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Abstract: We study the equilibrium energies of 2D non-coarsening 
uid foams which

consist of bubbles with �xed areas. The equilibrium states correspond to local minima of

the total perimeter. (i) We �nd an approximate value of the global minimum perimeter,

and a marker to determine directly from an image how far a foam is from its ground state.

(ii) For (small) area disorder, small bubbles tend to sort inwards and large bubbles sort

outwards. (iii) Topological charges of the same signs `repel' while charges of the opposite

signs `attract'. (iv) We also discuss : boundary conditions; uniqueness of pattern when

topology is prescribed; extensions to 3D.

I. INTRODUCTION

A 2D 
uid foam or a cellular 
uid consists of a collection of bubbles separated by a

continuous phase which tends to minimize its perimeter energy under the bubble area

constraints. Our motivations to study 
uid foams are threefold.

Mathematically, how to determine the minimal perimeter enclosing a cluster of N

bubbles with known areas [2]? Here we discuss cases that have thus far escaped rigorous

study, including large N , real boundary conditions and area dispersity. We estimate the

value of the perimeter minimum, and conjecture the corresponding patterns. We hope to
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provide insight for future rigorous mathematical proofs. Physically, most studies on foam

structure have focused on special consequences of the energy minimization [6,7], such as

topology. Here we derive general consequences of the energy minimization, to address

open questions such as: Given an image, can we determine whether the foam is stressed

and deformed? How regular are bubble shapes at equilibrium? How do topology (number

of neighbors of a bubble), pressure and energy relate? What variables best describe the

foam on a mesoscopic scale? Why do pentagons and heptagons tend to cluster in pairs in

2D foams? More practically, understanding foam structure is an important step towards

predicting foam's mechanical properties, e.g. the quasistatic stress-strain relationship.

To capture the essential features of energy minimization, we make the following re-

strictions, which we can relax later. (i) 2D foam: we hope our progresses will clarify

3D foams. (ii) \Dry foam" limit: 
uid fraction � � 1. (iii) Weakly disordered foams

\close to a honeycomb structure": both the area and the edge number distributions have

small variances. (iv) No coarsening: each bubble's area is constant. In fact, foams are

almost always at quasi-equilibrium because the bubble walls equilibrate on a very short

time-scale after a mechanical perturbation. The processes that cause area changes, such

as coarsening, wall breakage, cell division, and cell nucleation, all act on a much slower

time-scale.

For a foam with N bubbles with given areas fAi; i = 1; : : : ; Ng (e.g. Fig. 3a), and a

line tension 
, the energy is simply the sum of edge lengths `ij between bubbles i and j :

H = 

X

0�i<j�N

`ij; (1)

where i = 0 denotes the medium that surrounds the foam.

At equilibrium, i.e. in a local energy minimum, the foam obeys the Plateau rules

[6,7]: bubble edges are circular arcs which meet in triples at 2�=3 angles [4]. According

to Laplace's law their algebraic curvatures (�ij = ��ji > 0 when bubble i is convex

compared with bubble j) are related to the 2D pressure Pi inside bubble i: �ij =
Pi�Pj



:

Thus the algebraic curvatures of the three edges that meet at the same vertex must add

to zero [5]:
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�ij + �jk + �ki = 0: (2)

Equation (2) extends to any closed contour crossing more edges; and to 3D, with � the

mean curvature of a bubble face.

FIG. 1. Simulated foams with �xed areas: (a) A typical con�guration of a polydispersed foam

at equilibrium. The top and bottom boundaries are �xed, the lateral boundaries periodic. Shades

of grey encode the topology. (b) A pentagon-heptagon-pentagon-heptagon cluster arti�cially con-

structed in a regular foam with equal areas and periodic boundaries. (c) Two dipoles (pen-

tagon-heptagon pairs) result in a curvature �eld in the hexagons around them. (d) A circular

obstacle in the center of a hexagonal foam induces a topological charge distribution.

