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Abstract

We studied the scaling properties of turbulence in a Rayleigh-B�enard con-

vection cell using Hg, a low Prandtl number 
uid (Pr=0.024). The length

scales of thermal and viscous layers for Rayleigh numbers (Ra) ranging from

106 to 108 in an aspect ratio 1 cell, are estimated more precisely than previous

analyses. The viscous boundary layer is thinner than the thermal one over

the entire Rayleigh numbers range, unlike in He, water, and other 
uids. We

investigated the scaling of the Reynolds number (Re) and the Nusselt number

(Nu) using di�erent aspect ratio cells (0:5; 1 and 2) for Ra ranging from 105 to

2�109. We did not observed the hypothetical ultimate regime (Nu � Ra1=2)

even though the two boundary layers are inverted. We also analyzed temper-

ature time series recorded in di�erent positions across the boundary layers

in the aspect ratio 1 cell and found that several non-dimensional quantities

have a unique, Ra-invariant pro�le, if distance is normalized by the thermal

boundary layer thickness. This may indicate an asymptotic regime of thermal
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turbulence in which the two boundary layers couple. The skewness of thermal


uctuations and its time derivative reveal that temperature 
uctuations are

not buoyancy driven but passively swept by the mean circulation in the bulk


ow, outside the velocity boundary layer.
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I. INTRODUCTION

Many recent experimental studies of the statistical properties of thermal turbulence

in various 
uids show a new type of developed turbulent state [?,?,?,?,?], called the hard

turbulence, distinct from the earlier concept of classical thermal turbulence. Hard turbulence

has the following characters, (1) the histogram of the temperature 
uctuations has a long

exponential tail at the center of the convection cell, while it is Gaussian in soft turbulence.

(2) a large scale 
ow stably circulates near the wall of the cell. (3) the scaling exponents with

dependence on the Rayleigh number, Ra, of the Nusselt number, Nu, Reynolds number, Re,

and the mean square temperature 
uctuation di�er from the classical two �eld model. (4)

the temperature power spectrum decays as a power law with P (!) � !�1:4 in the inertial

range for Ra < 1011 and has two slopes for Ra > 1011.

Classical theory for the scaling of thermal turbulence, hypothesized the existence of two

regions, the thermal boundary layer and the center region [?,?]. The temperature gradient

in the center is very weak because of strong mixing by turbulent 
ow, and steeper in the thin

area near the top and bottom plate where 
ow is suppressed so heat is transported only by

thermal di�usion. Therefore the entire temperature drop occurs within the this surface of

the two regions, called 'the thermal boundary layer'. Thermal boundary layer is assumed to

be marginally stable for the convective instability. Nu � Ra1=3, v � Ra3=7 and �T � Ra�1=3

are derived from those assumptions, where v is the characteristic velocity of 
ow and �T the

length scale of the thermal boundary layer.

On the other hand, the theory for the scaling exponent of the Nusselt number as a

function of the Rayleigh number in the hard turbulence supposes a viscous sublayer between

above center and thermal boundary layers, in which means velocity reaches its maximum

because of the the large scale circulation [?]. Theory does not explain the Reynolds number

sacaling or the meaning of the spontaneously organized large scale 
ow. (see section I B).

Is hard turbulence the ultimate regime of thermal turbulence? Some theoretical and

experimental predictions suggest the existence of a new turbulent state. Kraichnan's theory
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for the ultimate regime of thermal turbulence predicts the scaling, Nu � Ra1=2. Theories

to explain it make one of two assumptions. The �rst one is that boundary layers e�ectively

disappear at very high Ra, where heat can be transported by thermal structures, like buoy-

ancy force driven plumes advected at the free fall velocity which gives Nu � Ra1=2. The

other argument is that the viscous boundary layer becomes thinner than the thermal one at

high Ra (around Ra = 1014 for He gas [?]), since the viscous length scale varies as Ra�1=2

and the thermal length scale as Ra�2=7. Again Ra1=2 (see section I C).

A. Non-dimensional numbers

Four common non-dimensional numbers describe 
ow. First, the Rayleigh number is the

non-dimensional temperature di�erence de�ned as:

Ra =
�g�TL3

��
; (1)

where g is the earth's gravitational acceleration, �T the temperature di�erence supplied

to the cell, L the height of the cell, � the thermal expansion coeÆcient, � the kinematic

viscosity and � is the thermal di�usivity of 
uid. The Nusselt number is the non-dimensional

heat 
ux given by:

Nu =
Q

�A
L
�T

; (2)

where Q is the heat 
ux, � the thermal conductivity, and A the cross sectional area of the

cell. The Prandtl number, Pr, is de�ned as:

Pr =
�

�
=
l2=�

l2=�
: (3)

The Pr is the ratio of two characteristic di�usive time scales in a thermal convection, the

thermal di�usion time scale (�t � l2=�) and the viscous di�usion time series (�v � l2=�).

For large Pr 
uids, thermal structures, for example plumes and thermal boundary layers,

dominatethe 
ow in the system because �t � �v. On the other hand, thermal structures are

less important for low Pr 
uids because �t � �v, which show strong non-linearities because
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of inertial forces. The Prandtl number of Hg is much smaller (Pr = 0:024) at 20ÆC than

that of water (Pr = 2 � 7) or He gas (Pr = 0:7). Finally, the Reynolds number is de�ned

as:

Re =
LU

�
; (4)

where L is the height of the convection cell and U the mean velocity of the large scale 
ow

in the 
uid. Re characterizes the ratio of inertial force and viscous force.

