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Abstract

Because the extended or cellular large-Q Potts model (CPM) captures e9ectively the global
features of tissue rearrangement experiments, including cell sorting and tissue engulfment, it has
become a common technique for cell level simulation of tissues. However, it omits three key
elements of real cells, their <xed membrane area, their attractive binding and the dissipation
of making and breaking membrane contacts. In this paper, we modify the Hamiltonian to use
negative surface energies, constrained surface area and a spin =ip energy threshold to improve
the correspondence to reality. We <nd that the new model correctly predicts several dynamical
behaviors of cells which the original CPM does not, including the hierarchy of di9usion constants.
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1. Introduction

In 1962 Steinberg proposed that di9erences in cell–cell adhesion energies (di9eren-
tial adhesion) could explain many patterns observed in vitro and during development
[1]. This fundamental observation has inspired a number of energy-based models of
tissues including the cellular large-Q Potts model (CPM). When multiple types of cells
from a primitive animal or an embryo are dissociated, randomly intermingled and then
re-aggregated, they re-establish coherent homotypic domains, the less cohesive types
forming layers surrounding the more cohesive types. This cell sorting o9ers insight
into the mechanisms governing morphogenesis. Sorting has long been studied using
organisms including hydra [2]. Numerical simulations of cell sorting using the CPM
started almost a decade ago [3,4]. They showed that random cell =uctuations and dif-
ferential adhesion between di9erent cell types suJce to simulate various biological
phenomena, including cell sorting, tissue engulfment and tissue rounding. Potts model
simulations can also describe nonbiological phenomena like grain growth [5] and foam
rheology [6]. The predictive power of the CPM goes remarkably far: the CPM plus
reaction-di9usion equation can describe the entire life cycle of the slime mould Dic-
tyostelium discoideum [7].
Because of its =exibility and simplicity of implementation, CPM methods are in-

creasingly common in complex biological simulations [8–11]. However, the model
parameters do not correspond directly to important experimental properties and the
dependence of the simulation on its own parameters has not been studied systemati-
cally. While certain scalings, e.g. energy/temperature have unambiguous meanings, the
parameters generally have complex nonlinear interactions which make dimensional ar-
guments for parameter dependencies diJcult or impossible. Here we investigate some
of these dependencies to provide guidance for parameter tuning.
All models are compromises between simplicity and realism. The standard CPM

works surprisingly well for many purposes, even though it neglects three fundamental
aspects of cell behavior: that cell membrane interactions are attractive, that the total
amount of cell membrane is <xed and that making and breaking membrane contacts
is dissipative. In this paper we extend the CPM to include these biological e9ects and
<nd that we then correctly predict the hierarchy of di9usion constants in experiment,
which the standard CPM gives incorrectly.
Recently, we characterized cell motion in di9erent types of cohesive aggregates to

elucidate the role of adhesion in cell motion [12]. We used confocal microscopy to
study the center of mass displacements and membrane deformations of single endoder-
mal hydra cells in ectodermal and endodermal 2D aggregates. Here, the endodermal
aggregates are the more cohesive [13,14]. In both types of aggregate, cells perform a
persistent random walk, with the di9usion constant smaller in endodermal aggregates.
The cell deformations are random, with their amplitude and direction uncorrelated with
the center of mass motion. The random forces exerted by the surrounding cells predom-
inate over the deformations of the cell itself, displacing the cell within the aggregate
[12]. In this paper, we examine quantitatively the extensions of the CPM required to
simulate these experimental results and show that negative values for the surface en-
ergy are essential. We also study systematically the in=uence of the overall parameters
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on the cell motion over a wide range determined by the following two requirements:
(i) cells should move di9usively (i.e., they do not trap) and (ii) they should not split.
In a future paper we will explicitly constrain the velocity autocorrelation of cell motion
and compare the results to experimentally observed large scale =ows [15].