II. ZEROTH-ORDER ESTIMATE OF THE GLOBAL MINIMUM

If all the bubble areas Ai are known but their topology is free to vary, the minimum

value min(H) for the foam energy (i.e. the ground state) exists [3]. However, its value,
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and the corresponding pattern(s), is an open problem. We conjecture [1] that the energy

of a natural, polydisperse, random foam is at least the energy of a collection of regular

hexagons with the same area A (i.e. perimeter 3.72
p
A):

Hh � 3:72



2

NX
i=1

q
Ai; (3)

min(H) is close to, but larger than Hh. This estimate of the global minimum Hh depends

only on the area distribution, not the pattern. Thus given an image, we can simultaneously

measure H, through the actual edge lengths, and Hh, through the areas. The ratio H=Hh

is a global marker of the energy stored in the foam, or how far the foam is from its global

minimum at prescribed areas.
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FIG. 2. Relaxed energy of a random foam (Fig. 1a). The �nal rescaled equilibrium energies,

Hf=Hh, after long relaxations (106 MCS) are plotted against their initial energy, Hi=Hh. Note

the di�erence in horizontal and vertical scales.

We use the extended large-Q Potts model, which allows large numbers of bubbles, N �
1, no 
uid fraction � = 0, �xed bubble areas, a large range of area distributions, quick

equilibration [8] (Fig. 1a). By biasing the Monte Carlo process, we can apply a steady

shear [8] to prepare a distorted foam: a higher shear rate results in more distorted bubbles,

thus higher initial energy Hi. We let the distorted foams relax towards equilibrium, i.e.

a local energy minimum. Fig. (2) shows that whatever their initial energy, the relaxed

foams all have �nal energies Hf 2-3% above Hh. We now write the energy of the foam
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as the ground state Hh plus three corrections, which for simplicity we want to treat

separately in the next three sections. This applies to weakly disordered foams with small

area and topology variations.

III. AREA DISORDER

The edges of a regular hexagon of area A have a length L = 3:72
p
A=6. If two

bubbles of di�erent areas Ai > Aj share a common edge, its length `ij obviously cannot

be simultaneously equal to both Li and Lj. There is an energy cost associated to the area

mismatch, � = (Ai�Aj)=(Ai+Aj), which vanishes only for � = 0 [1]. If the area disorder

is small enough [11], the foam reduces its energy when the topological disorder is small:

each bubble is surrounded by neighbors of nearly the same areas and reaches a nearly

regular shape, i.e. bubbles sort according to their sizes. For a foam with free boundaries

and no external force �eld, we expect the smaller bubbles to sort inwards, the larger ones

outwards.

FIG. 3. Photograph of a ferro-
uid foam. The number 7 indicates the only heptagon.

This is exactly what we observe in an \annealed" foam. We prepare a ferro
uid foam

between two Plexiglas plates [10]. We then tilt the plates from the horizontal plane to

an angle of 0:1�, inducing a low e�ective gravity �eld. Large bubbles drift upwards,

small bubbles downwards, resulting in vertical sorting according to size [12]. We then

bring the plates back to horizontal, and the bubbles slowly drift back and settle. This
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procedure allows the bubbles to rearrange and explore the energy space to �nd a lower

energy con�guration. The �nal stable pattern (Fig. 3) displays rounded bubbles and

radial sorting according to size, larger bubbles surrounding smaller ones. We expect this

size sorting to occur also in 3D.

IV. TOPOLOGICAL DISORDER AND ELECTROSTATIC ANALOGY

The \topological charge" quanti�es the deviation from a hexagonal lattice: an n-sided

bubble has a charge q = (6 � n) (i.e. a dislocation (6 � n)�=3). Charge is additive:

the charge of a collection of bubbles is the sum of their individual charges (topological

Gauss-Bonnet theorem [9]).

We then have introduced the following geometrical Gauss-Bonnet theorem [1]. If the


uid fraction � is small enough that we can interpolate P within the Plateau borders,

the gradient of pressure, �~rP is proportional to edge curvatures (Laplace's law) and its

circulation along any closed contour is zero.

