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Abstract: In 2D random foams we define the mesoscopic stress and strain, which
we measure directly from foam images. We evaluate the mesoscopic definition in static
foams. Comparing the shear flow of monodispersed and polydispersed foams, we discuss
the stress-strain relationship in the elastic regime and the transition between the elastic
and flow regimes.

1 Introduction

Foams and emulsions are complex fluids with one phase (gas or fluid) dispersed in a con-
tinuous fluid phase [1]. Small perturbations to the Newtonian behavior of the continuous
phase can describe the shear rheology of dilute dispersions. Highly concentrated disper-
sions, on the other hand, exhibit very complex rheology, from solid-like characteristics
such as finite shear modulus and yield stress, to non-Newtonian viscosity [2, 3]. The
rheological properties of concentrated dispersions, such as fluid foams or concentrated
emulsions differ drastically from those of their constituent components. Packing and jam-
ming of bubble structures become crucial when the flow requires bubble rearrangement
[4]. How can we predict the mechanical properties of a foam (we use the term loosely to
include all concentrated dispersions) from its structure?

A comprehensive theoretical understanding of the rheological properties of real foams
must account for bubbles’ varying sizes, disordered structure and rearrangement dynam-
ics. Constitutive theory thus far works only for idealized periodic arrays of bubbles. For
periodic monodispersed hexagonal foams and polydispersed hexagonal (small area disor-
der) foams, Khan and Armstrong, Reinelt and Kraynik et al. have derived a constitutive
stress at the microscopic level, which can be averaged over unit cells to yield the macro-
scopic stress tensor [2, 3, 5]. The difficulty of a constitutive approach for real foams lies
in quantifying the random foam structure. Recently we have derived a systematic ap-
proach to estimating the equilibrium energy and configuration of 2D random foams [6].
We define, for the first time, a stress and strain at the mesoscopic level for random foams,
which average to yield macroscopic stress. We test these definitions in both foam flow
experiments and shear foam simulations.



2 Methods

We study both 2D experimental soap foams and simulated Potts model foams.

We create the soap foam by blowing air bubbles into surfactant solution (usually 2% by
volume Dawn brand liquid dishwashing detergent and 1% glycerin in de-ionized water).
Trapped between two horizontal, parallel glass plates, measuring 10cm x 10cm with a
0.7mm separation between plates, the foam is quasi two-dimensional. Figure la shows a
schematic of the flowing foam apparatus: the aqueous foam flows through a quasi-two-
dimensional chamber. The rate of introduction of bubbles into the apparatus controls the
flow rate. Forcing the foam through a narrow constriction at the end of the flow chamber
creates shear in the otherwise steady flow. A digital camera and a frame capture board
capture and store foam images. Custom developed software allows us to identify and
track each bubble during the flow. Figure 1b shows the trajectories of bubbles from 100
images. Furthermore, we can also collect information about each vertex and determine
both the occurrence and the location of topological events.

We also allow these two-dimensional foams to coarsen towards the disordered scaling
state [7]. Figure lc shows one typical intermediately disordered fully equilibrated foam
pattern.

Detailed descriptions of 2D foam simulations using the extended large-QQ Potts model
have appeared elsewhere [6, 9]. In this study, we apply bulk shear by a different method.
With periodic boundary conditions in & and non-slip boundary conditions in ¢, we copy
the lattice spins in the direction of increasing x at a rate proportional to their y coordinate
value. The strain rate is the speed of spin copying divided by the perpendicular distance
to the zero speed line. Figure 2 shows a typical random foam under bulk shear; the strain
rate corresponds to tan a.

3 Formalism

We consider 2D dry foams with fixed bubble areas, assuming that the shear is much
faster than foam coarsening. We also assume that the size and topological disorder is
small enough that our microscopic reference length L is well defined (see below) but large
enough that the polydispersed foam is macroscopically homogeneous and isotropic. Our
formalism generalizes to foams with arbitrary polydispersity, fluid fraction, and varying
bubble size such as for compressible bubbles, bubble annihilation, nucleation, division
and coalescence. We assume that foams are quasistatic (i.e. shear is much slower than
the relaxation of films) so Plateau’s rules hold at all times (i.e. bubble edges are arcs of
circles which meet in triples at 27/3 angles).

