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Abstract

R Collective oscillations abound in neural systems as hallmarks of behavioral patterns. They
range from the characterisitic rhythmic movements of invertebrate motor responses to the
oscillations at different frequency bands in the mammalian EEG. The study of neural oscil-
lations assumes tremendous importance given their role in generating patterned behavior.
Small neuronal networks in invertebrates called Central Pattern Generators directly control
rhythmic activities such as swimming, heartbeat, breathing or walking. CPGs are networks
often composed of a small number of neurons whose output is oscillatory. Individual neurons
in CPGs may themselves be oscillatory and the network rhythm is patterned by the synaptic
interactions between the neurons. Conversely, neurons in some CPGs are not endogenous
oscillators and synaptic interactions are crucial in initiating and maintaining the network
rhythm. Getting [1] and Harris-Warrick et al. [2] review the intrinsic and synaptic properties
of several invertebrate CPG networks. Some well studied networks include the escape swim
CPG in Tritonia, the gastric mill CPG in the lobster, the flight CPG in locust and the CPG
controlling the heartbeat of the leech Hirudo medicinalis.

Several features of synapses contribute to temporal pattern genration in CPGs, such as
the polarity (excitatory or inhibitory), ionic dependence and temporal characteristics (for
example, the time course of multiphasic actions, where the synapse has both excitatory
and inhibitory components). Circuit models with complex synaptic properties often show

dramatic changes in network oscillations as the synaptic time course is varied. Most general



models of small neuronal networks [3-5] consider synaptic interactions with only a single
time scale. However, several examples of synaptic interactions have multiple time scales.
Pyramidal cells in the mammalian cortex can excite other cells with both fast and slow
excitatory synapses, and some evidence suggests that the same inhibitory cell can provide
fast and slow inhibition in the same target [?,?]. Invertebrate CPG circuits often have more
complex synapses which have a fast excitatory and slow inhibitory component or vice versa
[1], as well as mixed synapses of the same kind, which are crucial in determining the overall
rhythm of the network [7]. What are the properties of networks of neural oscillators with
mixed time scale coupling?

We study two identical oscillators coupled by both slow and fast inhibition, and show that
the presence of multiple time scales in the coupling leads to varied behavior. We represent

each oscillator by the following set of differential equations:
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where Lion = gnam2, (v)(v — vng) + grn* (v — vk) + g1(v — vz), represents the voltage
activated currents (sodium and potassium) and the leakage current. n is the gating vari-
able for the potassium current activation, s;, is the probability of channel opening, and
gji specifies the maximal conductance for the fast synapse, ¢; does the same for the slow
synapse. Vi, Vi, are the reversal potentials for the synaptic current. We assume that
the sodium activation is instantaneous and achieves steady state immediately. These equa-

tions are a reduced version of the familiar Hodgkin-Huxley equations [8]. The functions

Neo(V), Seo(V), T(v), and ¢ are the usual sigmoidal activation functions for the HH model.



We give the functional forms in Appendix A. The time scale 7, is equivalent to the fast
timescale of the spike mediated inhibitory synapse, while 7, is the long timescale associated
with the slow rise and fall of the slow inhibition. We take the slow inhibition to be one
single aggregate process as the exact mechanisms of the slow synapse are not known [7,?].
Rinzel and Frankel [9] studied a similar model with slow inhibition alone. Note that for
1/1, < 1, the oscillators become a singularly perturbed dynamical system. Upon taking the
singular limit 7, — 0o, ¢; can be treated as a parameter. The fast variables {v;,n;} have
a stable rest state for large values of ¢;. This rest state destabilizes via a subcritical Hopf
bifurcation at g; ~ 0.106. Since the period of the membrane oscillations is much smaller
than the variation of ¢;, the averaging theorem [10] simplifies the dynamics of the coupled
neurons [9,11,12]. Averaging over the fast variables, only the synaptic activation variables
remain. This procedure drastically reduces the number of dimensions of the problem. The

averaged equations for the slow subsystems are:
G = Go(4) — @i, @ # J. (5)