B. Characteristic of hard turbulence and two boundary layers

The Chicago measured the temperature 
uctuations in hard turbulence in low temper-

ature Helium gas in the latter half of 1980's. In hard turbulence, some scaling laws which

relate the dimensionless numbers, di�er from those of classical theory. The new scaling

exponents, 
 and �, for the dependence of the Nusselt number and the Reynolds number on

the Rayleigh number were:

Nu � Ra
 = Ra0:285�0:004 (5)

and

Re � Ra� = Ra0:485�0:005 (6)

for 108 < Ra < 1012. For 106 < Ra < 108, soft turbulent regime, 
 equals to 1=3 agreeing

with classical theories [?,?] The theory of soft turbulence supposes two regions. One is the

zone within the thermal boundary layer in which only thermal di�usion transport the heat


ux and the other is the center region in which temperature is constant because of strong

mixing.

Castaing et al.'s hard turbulence theory also includes the mixing layer between the

thermal boundary layer and the center and predicts 
 = 2=7 close to the experimental 
 for

He gas for 108 < Ra < 1012. The theoretical Reynolds number exponent is � = 3=7, which

slightly di�er from the observation in some experimental � = 1=2.
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Fig. 1 shows schematically the spatial structure of hard turbulence and temperature

and velocity pro�les in a convection. z is the distance from the bottom plate. Near the

plate, temperature pro�le is linear because only thermal di�usion transports heat. On the

other hand, in center region of the cell average temperature T equals to �T=2 due to strong

mixing. Thus the thickness of the thermal boundary layer, �T , is the distance between the

plate and the position at which the extrapolation of the linear part of the temperature pro�le

equals the central mean temperature. The 
uid velocity is zero at the surface of the plates

and increases gradually because of the stably circulating large scale 
ow in the convection

cell. Near the plate, the 
uid velocity reaches its maximum and decreases towards the center

of the cell where the mean velocity is zero due to symmetry. The viscous boundary layer

thickness, �v, is the distance between the plate and the position of the velocity maximum. �T

and �v of the top plate should be same with those of the bottom plate becouse of symmetry.

Belmonte et al. measured directly the thickness of the two layers in compressed SF6 gas

was measured directly using movable detectors [?]. The boundary layers become thinner

with increasing Ra as follows:

�T � Ra�0:29�0:01 ' Ra�
 (7)

and

�v � Ra�0:44�0:09 ' Ra��: (8)

The thermal boundary layer is thinner than the viscous boundary layer over whole range

they measured for 108 < Ra < 1012, but should become thicker around Ra � 1014. A theory

of hard turbulence predicts these relations [?]. The heat 
ux, Q, in the thermal boundary

layer is:

Q = �
�T
2

�T
: (9)

By dimensional analysis, this equation implies that:

Nu =
L

2�T
(10)
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and

�T
L
�

1

Nu
� Pr1=7Ra�2=7 � Ra�
 : (11)

The viscous boundary layer thickness scales as:

�v �
�

U
�

L

Re
(12)

and

�v
L
�

1

Re
� Pr5=7Ra�3=7: � Ra�� (13)

Eqns. (11) and (13) produce crossing like the extrapolation of the experimental results for

SF6. Also from eqns. (11) and (13),

�v
�T

� Pr4=7Ra�1=7: (14)

Equation (14) implies that the lower the Prandtl number, the smaller the ratio of the

boundary layer thicknesses, �v=�T . The critical Rayleigh number for crossing in liquid

Hg(Pr = 0.024) should be Ra � 105 � 108 [?], which we covered in our previous work ??.

Also Ra � Ra5 for Hg is derived by more precious estimation [?].

C. Ultimate regime of thermal turbulence?

In previous section, the possibility of the inverted viscous and thermal boundary layers

is shown by both of theories and experiments. What happens if those boundary layers are

inverted? Nu � Ra1=2 have been expected to be seen in the ultimate regime of thermal

turbulence according to two ideas [?,?]. The �rst assumption is that the thickness of viscous

boundary layer becomes negligible because it varies � Ra�1=2. Thus heat is advected di-

rectly by buoyancy driven thermal structures, for example plumes, without thermal di�usive

regions. In such case, viscous force can become negligible everywhere in the convection cell

and the thermal structures move at the free fall velocity. Then the inertial force balances

the buoyancy one,
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�g�T � (v � r)v �
v2

L
: (15)

And the typical velocity of the thermal structures scales as

v � (�g�TL)1=2 : (16)

As heat 
ux Q equals �cp�T � v � A, where � is the density of 
uid, cp the heat capacity,

and A the cross section area of the convection cell, and the Nusselt number scales as

Nu � Ra1=2: (17)

The other argument is that when the viscous boundary layer becomes thin at higher Ra,

it cuts the thermal boundary layer and the thickness of the viscous boundary layer limits

the heat 
ux, which also gives Nu � Ra1=2.

We can test 'ultimate regime' in this work.

II. EXPERIMENTAL SETUP

The experimental cell used to study the two boundary layers is vertical cylinder, aspect

ratio 1, 10cm in height and 10cm diameter , as shown in Fig. 2. We also used other two cells

(aspect ratio 1/2 and 2) with the same 10cm diameters but di�erent heights, to measure

the heat 
ux over wide range and check the Nusselt number scaling dependence on aspect

ratio. The top and bottom plates are made of chromium plated copper 2cm thickness. The

side wall cylinder is made of stainless steel 2mm thick to match the thermal conductivity of

Hg. The high conductivity of mercury requires special heating and cooling. In the bottom

plate, an insulated manganin wire heater (diamater 0.3mm) is embedded in copper in a

spiral groove of semicircular section, with depth 0.4mm and horizontal spacing of 0.6mm.

