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Abstract

The mitochondrial DNA genome has a de,nite multifractal structure. We show that loops,
hairpins and inverted palindromes are responsible for this self-similarity. We can thus establish a
de,nite relation between the function of subsequences and their fractal dimension. Intriguingly,
protein coding DNAs also exhibit palindromic structures, although they do not appear in the
sequence of amino acids. These structures may re2ect the stabilization and transcriptional control
of DNA or the control of posttranscriptional editing of mRNA. c© 2002 Elsevier Science B.V.
All rights reserved.
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Understanding the relation between biochemical function and the detailed structure
of DNA sequences might help us to translate the enormous quantity of sequence data
currently being produced into treatments for cancer and viral diseases, new drugs, new
genetically engineered crops and animal varieties, and other important practical appli-
cations [1]. In this paper, we report that the sequence of the mitochondrial complete
genome (mtDNA) presents a well-de,ned self-similar spatial conformation, associated
with typical repeated nucleotide sequences (loops, hairpins and inverted palindromes)
in regions coding for functional RNAs and in control regions, including
regions relating to the production of transfer ribonucleic acid (tRNA), ribosomal ri-
bonucleic acid (rRNA), and other genes [2]. We also ,nd evidence of self-similarity in
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mitochondrial and nonmitochondrial protein coding DNA. We interpret GenBank
sequences [3] in the form of DNA walks (L?evy 2ights) using the formalism of diJusive
processes and multifractal analysis.
We concentrated our analysis on mtDNA, located in the mitochondria, the organelles

responsible for aerobic oxidation in eukaryotes. The complete mtDNA is much shorter
than the nuclear DNA, but suKciently large for statistical analysis for higher multicel-
lular animals. Analysis methods are easier to apply to DNA sequences of this length,
around 20,000 base pairs (bp), than to nuclear DNA with its millions of bp. mtDNA
has relatively few genes, all of which have been identi,ed, and the biochemical path-
ways of mitochondria as well as all the proteins resulting from mitochondrial genes
are known [2]. mtDNA is a good candidate as biological model to develop our un-
derstanding of the relationship between the gene and its environment. We also wish
to develop techniques that we can use for phylogenetic analysis. Recent work [4,5]
suggests that the structure and organization of DNA sequences relates to the complex-
ity of the phenotype and environmental adaptation [6,7]. Because they are maternally
inherited without recombination with paternal DNA, organelle’s DNA preserves the
evolutionary history of the organism much more clearly than the nuclear DNA [2].
Many studies assume that mutations in nuclear DNA can serve as a rough ’molecular
clock’ [8]. However, variations occur in the evolution rate of diJerent nuclear genes
[9,10]. Thus, phylogentic studies focused on the DNA of organelles (mitochondria or
chloroplasts) could be an alternative way to establish the evolutionary timing [4,11].
Finally, the present article does not consider chloroplast DNA (cDNA), because fewer
genomes are completely sequenced and we need complete sequences to be able to
compare like groups of genes and their control regions.
This background encouraged us to study the relation between the content of mtDNA

sequences and the biochemical function of their protein-coding and control sequences.
When we talk about ‘biochemical expression,’ we are supposing that the genome de-
termines phenotypes through biochemicals using a language encoded in the nucleotide
sequence. Many approaches have sought this hidden language. The most common ap-
proach is to search for similarities between the sequences of genes whose proteins
perform the same function in diJerent species or even simply to look for matching se-
quences without regard to the function of the expressed proteins [12–16]. Histograms
counting the appearances of particular nucleotide strings in the genome also allow in-
terspecies comparisons [17,18]. Mantegna et al. applied Zipf’s law for the analysis of
linguistic texts to noncoding sequences 1 [19].

However, since the early 1990’s an alternative sequence analysis technique has
applied the theory of diJusive processes to the genome, representing DNA as pseudo-
random walks, known as L?evy 2ights [20–23]. Many types of L?evy 2ights are possible
depending on the diJerent criteria for the steps. The literature usually assigns a right
step to purines (cytosine and thymine) and a left step to pyrimidines (adenine and
guanine), de,ning a one-dimensional walk [22]. In the present article, we will use
the Berthelsen–Glazier–Skolnick approach [21], because this multidimensional walk
permits us to represent the self-similar spatial structures of the DNA double helix,