We introduce a mesoscopic scale D, corresponding to the size of a ”fluid particle” in
hydrodynamics, over which averages dominate fluctuations so we can treat the foam as
continuous. In statics, D must be much larger than both the correlation length of the
bubbles (i.e. the largest bubble size) and of the film orientations. In flowing foams with
bubble rearrangements, D must be larger than the size of the largest rearranging bubble
cluster. Figure 1c shows on top of a disordered foam, grid lines indicating the mesoscopic
lengthscale D. Each grid box is a unit cell in which the foam is approximately continuous.
Large bubbles require coarse grids while finer grids suffice for smaller bubbles. Ultimately,
the mesoscopic lengthscale should scale out and not affect the measured local stress and
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Figure 1: Experimental two-dimensional foams. a. Simplified schematic of flow apparatus
with an analyzed image, numbers indicating different bubbles. b. Trajectories of bubbles
from 100 images. c¢. A foam at an intermediate stage of coarsening, disordered and
equilibrated. Dashed grid lines indicate the mesoscopic length scale, D (see Section 3).

Figure 2: Simulated two-dimensional foam under bulk shear. The schematic on the left
shows the strain rate profile across the foam. The strain rate of the foam is the slope of
the profile, tan a.



strain.

In an equilibrated foam, detailed force balance dictates that all bubble films have the
same stress force f. Thus the force on a box is the sum of all stress forces exerted by
the films pulling on the 'box,” which vary with position, time, and orientation of the film
elements. Thus the stress on the box due to surface tension is:

P i N
o :Bgez(@eﬁ (1)

where é is the unit vector tangent to the films crossing the grid box, which we can
determine from the foam image. Thus the stress due to surface tension is a symmetric
tensor, whose trace is proportional to the density of films, i.e. to the number density of
bubbles within the box.

The instantaneous macroscopic stress for the foam is the average of the local stress
over the grid boxes. It has both non-dissipative and dissipative parts. The non-dissipative
(i.e. static) stress is [2, 3]:

0" = 0P 4 o°, (2)

where,

o= 4 S(=P), )

is the average bubble pressure within the box, and A is the area of the box. This pressure
term comes from the bubble pressure and the capillary pressure in the Plateau borders
[2]. The former determines the curvature of each film according to Laplace’s law. The
latter is proportional to fluid viscosity [8]. The dissipative part relates to foam’s fluid
properties and applies only to flowing foams.
Formally, we define the strain u as the conjugate variable to stress ¢ with respect to
the free energy F':
dF = odu. (4)

Thus strain is undefined up to an additive constant. For a random foam, we conjecture
that we can define a local strain by averaging over many films. Empirically, we define the
local strain at the mesoscopic length scale D as:

S 1w, (5)

u =
ab Lab

where [y, and Ly, are the real and reference lengths of the film between bubbles a and
b, respectively; é is again the unit vector tangent to the films crossing the grid box. The
reference length L, is a function of the areas of bubbles a and b [6]. [ > L corresponds
to a stretched film and [ < L corresponds to a compressed film. Thus this definition of
strain depend only on the present vertex positions and does not require knowing vertex
positions at equilibrium. At equilibrium [, on average tends to Ly, [6] and the strain
tends to zero.

Averaging local stress and strain yields the macroscopic stress and strain. The macro-
scopic shear stress is (o,,), averaged over all grid boxes, and the macroscopic normal
stress, or hydrostatic pressure is (T'r(0)) = (044 + 04y), the trace of the stress tensors
averaged over the whole foam.
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Figure 3: Distribution of local stress shown as vectors. a. Stress in a static foam. b.
Stress in a sheared foam. Vector lengths enlarged 100 times to show details.