The top plate forms the bottom of a large copper container with many copper �ns em-

bedded to promote good thermal exchange with the cooling water. Temperature controlled

water enters the container through 5 inlets and exits from 4 outlets. The heater is supplied

with constant power ranging from 1 watt to 1.2 K watts depending on the target Rayleigh
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number. The temperature of the cooling water is controlled precisely in stage: �rst by a

refrigerator and an electric heater, then by a 60 liter mixing tank, and �nally by Peltier

elements for precise control. The worst temperature stability occurs for maximal heating

and is 1% of the total temperature di�erence, �T , between the top and bottom plates. The

best stability occurs for minimal heating and is of the order of 10�4ÆK. To prevent lateral

heat leakage from the cell, thermal shield temperature regulated by water surrounds the

heater. Setting the shield temperature of heater minimizes heat leak.

To measure the local temperature 
uctuations, we use �ve thermistors (Thermometric

B07PA) whose size is 300�m in diameter with insulation though the bare size is 200�m.

Their response time is suÆciently shorter than the 
ow's typical minimum timescale of 100-

200 msec. As shown in Fig. 3, one[A] is placed at the center of the cell at midheight, two

are vertically aligned at 1cm from the side wall, one at midheight[B], and the other 2mm

above[C] to measure the meanm 
ow velocity. Two thermistors([D] and [E]) are �xed on

the �ne stainless tube which is tied to micro-translational stage, controlled by a stepping

motor, and can be moved vertically along the center line of the cylinder. Each thermistor

constitutes one arm of an AC capacitance bridge whose output is fed to a lock-in ampli�er

(PAR 124A). The output signal is �rst acquired by the digital spectrum analyzer (HP3563A).

Temperature time series T (z; t), (t = 0;�t; 2�T; � � �; n�t) are measured at each height z

with the sampling frequency ranging from 5 to 26 Hz, then analyzed by computer.

III. EXPERIMENTAL RESULTS

A. Statistical properties of thermal turbulence in mercury (aspect ratio 1 cell)

The histogram of the temperature 
uctuations at the center of the aspect ratio 1 cell is

nearly an exponential for Rayleigh numbers, 106 < Ra < 108 [?]. Fig. 4 shows the histogram

for Ra = 7:54� 107 measured at thermistor [A]. Moving thermistors: [D] and [E], along the

center line of the cylinder, we analyzed the position dependence of the histograms of the
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temperature 
uctuations (Fig. 5) which is Gaussian near the top plate and exponential near

the center. The nondimensional fourth order moment of the temperature 
uctuations, the

'
atness', is:

F =
< (T (z; t)� < T (z; t) >)4 >

< (T (z; t)� < T (z; t) >)2 >2
; (18)

where < T (z; t) > is the time averaged temperature at height z, and < (T (z; t)� < T (z; t) >

)2 > the variance. F characterizes large deviations from the probability distribution function

of the temperature 
uctuations. For instance, a Gaussian distribution corresponds to F = 3

and exponential distribution to F = 6. Fig. 6 plots F versus the distance z from the top

plate.

We measured the mean 
ow velocity of the large scale circulation with the vertically

aligned thermistors, [B] and [C], near the side wall. We estimated the group velocity of

temperature 
uctuations passing through the two detectors from the phase delay of the

cross spectrum of the two signals [?]. The mean 
ow velocity was about 2 cm/sec at

Ra = 107. Eqn. (4) gives the Reynolds and the peaked frequency of temperature power

spectrum as a function of the Rayleigh number are shown in Fig. 6 and 7. The material

constants of Hg used in these calculations was for 20ÆC and 1atm (Table 2). The large scale

circulation rather than any secondary instability (e:g:, the oscillatory instability) causes a

frequency peak in the temperature power spectrum, at fp. Thus fp also estimates the mean


ow velocity, using the relation

V � �Lfp: (19)

Fig. 7 shows the dimensionless parameter Re0 � fp�L
2=�. Our direct and indirect measure-

ments of the mean 
ow velocity coincide. The scaling relation,

Re � 6:24Ra0:44�0:02; (20)

resembles hard turbulence in He gas but with a prefactor (6:24) about 20 times larger.
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Fig. ??? shows the power spectrum of the temperature 
uctuations at the center of the

aspect ratio one cell for Ra = 7:12� 107. The spectra at the center of the cell �t to a form

Wu:1990,

P (f) =

 
f

f0

!��

exp

 
�
f

fc

!
(21)

In the aspect ratio 1 cell, � is 1:58 � 0:09 � 5=3 for 106 < Ra < 108. For Hg gas, � is

1:35� 0:05 (� 7=5). Fig. 9 plots the cuto� frequency, fc, as a function of Ra. fc scales as:

fc � Ra�; (22)

with � = 0:40� 0:05 in Hg, di�ering from that He hard turbulence where � = 0:78 by the

same method [?].

In the mercury aspect ratio 1 cell for 106 < Ra < 108:

Nu = 0:24�Ra0:25�0:02; (23)

was obtained. slightly smaller than for He gas. We did not obtain Nu � Ra1=2.

B. Statistical properties of thermal turbulence in mercury (aspect ratio 1/2 and 2

cells)

We also measured the heat 
ux and time series of temperature 
uctuations at the center

of the aspect ratio 1/2 (height: h = 20cm) and 2 (h = 5cm) cells for a wider range of

Rayleigh numbers because Ra is proportional to h3. As a result, we obtained the Nu - Ra

relation for 9:0 � 104 < Ra < 2:0 � 109. Fig. 16 shows the Nusselt number as a function

of the Rayleigh number. 
 = 0:28 � 0:02 and 0:26 � 0:02 for aspect ratio 1/2 and 2 cells,

respectively. 1=4 < 
 < 2=7 which is the same or slightly smaller than for He gas which

is close to 2/7 [?,?]. The aspect ratio 2 cell has a small jump in the Nu � Ra curve at

Ra � 2� 105. Nu � Ra1=2 did not occur.

