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Abstract 
 
We review current theory, simulation and experiment for the growth of 3D bubbles in ideal 
dry froth. Theories assume either that the growth rate depends on bubble radius or topology. 
Radius based laws violate the Young-Laplace law. Topological theories can be either linear or 
non-linear in the number of faces (f). The growth law can hold either exactly for each bubble 
(as in 2D) or apply only to ensembles of bubbles with a given topology. Recent experiments 
suggest that the growth law is linear in f, but holds only for ensembles. We still lack both 
experimental and simulation results for possible growth laws depending on detailed topology 
or vertex number. Higher accuracy and better statistics are essential to resolve these issues. 
 
1 Introduction 

The growth rate of bubbles in a quasi-2D soap froth coarsening via diffusion is surprisingly 
simple.  von Neumann�s law states that the growth rate of a bubble is a linear function of its 
number of sides, is independent of its area and of the properties of its neighbors [1], inviting a 
mean field approach. The kinetics is separate from the topological of faces on side or bubble 
disappearance, which affects neighboring bubbles. This simplification has led to many mean 
field studies which treat the kinetics exactly and approximate the redistribution [2,3].  

We do not yet know the rate of growth (or shrinkage) of a bubble in an ideal 3D dry foam 
growing by diffusive coarsening or on what variables it depends. Only recently have 
experiments and simulations measured the growth rates of individual bubbles [4-6]. Since the 
growth rate is fundamental to the evolution of cellular structures, its lack prevents the 
development of any adequate theory for 3D foams [3].  

2 Curvature and Topology 

In an ideal soap froth, minimisation of surface energy results in bubble faces that are minimal 
surfaces with constant mean curvature [7],  

G≡1/r1+1/r2,      (1)  

where r1 and r2 are the two independent radii of curvature. The mean curvature determines 
the effective pressure difference across the grain wall, ∆P, via the Young-Laplace relation [2],  

∆P=σ(1/r1+1/r2),      (2) 
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where σ is the surface tension. The rate of transfer of volume (and hence mass assuming that 
the material is effectively incompressible) across the boundary is proportional to the face area 
times the pressure difference, so the growth rate has the form: 
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where κ is an effective diffusion constant and  
r 

G  is a vector normal to the surface in the 
convex direction with magnitude G. In polycrystals the local curvature determines the local 
boundary velocity: 

      v
r 
r ( ) = µ

r 
G ,       (4) 

where µ is the boundary mobility. Clearly, any bubble that obeys eqns. (1) and (2) also obeys 
eqn. (4) [8,9]. Less obviously, a grain obeying eqn. (4) should have the same total growth rate 
as a bubble with the same shape. Since G scales inversely with the bubble radius, r, 
(G∝1/r∝V1/3) while the total surface area is proportional to r2, the r.h.s. of eqn. (3) must be 
the product of the radius with a term depending on the shape. Combining all V  dependencies 
in the l.h.s. we obtain a growth law of the form: 
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Because the total volume is constant, the joint distribution of volume and shape constrains 
C(Shape), 0 = dVf d t  ∫

Shape
∑ P V,Shape( )dV = C(Shape)VShape

13

Shape
∑ , where P is the probability of 

a bubble having a given shape and size.    

The wall of a planar 2D bubble has only one radius of curvature so eqn. (3) depends only on 
the number of sides, n, of the grain, and the area an of an n-sided bubble grows as [1], 
d an dt = k n− 6( ). 

In 3D, a derivation analogous to that of von Neumann�s law fails, because the topology 
determines not the mean, but the Gaussian curvature, K≡(r1r2)-1/2 [10]. K and G are 
independent so the growth rate need not depend on the topology. The relation (if any) 
between mean curvature and topology (whether on f or on the exact distribution of edges, 
faces and vertices) for a minimal surface remains a major unsolved problem in classical 
geometry. Even an averaged growth law dependent on topology implies that the foam is 
imposing a relation between mean G and mean K, otherwise the growth rate of a bubble 
would depend on the detailed local geometry and no growth law would exist at all. 
 