1 In their work, the control regions are treated as noncoding.
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while the unidimensional walk does not. We construct this walk to obey the following
symmetries, based on the biochemical characteristics of the genome: complementarity,
re2ection, substitution and compatibility [4,21]. When we consider these arguments
together in two dimensions (d=2), we have right, left, up and down steps for thymine
(T), adenine (A), guanine (G) and cytosine (C), respectively. We can construct a L?evy
2ight in higher embedding dimensions (d¿ 2), using similar arguments. Furthermore,
we consider just the protein-coding and control regions of the DNA sequence, reducing
the interference of ‘junk’ sequences between genes [5]. Although noncoding regions are
few in Metazoan mtDNA, the majority of mtDNA sequences for green algae and plants
are neither transcribed into functional RNA, protein coding nor control sequences. We
also remark that the embedding space for the DNA walk is not a phase space in the
traditional sense of dynamical systems, because we are not describing a movement or
oscillation in time, but a discrete space of possible sequences.
For example, we transcribe the Balaenoptera physalus mtDNA sequence (,nback

whale, GenBank accession number NC001321) for valine tRNA (Val-tRNA) in
Fig. 1(a) into the walk represented in Fig. 1(b). The histogram in Fig. 2 shows the same
walk as Fig. 1(b), but for the complete genome of mtDNA. This mtDNA is 16372 bp
long. The height along the z axis is the number of steps inside a box of length 16 bp.
All protein-coding (including RNAs) and control segments of the walk are indicated
by arrows. Here, we cover the two-dimensional walk using a moving-box algorithm
[24]. Instead of a qualitative and subjective description of this irregular object, we can
quantify it through its generalized fractal dimensions Dq and their associated Legendre
transform, the singularity spectrum f(�).
We estimated Dq and f(�) for the DNA walk using three diJerent methods: box-

counting [25–27], moving-boxes [24,28] and sandbox [29]. The ,rst estimates Dq by
covering the walk with a set of boxes ,xed in a grid. Dq is the slope of the ln ‘
versus ln

∑
j p

q
j plot, where ‘ is the box size in bp, pj = (# of stepsin each box)=

(# of steps of the walk) and positive q preferentially weight the dense regions (spikes)
of the histogram in Fig. 2, while negative q quantify the sparse regions of the 2ight. The
second algorithm is an improvement on box-counting, which also covers the walk with
a set of boxes, but independent of a grid. The boxes can move in space, adapting to
the geometry of the analyzed object, reducing errors due to box misalignment. Finally,
the sandbox method takes random samples from the walk, and computes Dq through
the average slope of ln ‘ versus ln

∑
j p

q
j . Here, ‘ is the diameter in bp of the sample

sphere. This method yields results of the same quality as moving-boxes. We estimate
f(�) in the same way by ,tting the linear portion of a log–log plot [24]. Here, the
singularity exponent � weights the light and heavy regions of the walk in the same way
as q, but q is an intensive variable, while � is extensive. A simple way to understand
f(�) is the following: The density of each occupied point of the walk diverges in a
spike at in,nitely small radius. Around the point, the density of points in a sphere of
radius r decays as r−� so � de,nes the singularity structure of the spike. f(�) is the
fractal dimension of the subset of points of the walk that have singularity �. Bigger
� represent the sharp spikes in Fig. 2 while smaller � are the rare,ed regions. In a
monofractal, all points have the same scaling exponent � and f(�) is just a point with
that value of � and f the fractal dimension of the whole object. If the walk were not a
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Fig. 1. (a) Suggested conformation for the Val-tRNA of ,nback whale mtDNA. (b) Two-dimensional
walk of (a), where the DNA walks equivalent to the nucleotides 1–9 and 58–66 in (a) are represented
by dashed arrows in (b). (c) General diagram for all tRNAs, except for initiator tRNA: A, C, G and U
nucleotides (circles), monophosphate group (P), pyrimidine (Y), purine (R), pseudouridine (), hypermod-
i,ed purine (H) (extracted from Rich and RajBhandary [35]). (d) Dzero for d = 2; 4; 6; 8 and (e) f(�) of
the two-dimensional L?evy 2ight of ,nback whale mtDNA, Fig. 2, where circles, squares and diamonds
represent moving-box, box-counting and sandbox algorithms, respectively. (f) f(�) using moving-boxes for
nonmitochondrial DNAs: human �-globin region (circles), thale cress chloroplast (squares), coliphage T4
virus (diamonds) and E. coli bacteria (triangles).

