stationary state. Thenm begins to
decrease, sincey switches below them nullcline (Fig. 5).
Since m . mM , a (locally well-defined) front develops
with the steady state replacing the oscillations to the rig
and the active phase terminates. These observations s
gest that diffusively coupled bursters do not have regul
active phase oscillations nor do they burst homogeneous

In conclusion, a continuum model of bursters, couple
by weak electrical coupling, does not burst uniformly wit
well-defined active phase oscillations. This result suggs
2994
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that synchronous bursting in the intact pancreatic islet
quires strong coupling. Moreover, the nucleation driv
chaos found in [5] does not occur in generic models
bursting. Simulations of other model equations, with bo
polynomial and more complex kinetics for the fast su
systems, show that the above behavior is generic. Si
the Hindmarsh-Rose equations are closely related to
normal form for a codimension-3 Takens-Bogdanov b
furcation [15], which is the topological model for the fas
subsystems of most types of bursters [16], our results
ply to more general models of square wave bursters
cluding other bursters constructed from this codimensio
normal form.
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