We also measured the temperature 
uctuations to characterize their aspect ratio depen-

dence. For the aspect ratio 1/2 cell, Ra = 2� 108 was realized when the maximum heating
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(1:3KW ) is supplied. Fig. 10 and Fig. 11 show the typical histogram and power spectrum

of temperature 
uctuations for Ra = 3:0 � 108. The histogram is exponential. The low

frequency peak of the spectrum, as shown in Fig. 15, is broad showing that large scale 
ow

does not exist or is very weak.

For the aspect ratio 2 cell, Fig. 12 shows the histograms of temperature 
uctuations at

the center of the cell for various Ra. The abscissas are normalized by the mean temperature

of the top plate (Ttop) and the temperature di�erence. For Ra < 2 � 105, except for (a):

Ra = 1:6 � 105, the histograms are symmetric with two peaks and not exponential. The

power spectrum of the temperature 
uctuations has striking low frequency peaks (fp) for

all Ra (Fig. 15), showing strong oscillating 
ow at the center. The scaling exponent �

(fp � Ra�) equals 0:40 � 0:02. We calculated the mean temperature in the center of the

cell, Tcenter, and found that (Tcenter � Ttop)=�T are 
uctuated widely for 105 < Ra < 107,

suggesting the presence of two or more circulating rolls which frequently change directions.

exist in the aspect ratio 2 cell and their directions may change frequently. Fig. 16 shows

a transition around Ra � 2 � 105. What happens at the transition? As shown in Fig.

13, the averaged temperature 
uctuation in the center region of the cell varies widely. The

normalized standard deviation (STD=�T ) of the temperature 
uctuations (Fig. 14) is much

smaller below the transition than for Ra > 2�105, implying that the direction of convection

is stable below the transition point. Above this point, the large scale 
ow may change its

direction frequently.

C. The thermal boundary layer

Since the two thermistors ([D] and [E] in Fig. 3) move to various distances from the top

plate. Their time series can reveal the inner structure of the two boundary layers. Fig. 17

plots the time average of the temperature, Tave(z), as a function of the distance from the

top plate, z. Temperature pro�le �ts the function:

Tave(z)� Ttop
�T

= m1tanh(m2z); (24)
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tanh(m2z) =
em2z � e�m2z

em2z + e�m2z
; (25)

where Tave(z) is the mean temperature of the position at which a movable thermistor is

placed and Ttop is the mean temperature of the top plate. Eqn. (24) is linear near to

and saturated far from the boundary. We de�ne the thermal boundary layer thickness as

�T = 1=m2 from the �t. Thus �T is the distance at which the extrapolation of the linear

part of the pro�le equals the center mean temperature.

The estimated thickness also agrees with the distance at which the root mean square of

the temperature 
uctuations, Trms, reaches its maximum, as shown in Fig. 17. �T = 4:0mm

at Ra = 3:5� 107.

D. The viscous boundary layer

We estimated the thickness of the viscous boundary layer by two methods: from the

highest frequency, fh, of the temperature frequency spectrum and by �tting the power

spectrum of the temperature 
uctuations.

Measurements in water and SF6 [?,?] have validated this method to evaluate the mean

velocity, which is proportional to fh,

vave(z) � fh; (26)

where vave(z) is the mean velocity at the distance z from the top plate. Fig. 18 shows fh

as a function of a distance z. Taking the viscous boundary layer thickness as the distance

at which fh is maximal yields �v = 2:7mm at Ra = 3:5� 107, so �v � 0:7�T , inverted form

SF6 where �v is much larger than �T .

We developed a more reliable method to evaluate the viscous boundary layer thickness.

For each value of Ra, the power spectrum of temperature Pz(f) at the distances z are shifted

on the frequency axis to �t a reference spectrum Pz0(f), minimizing the quantity:

Er(�) =
1

fc � fH

Z fc

fH

"
ln
Pz(�f)

Pz0(f)
;

#2
df (27)
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where fH is the frequency at which the level of Pz0(f) becomes a �xed value P0 and fc is the

cuto� frequency at which it sinks into the noise level (Fig. 20 shows a schematic drawing).

The value �� for which Er reaches minimum is the ratio between the characteristic high

frequencies of the two spectra as shown in Figure 21. The reference spectrum Pz0(f) is a

power spectrum at an arbitrary distance z0. We chose z0 so the spectrum had maximum

fc. Therefore, the maximum value of the best �t parameter, ��, is 1 at z ' �v. Fig. 19

shows that �� did not change even if the lower cuto�, fH , was varied by changing P0 ( =

Pz0(fH)) from �45dB to �80dB. To evaluate the error bar ��err of �
�, Er(�) can be �t by

a quadratic:

1

Er(�)

 
d2Er(�)

d�2

!
�

1

f��errg
2

(28)

are derived. So the error bar is:

��err �

(
1

Er(�)

 
d2Er(�)

d�2

!)�1=2

: (29)

This estimate of �v is easier and has less scatter than using the highest frequency of the

power spectrum, fh.