fractal, our estimate of the slope Dq or f(�) would vary inconsistently with the length
scale, and any attempt to ,t the slope would result in large errors or unreliable values.
However, the three methods give consistent results, Fig. 1(d), and estimate Dzero with
very small errors for experimental data: Dzero = 1:14± 0:01; 1:15± 0:01; 1:122± 0:006
for ,nback whale mtDNA using box-counting, moving-boxes and sandbox methods,
respectively. For most non-DNA experimental multifractals, e.g. in 2uid dynamics, we
cannot estimate Dq this well and a 10% error is considered a good result which reliably
indicates the presence of a multifractal. The error in our DNA Dq estimates is always
smaller than 10%, and ¡ 1% for Dzero. The values for Dq at f(�), 16 q6 5, coincide
for each method, Fig. 1(e). However, we cannot con,rm the values of �min obtained for
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Fig. 2. Two-dimensional walk for the mtDNA of ,nback whale, where the x-axis represents the DNA walk
for guanine (right step) and cytosine (left step), the y-axis, thymine (up step) and adenine (down step),
with the number of steps lying inside a box of length 16 base pairs plotted along the z-axis. The arrows
indicate the position of each protein-coding (including RNAs) and control segment along the walk.

the sandbox method independently, because the moving-box and box-counting are not
reliable in this region. Thus, we have de,nitively established the multifractal character
of the walk.
An initial clue to the structures responsible for the self-similar spatial conformation

of mtDNA is the value of Dzero. We need to embed in at least two dimensions to rep-
resent a fractal of dimension between one and two. If we embedded in one dimension,
we could not identify or measure self-similar structures due to the presence of false
neighbors [30]. As the Takens theorem suggests, we need to embed in a maximum of
3 or 4 dimensions, since d¡ 2Dzero + 1 [31]. The measured Dzero saturates around 1.2
in Fig. 1(b), for embedding dimensions bigger than 2. So, d = 2 suKces to describe
the walk.
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Moreover, we can see from the density plot in Fig. 2 that all tRNAs appear as
spikes, with the 12S and 16S rRNAs appearing as the dense structures at the top
of the histogram. The secondary interactions between non-neighboring bases due to
folding of the DNA (resulting from the two and three hydrogen bonds between A and
T and C and G, respectively) of tRNA and rRNA result in a two-dimensional structure
(Fig. 1(c)). These structures under tertiary interactions (hydrogen bonds between the
arms of tRNA) and the actions of enzymes result in an L-shaped spatial structure with
speci,c biochemical function.
The reason that tRNAs are regions of high density (the nucleotides at positions

1 to 9 and 58 to 66 in Fig. 1(a) and its equivalent in dotted lines L?evy 2ight in
Fig. 1(b)) is that the nucleotide sequence coding for one tRNA arm is followed by
its re2ected complementary sequence (inverted repeats), and the resulting net DNA
walk displacement is null. Usually some nucleotides intervene between the direct and
re2ected complementary sequences so the walk returns to near its start. In such a
situation, a single DNA strand can fold itself into a loop. Each tRNA arm, for example,
is a loop. tRNA arms are typically three to eight base pairs long. We ,nd the inverted
repeat length nW in Fig. 1(a) using the following criteria. We start with a long sequence
pick a subsequence in it of ,xed length, scan through the full sequence and ,nd the
nearest occurrence of the inverted subsequence. If the DNA sequence is in,nite and
non-periodic, we always ,nd the inverted subsequence somewhere, but, the probability
of an accidental matching sequence nearby is very low for long subsequences. The
probability of an accidental match in the case of a DNA chain composed of four letters
increases with the distance i between the given subsequence and the inverted repeat.
The probability of an accidental match is

∑
i(1 − 1=4nW )i1=4nW at the ith nucleotide

from the original sequence. We accept a maximum 10% chance that any inverted repeat
is accidental. So, the probability that the two-dimensional structure with four inverted
repeats in Fig. 1(a) is accidental is ¡ 10−4.
Furthermore, if we consider the nucleotides (1–12 bp) which do not form part of

inverted repeats as a simple two-dimensional random walk, the variance of the as-
sociated L?evy 2ight � will be 3:8 bp. We can estimate � from Fig. 1(c). Here, the
nucleotides at positions 9, 16–17, 20, 26, 34–36, 38, 44–46, 59 and 73 are not part of
inverted repeats. If the DNA sequence were uncorrelated, these 14 bp would contribute
a variance of around 3:2 bp, since �=