3 Hypothetical Growth Laws and their Effect on Kinetic Exponent 
 
Eqns. (1), (2) and (4) are inescapable for ideal foams but they can fail in real froths, e.g.  if the 
bubbles are spherical and well separated and the liquid carries a substantial partial pressure of 
gas the Lifschitz-Slyozov law replaces the Young-Laplace law, eqn. (2), and the growth law 
becomes [11,12], d V(r) dt = γ r t( )C

−1 − r−1( ), where rc is a critical radius corresponding to the 
effective pressure in the continuous phase. In a scaling state, i.e. a configuration in which the 
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distributions of volumes and topologies remain constant, simple dimensional arguments show 
that the mean radius, <r>, must evolve as <r>∝t1/3 [13]. Measurements of the growth 
exponent in foams and metals agree that the scaling exponent is 1/2 rather than 1/3 [2,13-15]. 
Any law of the form of eqn. (5) gives the observed growth exponent of 1/2 [13]. 

The L.-S. law remains seductive because it is much simpler than eqn. (5) and seems to follow 
from the following argument. Bubbles with more faces have larger volume.  Claimed forms of 
this relation differ, but the consensus is (fig. 1) [6,16]: 

 <Vf>∝f3.       (6) 

If we substitute V1/3,  i.e., r, for f and neglect to notice that the two sides of eqn. (6) are 
dimensionally different we then must omit the required prefactor of r in eqn. (5) to obtain a 
law of L.-S. form. Even today papers appear simulating close packed coarsening with the L.-
S. law rather than eqn. (5) [17-19]. Rivier proposed [20], dVf dt[ ]= κ f − f( ), where <f> is 
the average number of faces in the froth and the [ ] average is over all grains in a topological 
class that do not change their number of faces during the brief interval dt, giving a growth 
law, <r>∝t1/3, and not conserving total volume. 
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Figure 1. The relation between a bubble's volume and its number of faces. The average 
volumes of bubbles with f faces are plotted versus f. MRI experiment on gelatine foam. 
 
4 Symmetrical Bubble Theories 
 
By assuming simplified bubble shapes, we can estimate the geometrical factor C(f) in eqn. (5), 
though we cannot say whether the growth rate is exact for f-faced bubbles. A typical C(f) is 
non-linear, lying below the linear fit for very small or large f, i.e. outside the typical 
experimental range for real foams.  
 
Fortes assumed that all edges of a face lie in a plane and that all faces are regular polyhedra 
with n=6-12/f sides [21] and that the velocity of edges or vertices was independent of bubbles 
size, leading to <r>∝t growth kinetics with zero growth for f=13.4 faces (fig. 2a). Mullins 
assumed that the vertices of each face lay in a plane, and that all faces are pentagonal [8] (fig. 
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2a). His equation gives zero growth for f=13.3. These models do not conserve total volume 
for arbitrary volume and topology distributions. Sire, assuming that faces are planar and 
regular, but allowing each face to have a different number of sides, attained a similar result 
depending on the assumed relation between number of sides and area for faces [22].  
 

 
Figure 2a. Growth rates as a function of number of faces for Fortes� edge and vertex models 
(Dashed lines), Mullins� model (Solid Line), Kawasaki�s vertex model (Squares, Circles and 
Diamonds), Weygand�s vertex model (Dotted Line), Monnereau et al.�s boundary dynamics 
model (Triangles), Wakai�s boundary dynamics model (Xs and Stars) and Glazier�s Potts 
model (Star of David). 2b. Monnereau et al.�s optical tomography experiments (Circles) and 
our MRI experiments (Squares). 
 