E. Thermal and viscous boundary layer thicknesses as a function of Rayleigh number

In two previous sections, we estimated the two length scales for Ra = 6:1 � 107. The

viscous boundary layer is thinner than the thermal. Figure 23 plots the thermal and viscous

scales, estimated by the Trms method and the �tted power spectrum method for various Ra

respectively. Over the whole range of Ra, two boundary layers are inverted compared to

those for compressed SF6 gas. Fig. 24 shows that the ratio the two length scales is constant

: �v=�T = 0:63 � 0:05, which indicates that the two layers couple. Thus the two inverted

boundary layers both thin with increasing Ra, �T ; �v � �0:20 � 0:02. The heat 
ux,Q, in

the cell is:

Q = �
�T=2

�T
; (30)
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if heat is transported in each horizontal plane of the cell without inclination and �T is

constant at any positions of the plate. Eqns. (30) and (31) gives the Nusselt number from

the thermal boundary layer thickness:

Nu =
L

2�T
: (31)

Therefore from the inverse of eqn. (31),

�T =
L

2Nu
: (32)

Fig.31 shows �T and L=2Nu versus Ra in mercury. L=2Nu is slightly smaller than �T .

IV. DISCUSSION

In mercury, the viscous boundary layer thikness was thinner than thermal, �v < �T , yet

Nu � Ra1=2 was not observed in the aspect ratio 1 cell. There is the mean 
ow in the center

of the cell in aspect ratio 2 cell because some convection rolls exist. In aspect ratio 1/2 cell,

�T and �v can be less than 1mm. Therefore we obtained the time series of temperature time

series at various postions in only the aspect ratio 1 cell. The thermal and viscous bondary

layers have not been measured in aspect ratio 2 and 1/2 cells. However, the peculiar scaling

exponents, time series of temperature 
uctuations and other histograms in the aspect ratio

1 cell reveal the inner structure and dynamics of the turbulence.

A. Advection from the boundary layer

The time series of temperature 
uctuations show that plumes cannot be advected from

the boundary layer. We estimate the Reynolds number of the shear 
ow based on the

boundary layer thickness, to be Re� � 500, using �v � 3mm, so the boundary layer is

turbulent. Considering that the turbulent viscous boundary layer is as thin as or thinner

than the thermal boundary layer, turbulent shear stretches and mixes the plumes as soon
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as they detach from the thermal boundary layer and before they arrive at the center of the


uid. Simple plumes may not exist in low Prandtl number 
uids.

The di�usion time for the smallest thermal structures, like plumes, of size �T is �T =

�2T=�, where � is the thermal di�usivity of the 
uid. The advection time is � = L=V .

Therefore the ratio of the two time scales characterizes the importance of di�usion:

�T
�

=
�T
L

U�T
�

=
�T
L
Pe; (33)

where Pe is the Peclet number for the thermal boundary layer. Using the estimates � = 4:3�

10�2cm2=sec, �T � 5mm and V � 2cm=sec, we obtain �T
�
� 0:5, so we must consider the

e�ects of thermal di�usion. Turbulence may further increase the e�ective thermal di�usion.

We measured the temperature signal at di�erent distances z from the top plate, for dif-

ferent values of Ra to check whether plumes exist (Fig. 26). To characterize the asymmetry

of the histograms of the temperature 
uctuations as shown in Fig. 5, we calculated the

non-dimensional third-order moments: the skewness (S) de�ned as:

S =
< (T (z; t)� < T (z; t) >)3 >

< (T (z; t)� < T (z; t) >)2 >3=2
: (34)

Negative (positive) skewness corresponds to an asymmetry towards colder (warmer) tem-

peratures.

Fig. 26 plots the skewness of the temperature time derivative, de�ned as:

S 0 =
<
�
dT
dt

�3
>

<
�
dT
dt

�2
>3=2

; (35)

where:

dT

dt
= Ti+1 � Ti: (36)

S 0 characterizes the asymmetry of the derivatives of the signal. If buoyancy driven structures

(plumes) exist near the cold boundary layer, a less rapid warming return follows excursion

away from the mean (cooling). The cooling decreases S 0 while the warming increases. In

total, cold plumes result in negative S 0.
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However, S 0 is positive from the cold top plate to the center in this experiment (see Fig.

26) so no cold plumes are present, unlike ordinary high Pr hard turbulence [?].

Others have measured the boundary layer of slightly heated or cooled surfaces of horizon-

tal plate, where the turbulent 
ow passively mixes temperature [?,?]. Above a heated plate,

S 0 < 0 and S > 0, whereas S 0 > 0 and S < 0 above a cooled plate. Therefore, S 0 � S < 0

for a passive scalar. SF6 gas hard turbulence convection has the opposite sign: S 0 � S > 0

(S < 0; S 0 < 0), outside the thermal boundary layer of the top plate [?]. Active thermal

plumes driven by buoyancy explain this feature in water [?]. In Hg, S � S 0 < 0 outside

the viscous boundary layer as shown in Fig. 26. In fact, the sign of S 0 � S de�nes three

distinct regions, as seen on �gure 26. Inside the viscous boundary layer, S 0 � S > 0. >From

z=�T = �v=�T ' 0:6 to about 6, S 0 � S < 0. In the central region, of stable temperature

strati�cation, S 0 � S > 0. However, in this region where the mean velocity is small or null,

S 0� S < 0 may not imply that buoyancy is dominant. Actually, there is several indications

of the passive character of temperature 
uctuations in the central region of the cell, in low

Pr hard turbulence [?,?]. Buoyancy only drives the mean, large scale 
ow within a thin

viscous boundary layer along the walls , where S 0�S > 0. Outside the viscous layer, plumes

are inactive. The shear along the boundary layer feeds energy to drive the turbulence in the

rest of the cell, mixing the temperature as a passive scalar.