If a closed contour C (with n̂ its normal) encloses bubbles with charges qi, then the

outwards 
ux of �~rP across C is determined by the total charge Q =
P
qi :

I
C

~rP � n̂ d` / Q; (4)

There is a complete analogy with 2D electrostatics (Table I). It extends to topological

\dipoles" or \quadrupoles", and the distorsion they induce in a regular lattice (Fig. 1b,1c).

Generalization to 3D cannot be exact, since the pressure and topology correlate with

mean and Gaussian curvatures, respectively, which in general are independent quantities.

However, numerical and experimental observations of a 3D growth law [13] suggest a

correlation between the mean and Gaussian curvatures, which suggests an approximate

analogy may hold in 3D.

The analogy even extends to the expression of energy [1]. For instance, a single

topological charge is seldom observed in a real foam, because its energy cost diverges

(logarithmically) with the foam size. Conversely, two charges of opposite sign lower their
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energy when they get closer. This explains the origin of the \e�ective interaction" [6]

assumed to explain the high occurrence of heptagon-pentagon pairs. In Fig. (3), the

heptagon has two pentagonal neighbours.

V. BOUNDARY CONDITIONS

The possible boundary conditions for foam are: periodic, Fig. (1b); free, if the foam

is surrounded by a 
uid medium, Fig. (3); �xed, if it touches a solid box, Fig. (1d); or

some combinations of these three, Fig. (1a).

For a free foam, the outer 
uid �xes the pressures at the foam boundary. A �xed

boundary, on the other hand, requires that the pressure gradient �~rP (perpendicular

to each bubble edge, itself perpendicular to the boundary) is parallel to the boundary.

Thus in these two cases, the topological charges determine the pressure in the foam as

a Dirichlet or a Neumann problem, respectively. Therefore the pressure �eld should be

unique for �xed topology [1].

Periodic boundary conditions guarantee that the total charge Q = 0 (Euler theorem).

For all other boundary conditions, we can apply the topological Gauss-Bonnet theorem

[9] to the Nb bubbles at the foam's boundary: the total charge of a foam is Q = (Nb+6).

Introducing a modi�ed de�nition ~q = (5 � n) instead of (6 � n) for the Nb bubbles at

the boundary is more convenient: the total topological charge of a foam becomes simply

~Q =
P

i ~qi = 6 (i.e. a dislocation of 6�=3 = 2�).

The shape of the solid box determines the distribution of these 2� among the bubbles

touching the boundary. If the solid box has all corner angles a multiple of �=3, all bubble

edges can simultaneously be straight (isobaric foam). In general, however, the solid box

results in curved bubble edges. The same applies to a concave boundary, for instance an

obstacle placed in the middle of the foam, which introduces a dislocation �2�, as can be

visually checked in Fig. 1d.
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VI. SUMMARY

Equilibrium energy of 2D foams with given bubble areas helps understanding foam

structure in general. The zeroth-order estimate of the ground energy, Hh, is a function

of the area distribution only, independent of the topology. The ratio H=Hh provides a

global marker of how far a foam is from its ground state. We have similarly de�ned a local

marker for each edge length, opening the way towards an intrinsic de�nition of strain in

a foam [1].

The present analysis physically explains the di�erent contributions to a foam's energy:

area mismatch, topology, and boundaries, predicts the foam con�gurations corresponding

to their ground state. The analysis does not depend on the characteristic size and energy

scales. It is also valid for foams in which bubble areas vary slowly. Deriving approximate

results for 3D seems possible.

The pressure, edge curvature and topological charge together form a set of good vari-

ables to characterize a foam. They present a profound analogy with 2D electrostatic

potential, �eld and charge, respectively, through the geometrical Gauss-Bonnet theorem

(eq. 4). The topology determines a foam's energy and pattern. This explains the ori-

gin of topological and geometrical correlations in foams: The bubbles sort according to

their size; topological charges of same signs tend to separate and opposite signs tend to

aggregate.
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potential �eld charge

2D electrostatics potential V electric �eld �~rV electric charge e

2D foams pressure P curvature / �~rP topological charge / (6� n)

TABLE I. Proposed analogy between foams and electrostatics in two dimensions.
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