5 Simulations 
 
5.1 Potts Model 
 
Glazier simulated regular coarsening using the zero temperature Q-state Potts model on a 
third neighbor cubic lattice [9], originally introduced by Anderson, Grest and Srolovitz [23-
25]. The Potts model results are difficult to interpret because the square lattice is highly non-
Euclidean for small domains. Thus small domains shrink more rapidly than large domains, 
which increases the mean shrinkage rate for few-faced domains, which tend to be small. In 
addition, very small domains tend to shift their number of sides rapidly and be discarded from 
the calculation, creating a selection bias which makes very-few-faced grains shrink more 
slowly than expected. Correcting these artefacts results in a linear growth relation in the 
scaling state for 4≤f≤55 (fig. 2a): 

C f( ) = f − f 0 .     (7) 
Glazier also showed that the growth rate for f-faced domains was independent of their size 
[9]. Later, Weaire and Glazier showed that volume conservation, eqn. (6), requires [26]: 

f0 = f 2 f 2 ,     (8) 
provided eqn. (6) holds. The standard deviation of the growth rates is independent of the 
number of faces suggesting that the detailed topology is not important. 
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5.2 Vertex Models 
 
Fuchizaki and Kawasaki have developed an elaborate vertex model derived from eqn. (4) 
[27]. Unlike their earlier models, they include points at the center of faces, to triangulate, 
making the result more like a boundary-dynamics simulation. They find good agreement with 
the linear form of eqn. (7) with f0=15 (fig. 2a). Weygand et al. have implemented a model 
with the same basis with fewer approximations [28]. Strangely, they find a strongly nonlinear 
growth law with an emperical form (fig. 2a): 

C f( ) = −50 + 20.5 f
1

3  ,    (9) 
with zero growth for f=15.  
 
5.3 Surface Evolver (Boundary Dynamics) Models 
 
Surface Evolver is a software package that approximates minimal surfaces by triangulations 
of variable density.  From the triangulation we can estimate the local curvature and hence 
implement eqn. (4) directly. Monnereau et al. used S.E. to simulate the growth of 28 domains 
(starting from a digitzed experiment) and obtained a linear growth law with f0=13.8±0.2 [29] 
(fig. 2a). This result tracked 28 bubbles over a volume change of about 25 for 9≤f ≤ 17. Wakai 
et al. also used S.E. to simulate 3D coarsening beginning with 1000 domains (fig. 2a) [16]. 
Eqn. (7) with f0=14.8 agrees well with their values for C(f). S.E. should give a nearly perfect 
solution to eqn. (4) for fine triangulations and so should be able to distinguish whether the 
growth law holds for each bubble individually. Unfortunately neither paper gives the ranges 
of growth rates within topological categories or examines the dependence of grain growth on 
detailed topology. However, the results suggest that only the averaged law holds. 
 
6 Experiments 
 
6.1 Optical Techniques 
 
Because foams are highly dispersive they are hard to see into. Reconstruction 3D structures is 
also tricky and time consuming. Nevertheless, studies of bubble sizes by optical stereography 
go back to the 1930s [30-33]. Others looked at the surface bubbles in the foam [18,34], which 
rules out calculations of topologies. 
 
The first real optical tomography showed that the technique was practical, but made no 
quantitative measurements [35-37]. Monnereau et al. used optical tomography to reconstruct 
the topology of an experimental nitrogen foam semi-automatically, using S.E. to reconstruct 
the face contours, giving a very accurate estimate of bubble volumes, taking 28 slices through 
a dry liquid soap foam [4,5], each scan taking 45 seconds. They tracked to 28 bubbles over 9 
hours, representing about a 25% volume change. They found a linear growth law for f=9, 11-
16, with f0=13.3±0.1, but could not determine whether the growth law was exact (fig. 2b). 
 