4 Static Foams

We measured the stress and strain on fully equilibrated foam images resembling Figure
lc. Both global and local stresses are zero with fluctuations (data not shown), as we
expect.

Figure 3a shows a simulated equilibrated foam (lattice size 256 x 256). A mesh of size
D = 30 (larger than the size of the largest bubble) overlays the image. The arrows show
the distribution of local stress components: the vertical arrows show &; = 0;;€; + 0,;€;,
and the horizontal arrows, ¢; = 0;€; + 0,;¢;. We have enlarged the arrows by a factor
of 100 to show detail. Figure 3b shows the same foam after shear. The vectors on the
overlay mesh of size D = 30 show the local stress components &; and &;. The arrows,
corresponding in length to the magnitude of local stress, are significantly longer than in the
equilibrated case. The averaged macroscopic hydrostatic pressure, (T'r(c)/2) = 0.001y
for the equilibrated foam, and (T'r(c)/2) = 0.08y for the sheared foam, where ~ is the
surface tension. The latter is much larger than the former, as we expect.

To illustrate the distribution of stress tensors, we calculated the eigenvalues A, Ay
and eigenvectors dy,dy of the local stress tensors 0;;. Figure 4 shows the stress tensors
from the steady foam flow experiments, averaged over 2000 frames. We present the local
stress tensors as ellipses, with the major and minor axes corresponding to A;d; and Asds,
respectively.

5 Dynamic Foams

The response of foam under shear falls in two distinct regimes: the elastic regime where
the bubbles deform elastically but no bubble rearrangements occur, and the flow regime
where bubble rearrangements result in constant dynamic changes in film lengths.

In the elastic regime, the stress (eq. 1) is linearly proportional to the strain (eq. 5)
[10], with the proportionality the Young’s modulus. In the flow regime, however, u no
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Figure 4: Stress distribution in foam flow through a constriction, corresponding to Figure
la. The major and minor axes of the ellipses are eigenvectors of the local stress tensors,
their magnitudes proportional to their eigenvalues.

longer defines the strain. Because T1 events destroy old films and create new ones, film
lengths vary discontinuously so the reference length L ceases to be meaningful. The time
derivative, 7, then should include both the elastic variations of film length [ and the
dynamic variation of L. We introduce a topological tensor T to account for this effect of
T1 events:

Vig =ty + Ty, (6)
where V is the gradient of the velocity field v,

dv;

Vi = oot
2 dé7 (7)

T relates to the rate of T1s per unit area. We conjecture that 7" depends only on é; ® é;
and that T'race(T) = 0. For steady flow, u is time independent [11], hence:

V=T, (8)

i.e. the gradient of the velocity field is equivalent to the T1 rate. Figure 5 shows that
in foam flow experiments, both the velocity gradients and T1 rates increase near the
constriction.

Figure 6 shows the stress-strain curve from simulated foams for the transition between
elastic and flow regimes. We apply bulk shear to a monodispersed hexagonal foam: as
the strain increases, the average shear stress increases nearly linearly until at a strain of
approximately 0.3, the yield strain, T1 events begin and the foam flows. The accumulated
shear stress drops in response and then fluctuates around a steady value independent of the
increasing strain. The foam flows like a fluid. On the other hand, the average hydrostatic
pressures are independent of shear strain.
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Figure 5: Steady foam flow experiment. Left: Speed distribution. Right: T1 rate, the
number of T1 events per unit time per unit area.
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Figure 6: Stress-strain plot of simulated foams for a monodispersed foam. Dotted line is
average pressure and solid line is average shear stress.



6 Summary

We have defined stress and stain at a mesoscopic scale, for 2D equilibrium random foams
and out-of-equilibrium, flowing foams. These definitions allow direct measurement of local
stress and strain from foam images.

We have presented the first full stress and strain distributions for a flowing foam.
More detailed analysis will determine whether force chains form in foams as they do in
granular materials [12]. Averaging the local stress and strain over the mesoscopic length
scale yields the macroscopic stress and strain, which we can then compare to experimental
stress-strain measurements.
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