The subcritical Hopf bifurcation of the rest state of each neuron implies that the neurons
are bistable for a small range of ¢;. For multiple oscillatory branches, the slow variables
must be averaged over each oscillatory solution. Note that the steady states of Eqn. 5 are
analogous to an input-output transfer function, denoting the response of ¢;({¢;}). We show

the steady states of ¢;(¢2) in Figure 1.
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FIG. 1. Bifurcation diagram for the modified Hq(l)dgkin—Huxley equations driven by an unidirec-
tional, slow inhibitory synapse. ¢ is the activation variable of the slow synapse from cell 1 onto
cell 2. Solid lines indicate stable rest states, dashed lines indicate unstable rest states, open (filled)
circles denote maximum amplitudes of unstable (stable) oscillations. The square at ¢; = 0.106 is

the point of a subcritical Hopf bifurcation.

Rinzel and Frankel used a clever graphical construction to study the stable steady states
of Eqn. 5. Figure 1 represents the steady states for a network with a unidirectional con-
nection, cell 2 inhibiting cell 1. By plotting the steady states of ¢;(¢2) and ¢2(g1) on the
same graph, we can obtain the steady states of the network with reciprocal inhibition. The
intersections of the two steady state curves are the steady states of the network. We see 4
intersections of the steady state curves (Figure 2: cell 1 at rest and cell 2 active, its sym-
metric counterpart, with cell 2 at rest and cell 1 active, both cells active and both at rest.
The latter two states being intersections of unstable branches are unstable. Therefore, the
network is bistable, with either cell 1 or cell 2 active and the other at rest. A strong current

pulse to the active cell can switch the network between the two states.
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FIG. 2. Steady states of the averaged equations for the slow variables.Solid lines indicate stable

rest states, dashed lines indicate unstable rest states, open (filled) circles denote maximum ampli-
tudes of unstable (stable) oscillations. The intersections of the curves are the steady states for the

equations.

Now consider a mixed synapse with fast and slow components. The fast component has
a time scale comparable to the time scale of the oscillations and cannot be eliminated by
averaging. We show the time course of the two cells for g1 = go1 = 0.3 in Figure 3, with all
the other parameters fixed. The spikes within the burst are anti-phase and the amplitudes
are slightly unequal. The initial conditions set both cells at rest. A constant current I,,, is
applied to both cells to model an external stimulus. An additional small, brief current pulse

is applied to one cell as a small perturbation to break the symmetry.
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FIG. 3. Numerically integrated trajectories for Eqns. 4 shows a synchronous bursting solution

with antiphase spikes.



If the current pulse is too high or long, the network settles into an on-off state, in which
either cell 1 or cell 2 spikes with a large amplitude, while the other oscillates about the rest
state with very small amplitude, as it is strongly inhibited by the spiking cell. These on-off
fixed points are small perturbations of the original fixed points for slow mutual inhibition
which persist (as they should according to invariant manifold theory). The synchronous
bursting solution is a new stable solution for mutual inhibition with mixed time scales. We
have numerically confirmed that the burst solution is stable. Brief current pulses (pulse
widths less than 7,) do not affect the bursting solution. Longer pulses switch the network
to an on-off state depending on the cell to which the current pulse is applied. The network
can also be switched from the on-off state to a bursting state.

Extensive numerical simulations show that the synchronous bursting solution has ¢; ~ ¢,
i.e. the slow variables remain close. We recall a similar dynamics for the slow variables for
coupled square wave bursters, and use the same geometrical method [13,14] to analyze
bursting in Eqns. 4. Since the slow variables ¢; are of O(co/7;) close, we can treat them as
identical. Therefore, we can construct a one parameter bifurcation diagram for the coupled

fast subsystem (Figure 4).
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FIG. 4. Bifurcation diagram for the fast subsystem of Eqns. 4. The symbols are as before. The
parameter values have been slightly shifted to move the in-phase Hopf bifurcation to ¢; = 0.096.
AP denotes the anti-phase branch, IP denotes the in-phase branch and SNP denotes the Saddle

Node of Periodics.