B. Fluid motion at the center of the cell

In addition to the absence of plumes near the boundary, surface (boundaries and side

walls) and bulk 
ows di�er. The typical temperature 
uctuation (rms) at the center, �, is

about 3% of the total temperature di�erence, �T ; thus �=�T � 10�2 at Ra = 107. The

typical velocity is about 2cm=sec at Ra � 107. The buoyancy force, �g�, of the 
uctuation

at the center is much smaller than the inertial term, jUrU j � U2=L; �g�=(U2=L) � 10�2.

Therefore, in the centeral region, buoyancy is negligible and temperature 
uctuations re-

semble a passive scalar, perhaps causing the scaling behavior of the spectrum. Balancing
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the buoyancy of the boundary layer, �g�T , with the inertial term, U2=L correct estimates

(2 cm/sec) the mean 
ow velocity; implying that most of the detached boundary layer 
ows

along the side wall in the large scale circulation, which drives the turbulent 
ow in the center.

At larger scales, inertia balances the buoyancy term, while at smaller scales inertia balances

the energy transfer. The Bolgiano scale, LB, at which buoyancy and energy transfer are of

the same order, is given by LB = Nu1=2L=(Ra � Pr)1=4 [?,?]. In the experiment LB � 2cm

at Ra = 107 which corresponds to 1 Hz in the spectrum, narrowing the cascade range.

In Fig. 25, the value of the mean temperature just below the cold upper plate boundary

layer is larger than �T=2, revealing a temperature inversion in the cell of about 10% of

the total temperature di�erence, �T . Outside the boundary layer, the 
ow shows a stable

strati�cation in temperature. The amplitude of the temperature is about 3% of �T , which

is signi�cantly smaller than the temperature inversion.

C. Scalings

At very high Rayleigh number, the transition to Nu � Ra1=2 requires that the velocity

boundary layer becomes turbulent and blow out the thermal boundary layer. However,

horizontal mean 
ow which is driven by the buoyancy should determine the tickness of the

viscous boundary layer. Without a thermal boundary layer, mean 
ow cannot exist. The

ultimate state of the boundary region in high Rayleigh number 
ow may be two matching

boundary layers. For �T � �v, the scaling, 
 = 1=4, of the Nusselt number may be explained

by the following argument:

Let us de�ne a nondimensional parameter, G, the ratio between the buoyancy force and

the viscous force in the boundary layer:

G =
�g�T

j�r2U j
: (37)

The viscous force of the horizontal mean 
ow mainly generates viscous force. Therefore, by

dimensional analysis reads j�r2U j � �U=�2v,
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G �
�g�T

�U=�2
=

�g�T�3=��

(U�=�)(�=�)
=

Ra�
Re�Pr

; (38)

because � = �T = �v.

We expect that G approaches a constant value since the buoyancy should balance the

viscous force in the boundary and dissipate mostly in the viscous sublayer. If so, the Rayleigh

and Reynolds number of the boundary layer must scale with the same exponent.

Ra� � Re� � Ra�: (39)

Using Eqn. (39), we obtain

Ra�2 � Re: (40)

If we suppose Re � Ra1=2, the boundary layer thickness should scale as,

� � Ra1=4; (41)

which gives Nu � Ra�1=4. This picture is close to the model of the model of rigid body

rotation, proposed by Cioni et al. [?].

Because we measure the thermal boundary layer thickness only along the center line of

the convection cell, we cannot determine if �T depends on position. However Fig. 31 shows

that the relation of the total heat 
ux through the cross section of the cell (Nutotal) to the

heat 
ux through the center of the plate (Nucenter):

Nutotal > Nucenter =
L

2Nu
; (42)

so the heat 
ux near the side wall is comparable with that at the center. Here we suppose

that, in the cental region of thermal turbulence, heat 
ows in narrow area (width = �T )

along the side wall because the strong large scale 
ow passively sweeps away plumes from

the thermal boundary layer. So the area of the lateral boundary layer (A0) is:

A0 ' 2�r � �T : (43)
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When a thermal structure of velocity v and T = �=2 transports heat, the heat 
ux Q0

through the area A0 per second is:

Q0 ' 2�r � �Tv � �cp
�T

2
: (44)

The heat 
ux through the plate Q is:

Q = A� �
�T=2

�T
; (45)

and should equal Q0. Substituting � = �=(�Cp) and supposing Q = Q0,

�2T
r2

=
�

2vr
�

1

Re
: (46)

Using the scaling relation, Re � Ra0:44�0:04, for experiment,

�T � Ra�0:22: (47)

This scaling exponent is close to our experimental result.

D. Unique Ra-invariant pro�les

In hard turbulence, the pro�les of temperature, skweness, and so on, all depend on the

distance from the plate z and the Ra. We de�ne �(z),

�(z) � F (z; Ra); (48)

where �(z) is a generalized function. Even z is normalized by any length scale, their pro�les

are not invariant for di�erent Ra, as they are in SF6 [?].

Figs. 27, 28, 29, and 30 plot nondimensional< T >, S and S 0, F , and the nondimensional

characteristic frequency �� versus the distance normalized by the thermal boundary layer

thickness z=�T respectively. Amazingly they have unique Ra-invariant pro�les if distance z

is normalized by �T . Therefore they can be expressed in terms of z� = z=�T as:

�(z�) = F (z�): (49)

Thus only one length scale, �T , exists.
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V. SUMMARY

Our main results of the statistical and scaling properties of thermal turbulence in Hg in

cells of aspect ratio 1, 1/2, and 2, are: 1) The histograms of the temperature 
uctuations at

the center of the aspect ratio 1 cell are exponential. 2) The viscous boundary layer is thinner

than the thermal one for 8 � 105 < Ra < 8 � 107 in the aspect ratio 1 cell. 3)The scaling

exponent 
 of the Nusselt number with the Rayleigh number is close to 1/4 which is slightly

smaller than for He gas. In the aspect ratio 1/2 and 2 cells, 1=4 < 
 < 2=7. Nu � Ra1=2

is not observed even though the two boundary layers are inverted. 4) The exponent � of

the temperature 
uctuations indicates that temperature behaves a like passive scalar in the

central region of the cell. S�S 0 < 0 outside the boundary layer also implies that plumes are

not advected and passively swept away from the boundary layer. 5) Several nondimensional

quantities have unique Ra-invariant pro�les if the distance from the top plate is normalized

by �T . So only one scale �T exists in our experiments.