6.2 Magnetic Resonance Imaging 
 
Magnetic Resonance Imaging (MRI) is one of the few methods, which provides complete, 
non-invasive information about bubbles deep inside a foam. MRI of foam is difficult due to 
the small amount of liquid inside the sample volume, and the very large interfacial areas 
between liquid and gas, which tend to distort images and reduce the signal. We need both 
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spatial resolution better than the size of the Plateau borders and relatively fast acquisitions, 
since the foam coarsens while the image is being acquired. 
 
The first 2D MRI images of foam measured the water content inside a column of liquid foam 
over time [38,39]. Gonatas et al. imaged 2D slices at fifty minutes per slice, measuring the 
bubble size distributions for bubbles as small as 250 µm over three days [40].  
 
Unfortunately, ordinary soap froth is almost impossible to image. We optimized the magnetic 
properties of the foam, using DyCl3(TTHA) to avoid susceptibility artifacts and CuSO4 to 
achieve fast magnetization relaxation, necessary for fast imaging. To slow coarsening and 
drainage and prevent wall breakage, we foamed a highly purified gelatin-water mixture with 
SDS as a surfactant. To reduce gravitational drainage and wall breakage, we cooled the foam 
to 281ºK ± 0.1ºK, maximizing its viscosity just above its freezing point. Samples prepared in 
this manner coarsened for six days before solidifying. 
 

a. b. c.

 
Figure 3. Maximum intensity projections of three-dimensional MRI reconstructions of a foam 
at three stages of development (a) = 24 hrs. (b) = 36 hrs. (c) = 48 hrs. 
 
We imaged the foams in 3D, using our Bruker 300 MHz (7 Tesla) imaging spectrometer with 
high field gradients (96 G/cm). We resolved 256 x 128 x 128 voxels of side length 100 - 150 
µm in about 14 minutes, using a 3D spin echo sequence with two to eight averages. A 
�snapshot� of the foam took 30 minutes initially and 120 minutes at the end (fig. 3).  
 
To remove imaging artifacts and random noise from the reconstructed 3D image we threshold 
and use a closing operator to fill small gaps. We create a map of  the Euclidian distance to the 
nearest edge and group clusters of local maxima into single centers using a third nearest 
neighbor scan. We eliminate spurious maxima by requiring that the diameters of adjacent 
bubbles are larger than that of their joining face. A 3D Delauney triangulation from the center 
locations gives  neighbors for each center. We estimate the averaged radius of the equivalent 
sphere for each center as the mean of the distances to all its neighbors.  
 
The results are consistent with eqn. (7) with  κ=1.0 ± 0.3×10-5 mm2/sec and  f0=12 ± 2 (fig. 
2b). The constant offset from simulation and optical tomography data suggests that we have a 
systematic error in our volume estimate which causes us to overestimate the volume of large 
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bubbles. The large error bars primarily result from the approximations in determining the 
volumes. Because the wetness during imaging is similar, κ is the same for the three samples 
we analyzed. We can thus combine the statistics from all three experiments. The errors stay 
roughly constant, suggesting that the averaged, not the exact, law holds. 
 
7 Conclusions 
 
Our current knowledge of 3D coarsening is inconsistent and fragmentary. We finally agree 
that  the corrected growth rate of 3D grains depends only on their topology and not on their 
volume. However, some simulations (Potts, S.E. and vertex) suggest that the average growth 
rate for grains depends linearly on their number of sides while other simulations using the 
same models find a weakly nonlinear (approximately f1/3) dependence. The experimental data 
favors the linear result but has such large error bars that it cannot rule out the nonlinear form. 
An ideal linear result would be intriguing since it is not mathematically necessary.  
 
To determine whether the growth law holds for individual grains we need additional statistics 
from the S.E. simulations. We also need to reanalyze our MRI experiments which have 
excellent statistics but large errors in their volume estimates using the more accurate volume 
calculations of Monnereau et al. Faster scans and slower coarsening would increase the 
number of usable bubbles in each image and reduce selection bias. Investigating the growth 
rate as a function of detailed topology will determine if an exact law exists. 
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