We can use this picture to understand the nature of bursting geometrically. The fast
inhibition now introduces a second Hopf bifurcation from the steady state which represents
anti-phase oscillations of the two cells. The anti-phase Hopf bifurcation of the network
is subcritical, similar to the subcritical Hopf bifurcation in a single cell driven by a slow
unidirectional synapse. A network of HH cells with fast inhibition has spikes anitphase.
Hence, the spikes within the burst are 7 radians out of phase. Initially, as the two cells are
driven from rest by the external current, they begin to oscillate since the slow inhibition
is zero. The activity of the cells causes the slow inhibition to increase and the cells track
the stable periodic branch. As ¢; crosses the saddle node of periodics point (where the
stability of the periodic solution changes), the rest state becomes the only stable state and
the oscillations terminate. Now the synaptic variables begin to decrease slowly as the voltage
switches below the ¢; nullcline and the cells track the steady state branch. Interestingly, the
slow ramping of the control variable (in this case, the synaptic variable) causes the cells to
track the steady state even when it has lost stability, due to a delayed loss of stability at the
Hopf bifurcation [15,16]. A small noise term (uniformly distributed between [—0.005,0.005])
added to the voltage equations causes the cells to leave the rest state and jump to the
unstable in-phase oscillation branch. As ¢; begins to increase, the oscillators now track the
stable anti-phase branch and the burst cycle repeats. This type of bursting, which starts at
a subcritical Hopf point and ends at a saddle-node of periodics is termed type III bursting
[17], and is characterized by slow ramping and small growing and damped oscillations prior

to and after the burst (Figure 5).




FIG. 5. A phase portrait of the bursting trajectory for cell 1 overlaid on the bifurcation diagram.

The burst solution is remarkable because it is not predicted by an analysis of the averaged
equations. If we repeat the graphical construction in Figure 2, the only intersections of stable
branches are the on-off states. Moreover, neither cell is an endogenous burster. Bursting
is peculiar to the coupled network with mixed time scales. This network illustrates that
synchronous solutions are possible in networks with inhibitory synapses, contrary to the
usual dogma that inhibition leads to antiphase solutions. van Wreeswijk et al. also studied a
model network of integrate and fire neurons (Type I oscillators according to the terminology
of Section 3.3) and showed that fast, mutual inhibition led to synchrony in the network.
However, their conclusions were based on the fact that the coupling strength was weak, and
the methods of Section 3.3 apply [18]. Wang and Rinzel [4] studied the case of a network with
slow inhibition which also synchronized. Terman et al. clarified the mechanisms of synchrony
due to slow inhibition in relaxation oscillators. However, our model is remarkable in that it
requires a mixed fast-slow inhibition for synchronization. The fast spike generating currents
are as important as the slow averaged variables. Though, we have inferred the stability of
the bursting solution numerically, we do not have a proof along the lines of Terman’s [19]
proof of a stable bursting solution for a square wave burster. The high dimensionality of
the equations and the strong nonlinearity of the terms make any analytic progress difficult.

We can address some questions concerning the stability of these bursts by constructing
a simplified, canonical form for the full equations. The bifurcation diagrams clearly indicate
that the subcritical Hopf bifurcation governs the bursting dynamics. Thus we can study the
dynamics of the network by considering the normal forms for a subcritical Hopf bifurcation.
We can use a theorem of Hoppensteadt and Izhikevich [20] to show that the equations can