√
3nsteps=2 in a simple two-dimensional random

walk, where nsteps is the number of steps of the random walk. Here, we neglect the
anticodon which is speci,c to each individual tRNA, positions from 34 to 36, and use
the remaining sequence to construct our walk, since we are not studying speci,c tR-
NAs, but the structure common to all tRNAs. The 4 bp at positions 12, 23, 32 and 47
can walk only in two directions, because they must consist only of purines or pyrim-
idines, adding 2:0 bp more of variance (since �=√nsteps for a one-dimensional walk).
Finally, we have some well-de,ned sequences such as acceptor arms (sequence ACC)
that have a speci,c displacement. Therefore, Fig. 1(c) results in a cluster-like structure
for the walk with � = 3:8 bp for the entire tRNA, centered at (0;−1) in the space of
possible sequences, assuming that the walk started at the origin (0,0).
Despite the remarkable similarity between Figs. 1(a) and (c), Fig. 1(a) is not the

real spatial secondary Val-tRNA structure. The walk does not include the unusual bases
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present in tRNA (thymine, pseudouridine, dihydrouridine, etc.) or uracil-guanine or
adenine-guanine bonds. Although absent from DNA, these bonds are present in tRNA,
stabilizing its shape. We also omit the arm due to the sequences GAA and UUC
respectively at 39–41 bp and 44–46 bp in Fig. 1(a). Moreover, the acceptor sequence,
given by ACC at the end (or beginning) of the sequence, is not present. We do not
allow mismatch (or noise) between the two complementary strands, but only exact
inverted repeats to reduce the probability of accidental matches. Finally, the anticodon
for valine is CAA, and the cruciform diagram shows GUU as the anticodon. This last
point indicates that the Val-tRNA is not coding in the direction 5′ → 3′ of the direct
strand, but in the 5′ → 3′ direction of the complementary strand.
tRNAs are not the only molecules in mtDNA that present loops. rRNAs are also very

rich in such highly organized sequences with a huge number of cross-shaped structures,
loops and hairpins [2]. Hairpins are loops without nucleotides intervening between the
direct and re2ected complementary sequences. We can see in Fig. 2 that the walks for
12S and 16S rRNA result in a dense structure at the top of the histogram, re2ecting
the presence of inverted repeats.
Furthermore, the self-complementary regions de,ned by loops have an important

role in stabilizing circular DNAs. mtDNA is circular like bacterial DNA. In super-
coiled double-stranded mtDNA, two large inverted repeat sequences, bigger than 7 bp,
form hydrogen-bonded cruciform loops [2]. These two cruciform loops, called inverted
palindromes, upon partial denaturation can reduce the linkage number, relaxing the
double strand and converting supercoiled DNA to its unsupercoiled relaxed form.
A surprising result is that protein-coding DNA sequences, like nicotine adenine dinu-

cleotide dehydrogenase subunit 1 (gene ND1), also contribute to the self-similar nature
of the walk, since they are rich in self-complementary sequences. Fig. 2 shows peaks
for ND1, that coincide with inverted nucleotide repeat sequences. We would not expect
inverted repeats to contribute to the organization of protein-coding sequences, since the
inverted repeats will be lost when the sequence is transcribed into protein, especially
since the length of inverted repeats is not in subsets of triplets as it is for codons. We
might expect that the ,nal amino acid sequence would be more critical than the in-
termediate RNA structure for protein coding sequences, so that the palindromes would
have to be ‘,tted in’ where the degeneracy of the DNA codons allows for some se-
quence 2exibility without disturbing the protein sequence (e.g. the degeneracy in the
third-base ‘wobble’ can allow both C–G and A–T rich sequences to code for the same
protein. We would not expect this 2exibility to be suKcient to allow numerous long
tandem repeats, but additional 2exibility may come from the substitution of closely
related amino acids (hence allowing a much greater eJective coding degeneracy) for
noncritical sites in a protein (e.g. internal structural sites) [2,32]. However, we found
such repeated self-similar structures in nonmitochondrial DNA sequences too. We esti-
mate f(�) using the moving-box method for the human �-globin region (HUMHBB),
thale cress chloroplast (AP000423), coliphage T4 virus (AF158101) and E. coli bac-
teria (U00096) in Fig. 1(f). In contrast with Fig. 1(e), where we apply three diJerent
methods, we show the f(�) spectrum calculated using just the moving box algorithm,
since we have validated the equivalence of the methods in our work with mtDNA. The
results for positive qs were con,rmed through box-counting (not shown). Unfortunately,
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these methods do not allow us to calculate the �min of f(�) for DNA sequences. In
this case, box-counting and moving-box are unreliable for negative q’s, and sandbox
requires excessive computation times. Furthermore, the sequences for �-globin and col-
iphage T4 are purely protein coding. Although loops, hairpins, inverted palindromes
and other unnamed sequence relations do not play a structural role in the protein, they
may play a role in posttranscriptional editing of transcribed raw RNA sequences and
in stabilizing and determining the transcription into proteins of the resulting messenger
RNA (mRNA). For example, McPheeters et al. predicted stem-and-loop structures in
the early lysozyme mRNA of coliphage T4 [33]. While it is diKcult to see how such
relatively small scale structures could greatly aJect the stability and spatial structure
of normal double-stranded DNA, they might have a number of eJects on the DNA
itself, e.g. they might modulate the pitch and writhe of the DNA and aJect the histone
wrap, thus regulating transcription non-speci,cally; they might help to determine the
local direction of transcription, or they might re2ect speci,c binding sequence motifs
overlayed onto the DNA sequence without aJecting its coding structure, thus allowing
the same DNA sequence to function as both coding sequence and regulator [34]. We
will discuss this problem in future work.
We observe identical self-similarity in mtDNA of algae and plants: Chlamydomonas