Putting these results together, requires the construction of a consistent and global the-

oretical picture of thermal hard turbulence.
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TABLES

�le=/home10/usrs/segawa/tex/paper/eps/constant.eps,scale=0.65

TABLE 1. Material constants of Hg at 20ÆC, 1atm.
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FIGURES

�le=/home10/usrs/segawa/tex/paper/eps/pro�le.eps,scale=0.65

FIG. 1. Schematic drawing of the spatial structure of hard turbulence and the

temperature and velocity pro�les in a cell. Temperature changes linearly near

walls of a cell. It is really constant in the center region. The 
ow velocity is zero

at the wall and at the center of the cell and maximum at a distance �v from the

walls. Plumes(size � d) detach from the thermal boundary layer and circulate

around the cell. In He gas, the cut o� frequency, fc, of the temperature power

spectrum gives d ' �T .

�le=/home10/usrs/segawa/tex/paper/eps/cell.eps,scale=0.6

FIG. 2. Schematic drawing of the convection cell. The cell has �ve thermistor.

Three are �xed at stainless steel wires. Two are �xed on a �ne stainless steel tube

coneected to a micro-translation stage which can move move vertically along the

center line of the cylinder.

�le=/home10/usrs/segawa/tex/paper/eps/thermistor.eps,scale=0.7

FIG. 3. The positions of the �ve thermistors in the convection cell. Five ther-

mistors in the convection cell. [A] is at the center of the cell at midheight. [B]

and [C] measure the mean velocity of the large scale circulation. [D] and [E]

can move vertically along the center line of the cylinder to determine the two

boundary layers.
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�le=/home10/usrs/segawa/tex/paper/eps/histogram1.eps,scale=0.6

FIG. 4. A typical histogram of temperature 
uctuations at the center of the

cell. It is nearly exponential distribution at the center of aspect ratio 1 cell for

Ra = 7:54� 107.

�le=/home10/usrs/segawa/tex/paper/eps/histshift.eps,scale=0.6

FIG. 5. Histograms of the temperature distribution at various positions in the

cell. They are normalized by �T and the mean temperature of the top plate

Ttop, at various heights for Ra = 3:5 � 107. The heights are [a] z = 1.1mm, [b]

5.4mm, [c] 16.6mm, [d] 36mm and [e] 50mm. The arrow indicates �T=2.

�le=/home10/usrs/segawa/tex/paper/eps/
atvsz.eps,scale=0.6

FIG. 6. The 
atness of the temperature 
uctuation distribution as a function of

the distance, z, from the top plate.

FIG. 7. Scaling of the Reynolds number of the box, Re = UL=�, as a function

of the Rayleigh number.

�le=/home10/usrs/segawa/tex/paper/eps/reynolds2.eps,scale=0.6

FIG. 8. fp versus Ra in the aspect ratio 1 cell. The scaling exponent of fp with

the Rayleigh number is � = 0:46� 0:02, close to that for He gas.

FIG. 9. Scaling of the cuto� frequency, fc, as a function of Ra. The dotted line

is the best �t, fc � Ra0:40�0:05
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�le=/home10/usrs/segawa/tex/paper/eps/1274ZH.eps,scale=0.7

FIG. 10. Histogram of the temperature 
uctuations at the center of the cell in

the aspect ratio 1/2 cell at Ra = 3:0� 108. The distribution is not exponential.

�le=/home10/usrs/segawa/tex/paper/eps/1274ZP.eps,scale=0.7

FIG. 11. The power spectrum of the temperature 
uctuations at the center of

the cell for aspect ratio 1/2 cell. for Ra = 3:0� 108.

�le=/home10/usrs/segawa/tex/paper/eps/hist-as2.eps,scale=0.7

FIG. 12. Histograms of the temperature 
uctuations at the center of the cell for

various Ra, in the aspect ratio 2 cell. (a)Ra = 1:56� 105, (b)Ra = 1:71� 105,

(c)Ra = 3:31� 105, (d)Ra = 5:51� 105, (e)Ra = 1:65� 106, (f)Ra = 3:52� 106,

(g)Ra = 5:91� 106, (h)Ra = 8:90� 106.

�le=/home10/usrs/segawa/tex/paper/eps/TvsRa-as2.eps,scale=0.72

FIG. 13. Average of the temperature 
uctuations at the center of the aspect

ratio 2 cell. The averaged temperature 
uctuations normalized by the average of

the top plate temperature Ttop and the temperature di�erence �T . Fluctuations

are larger than 10% for 105 < Ra < 107.

�le=/home10/usrs/segawa/tex/paper/eps/STDvsRa-as2.eps,scale=0.72

FIG. 14. The root mean square value of the temperature 
uctuations, Trms,

at the center of the aspect ratio 2 cell. Trms normalized by the temperature

di�erence changes at Ra = 2:0� 105.
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�le=/home10/usrs/segawa/tex/paper/eps/PowerSpec-as2.eps,scale=0.7

FIG. 15. Power spectrum of the temperature 
uctuations at the center of aspect

ratio 2 cell for Ra = 1:65 � 106. Low frequency peak correspond to the large

scale circulation in the cell.