be written as:
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where z; € C, v; € R, b;, ¢, d;, and A; are complex coefficients. R;, T;, S; are real
matrices, and i = pu/e. Kuramoto [21] and Aronson et al. [22] have formally outlined the
reduction procedure that transforms a vector field near a subcritical Hopf bifurcation to the
z equation which can be used to calculate the coefficients for Eqns. 4. This reduction results
in a canonical form for a subcritical Hopf bifurcation, where the bifurcation parameter v; is
fixed. If p ~ O(ell), i < oo, and v; varies slowly and consequently, Eqn. 8 is singularly
perturbed. The coupling terms must take into account that the synaptic interaction has
nonlinear components that enter into the equation at O(y/2). Note that the bifurcation
parameter for z; is the slow variable v;, as for the slow synapses. Since the bifurcation is
subcritical, the rest state and the oscillations are bistable for a range of v;. Frankel and
Kiemel [11] considered a model of slowly coupled oscillators, similar to the normal form
equations, with coupling only via the slow variables and showed that the generic solutions
are either phase locked or phase trapped ones. However, their model did not include the
fast coupling terms and they did not study the case of singular perturbations, although they
did correctly include the amplitude effects for weakly coupled oscillators.

As we increase the coupling strength associated with the fast inhibition, we see a quali-
tative change in the oscillations. The periodic bursting solution is no longer stable, and the
oscillators irregularly alternate between episodes of antiphase spiking and in-phase bursting
with anti-phase spikes. The length of the episodes appears to be chaotic. We expect the
reduced equations, Eqns. 8 to have a similar transition to chaos.

A commonly observed feature in CPG networks is the lack of mutual, chemical excita-
tion between cells. Excitatory chemical synapses are usually unidirectional. Instead, gap
junctions or electrical coupling provide mutual excitation. One example of a mixed electri-

cal and slow inhibitory coupling is in the cells of the somatogastric ganglion of the lobster,



which controls the rhythmic movement of internal teeth that masticate food in the animal’s
foregut [2]. Abarbanel et al. have studied a network of intrinsic bursters with electrical and
instantaneous, inhibitory chemical coupling. We can extend our model by incorporating
an electrical coupling term and leaving out the fast inhibitory synapse. The HH equations
with mutual, electrical coupling have parameter regimes where both the in-phase and anti-
phase solutions are simulataneously stable, which should lead to interesting dynamics for
the network.

A model network of HH neurons with gap junctions replacing the fast inhibition also
shows qualitatively similar behavior to the network with mixed inhibitory synapses. The
synchronous bursting state persists, with somewhat enlarged stability boundaries. The
spikes within the burst are in-phase, unlike in the network with fast inhibition. The duration
of the active phase is shorter with 5-6 spikes per burst. Also, large gap junctional coupling
does not lead to chaotic bursting behavior.

Most neurons in CPG networks are much more complicated than the simple Hodgkin-
Huxley type model considered here, with additional slow currents and dendritic properties.
The spatial effects of dendrites must be studied using coupled PDE-ODE systems, which
makes analytic solutions very hard to come by, as dendritic proerties of neurons are not
completely classified experimentally. The slow currents are more amenable to analysis.
Two typical slow currents in CPG neurons are the “sag’current, which activates when
the membrane is hyperpolarized, and the T-type calcium current, which allows the neuron
to fire upon release from inhibition. Both these currents have slow activation variables,
allowing the use of singular perturbation methods for analysis. These models are usually
simplified by including only the slow currents, while the slow and fast synaptic interactions
are retained, by implicitly assuming that the averaging fast, spike generating variables is
legitimate [23-25]. While averaging techniques can reduce biophysical models such as the HH
model to a Hopfield like description, it can also mask potentially interesting dynamical modes
of the network. Averaged approximations are qualitatively accurate however, if interactions

between neurons has only a single time scale.
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Finally, we note that even though the CPGs operate autonomously, they are under the
control of external influences through the influence of chemicals called neuromodulators [26].
These chemicals, such as acetylcholine, serotonin or adrenaline alter the intrinsic and synap-
tic properties of CPG neurons (as well as cortical neurons). This level of control renders
the temporal patterns of CPGs labile, and several different temporal patterns can be estab-
lished, without any extensive rewiring of the circuits. A simple example of neuromodulation
in our model would be a chemical that altered the strength of the fast synapse, switching

the network from a bursting to an on-off mode or changing the length of the bursts.
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