eugametos (green algae, AF008237), Pedinomonas minor (green algae, AF116775),
Marchantia polymorpha (liverwort, M68929), and Arabidopsis thaliana (thale cress,
Y08502). Fungi, as Hansenula wingei (D31785), Podospora anserina (X55026),
Schizosaccharomyces pombe (X54421), and Saccharomyces cerevisiae (baker’s yeast,
NC001224), also present a well-de,ned f(�) curve. We found the same behavior in ne-
matodes (worms) too: Caenorhabditis elegans (NC001328), Ascaris suum (pig round-
worm, NC001327), and Onchocerca volvulus (river blindness roundworm, NC001861).
We could track the self-similarity of insects, Drosophila yakuba (2y, NC001322),
Drosophila melanogaster (fruit 2y, NC001709), Ceratitis capitata (mediterranean fruit
2y, NC000857), and Apis mellifera (honey bee, NC001566), computing the fractal
dimension for the annelid, Lumbricus terrestris (common earthworm, NC001673).
However, the best multifractal tracking is for the chordate branch of the Metazoan
phylogenic tree. This branch starts with Strongylocentrotus purpuratus (purple sea
urchin, NC001453), and Paracentrotus lividus (common urchin, NC001572). Then,
we must consider the Hemichordate Balanoglossus carnosus (acorn worm, NC001887),
followed by the chordate Branchiostoma lanceolatum (amphioxus, NC001912). After
that, we have lampreys as Petromyzon marinus (sea lamprey, NC001626). Sharks are
the next evolutionary step and the mtDNA L?evy 2ight of Mustelus manazo (gummy
shark, NC000890) is a multifractal object. The ,shes, Cyprinus carpio (common carp,
NC001606), and Crossostoma lacustre (tasseled-mouth loach, NC001727), as well as
the amphibian Xenopus laevis (African clawed frog, NC001573) are also self-similar.
The DNA walk of American alligator (Alligator mississippiensis, NC001922), chicken
(Gallus gallus, NC001323), and the monotremata Ornithorhynchus anatinus (duckbill
platypus, NC000891) are multifractal too. For mammals, we do not limit our compu-
tation to ,nback whale, but we extend the analysis to more six species: Mus mus-
culus (mouse, NC001569), Rattus norvegicus (Norway rat, NC001665), Bos taurus
(cow, NC001567), Phoca vitulina (harbor seal, NC001325), Homo sapiens (human,
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NC001807), and Balaenoptera musculus (blue whale, NC001601). We thus see true
multifractality in all 35 mtDNAs analyzed showing that self-similarity is independent
of level of evolutionary complexity.
Loop-, hairpin- and inverted palindrome-rich structures, like tRNA and rRNA, as

well as protein-coding and control sequences which also contain inverted repeats, are
responsible for the cluster-like structures we observe in DNA sequence L?evy 2ights.
We can characterize the clustering of the DNA walk using multifractal analysis. The
multifractality of mtDNA and the f(�) spectrum for nonmitochondrial DNA suggest
a general multiscale nonlinear organization for both coding and control sequences.
The biological mechanism which generates this structure, its function and the relation
between codon choice in protein-coding sequences and the inverted repeated relations
are objects of our current research.
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