�le=/home10/usrs/segawa/tex/paper/eps/Nu-Ra1.eps,scale=0.75

FIG. 16. Nusselt number as a function of Rayleigh number; 3: aspect ratio 2, �:

1, 4: 2. For the scaling exponent 
 of Nu 1=4 ' 
 ' 2=7. In the aspect ratio 2

cell, a transition occurs at Ra � 2� 105 from oscillating to steady roll direction.

�le=/home10/usrs/segawa/tex/paper/eps/z-lambdaT.eps,scale=0.6

FIG. 17. Mean, Tave(z) (Æ), and root mean square value , Trms (�), of the

temperature 
uctuations as a function of the distance z from the top plate. The

solid line is the best �t to the function, Tave � Ttop = m1tanh(m2z). The arrow

shows the thermal boundary layer. The thickness of the thermal boundary layer

(�T ) is evaluated �T = 3:8mm for Ra = 7:8� 107.

�le=/home10/usrs/segawa/tex/paper/eps/z-lambdav.eps,scale=0.6

FIG. 18. The highest frequency, fh, as a function of the distance z from the top

plate. The thickness of the viscous boundary layer (�T ) is evaluated �v = 2:0mm

for Ra = 7:8� 107. Cleary �v < �T in contrast to SF6.

�le=/home10/usrs/segawa/tex/paper/eps/SdB-err.eps,scale=0.75

FIG. 19. Error by shifting power spectrum as a function of S(fH). Error does

not change when S(fH) is chosen ranging from 10�8 to 10�5.
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�le=/home10/usrs/segawa/tex/paper/eps/image-shift.eps,scale=0.7

FIG. 20. Schematic drawing of the shifting method used to estimate the viscous

boundary layer thickness precisely. With shifting the higher frequency region of

the frequency spectra of the temperature 
uctuations overlap each other.

�le=/home10/usrs/segawa/tex/paper/eps/error-alpha.eps,scale=0.7

FIG. 21. Error in comparison to the standard power spectrum as a function of

the shifting parameter �. �� is the minimum value of Er(�) and the ratio of

characteristics high frequencies of the two spectra. ��err which is the error bar of

�� is evaluated by eqn. (29).

�le=/home10/usrs/segawa/tex/paper/eps/z-alphastar.eps,scale=0.75

FIG. 22. The frequency shift �� (�) as a function of distance z from the top plate

for Ra = 7:8� 107. It has clear shape in comparison with fh (�). The position

at which �� reaches its maximum is �v.

�le=/home10/usrs/segawa/tex/paper/eps/Ra-lambda.eps,scale=0.7

FIG. 23. The thermal (Æ) and viscous (�) boundary layer thickness as a function

of Rayleigh number for aspect ratio 1. The two boundary layers scale in Ra with

a slope �0:20� 0:02 (dashed line).

�le=/home10/usrs/segawa/tex/paper/eps/ratio-lvt.eps,scale=0.7

FIG. 24. Ratio of the two boundary layer thicknesses as a function of Rayleigh

number. The Ra-invariant ratio is about 0:6.
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�le=/home10/usrs/segawa/tex/paper/eps/invertT.eps,scale=0.8

FIG. 25. Temperature inversion in the center region. The temperature inversion

is � 10% of the total temperature di�erence �T around the center at Ra =

3:5� 107.

�le=/home10/usrs/segawa/tex/paper/eps/z-SSdash.eps,scale=0.75

FIG. 26. S and S 0 as a function of the distance from the top plate in the aspect

ratio 1 cell for Ra = 3:5 � 107. S < 0 (�) and S 0 > 0 (Æ) outside the boundary

layer near the top plate.

�le=/home10/usrs/segawa/tex/paper/eps/Tvszoverl.eps,scale=0.6

FIG. 27. Temperature pro�les normalized by Ttop and �T near the top plate as a

function of z=�T in the aspect ratio 1 cell. (�) Ra = 8:0�107, (Æ) Ra = 6:1�107,

(2) Ra = 3:5� 107, (4) Ra = 2:0� 107, and (+) Ra = 6:0� 106.

�le=/home10/usrs/segawa/tex/paper/eps/SSvszoverl.eps,scale=0.6

FIG. 28. S and S 0 versus z in the aspect ratio 1 cell. (2) Ra = 8:0 � 107, (3)

Ra = 6:1�107, (Æ) Ra = 3:5�107, (4) Ra = 2:0�107, and (5) Ra = 3:0�106.

�le=/home10/usrs/segawa/tex/paper/eps/Fvszoverl.eps,scale=0.6

FIG. 29. The 
atness of the temperature 
uctuations, F , versus the distance

z=�T in the aspect ratio 1 cell. The symbols are the same as in Fig. VI. Hori-

zontal lines denote F = 3 and F = 6, corresponding to the values expected for

Gaussian and exponential distributions, respectively.
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�le=/home10/usrs/segawa/tex/paper/eps/alphavszoverl.eps,scale=0.6

FIG. 30. The frequency shift �� as a function of z=�v in the aspect ratio 1

cell. Ra: (�) Ra = 8:0 � 107, (Æ) Ra = 6:1 � 107, (2) Ra = 3:5 � 107, (3)

Ra = 2:9�107, (4) Ra = 2:0�107, (+) Ra = 6:0�106, and (�) Ra = 3:0�106.

�le=/home10/usrs/segawa/tex/paper/eps/lTandNu-Ra.eps,scale=0.6

FIG. 31. �T and L=2Nu as a function of Rayleigh number in the aspect ratio 1

cell. (2) �T , (�) L=2Nu.
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