2. The CPM

The CPM [3], assigns a spin �ij to each lattice site, (i; j). The set of all sites with
the same spin, �, de<nes a cell. Each cell has an associated cell type, �. The energy per
unit surface area depends on cell type, J��′ . We introduce three cell types, �∈{l; d; m},
where l denotes the less cohesive light cells which we compare to ectodermal cells in
hydra experiments, d denotes the dark cells (i.e., endodermal cells), and m the culture
medium. In 2D simulations, we introduce the cell volume and membrane area as a
target area A� and a target perimeter l�. The latter modi<es previous simulations [3] to
model the <xed amount of membrane in each cell. It also prevents the splitting of cells
into many subcells in the case of negative surface energies J . Thus, the total energy
is:

H =
∑

(ij)−(i′j′)

J��′(1− 
�;�′) +
{
�1
∑
�

(a(�)− A�)2

+�2
∑
�

(l(�)− l�)2
}
(1− 
�;m) ; (1)

where a(�) and l(�) are, respectively, the area and perimeter of cell �, and �1 and �2
are the elasticity parameters. At each step, we apply the Metropolis algorithm, choose
a site at random and accept a proposed change in its spin value with a Boltzmann
transition probability dependent on temperature T ¿ 0:

P = {exp (−(LH − H0)=T ) :LH ¿H0; 1 :LH ¡H0 ; (2)

where H0 is a threshold for a spin =ip adopted from Hogeweg et al. [10].
In the original Potts model for grain growth, the surface energies were positive

because grain boundary cost energy. Choosing positive energies might seem natural in
the biological case as well, because the cells try to minimize their surface area, while
for negative surface energies the cells tend to fall apart to create the maximum possible
surface area. Thus, for positive surface energies a cell can reduce its surface energy by
creating dark–dark or light–light boundary at the expense of dark–light boundary and
by making all boundaries as short as possible. However, real cells are cohesive, i.e.,
they reduce their energy by binding, while their total membrane area remains constant.
Thus we should constrain the binding energy and surface area separately, rather than
jointly using a single term. In the case of =uids, a negative contact energy corresponds
to miscible =uids which do indeed maximize their contact area (it goes to in<nity) in
the absence of any surface area constraint.
We choose both positive and negative surface energies to satisfy the sorting condition

that the corresponding surface tensions [4] should satisfy �dm¿�dl+ �lm and the other
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parameters to ensure complete sorting, to mimic the situation in most simulations.
We use a square lattice of 128× 128 sites. The number of the neighboring sites is 8.
We examine di9usion of single cells of either type in homogeneous aggregates of either
type with periodic boundary conditions (256 cells with a target size of 64 pixels). For
a given aggregate, we calculate the mean-squared displacement (MSD) of one cell as
a function of the time interval t:

〈�2(t)〉= 〈(xi(t0 + t)− xi(t0))2 + (yi(t0 + t)− yi(t0))2〉 ; (3)

where we take the average over 16 ensembles and over all possible t0 using overlapping
intervals [16]. The slope of the MSD for short times gives the di9usion constant
[16]. We also compute the velocity autocorrelation function C(t) = Z(t)=Z(0) with
Z(t) = 〈̃vi(t0 + t) · ṽi(t0)〉, where ṽi is the velocity calculated using a time step interval
Lt = 1 MCS.

3. Statistical calculations

We <rst use the same positive surface energies as in previous simulations (T = 5,
Jll=14, Jdd=2, Jdl=11, Jdm= Jlm=16, Al=Ad=20, H0 =0, �1 =1 and �2 =0). The
surface tensions [4], are, respectively, �ld = 3, �lm = 9 and �dm = 15. Light aggregates
have a lower surface tension with external medium than dark aggregates, corresponding
to their lower cohesion. The MSDs of a dark cell in both light and dark aggregates
are linear, indicating normal di9usion. Since di9usion occurs mainly by creating and
destroying units of surface area rather than by replacing a unit of light surface by
a unit of dark surface, we expect that the energy threshold for cell movement will
be higher for larger absolute values of surface energy (with respect to zero). Thus,
in the CPM, we expect more cohesive cells to di9use faster than less cohesive cells
for positive energies and slower for negative energies. The expected result for positive
energies is opposite to our common sense that di9usion should be faster in less cohesive
aggregates and also to our experimental results: in hydra aggregates, endodermal cells
move faster in ectodermal aggregates than in more cohesive endodermal aggregates
[12]. As expected from theoretical considerations, the di9usion constant is lower in
the less cohesive light aggregate than in the more cohesive dark aggregate. In order
to recover the correspondence with experimental results [12], we must use negative
surface energies. The <nal equilibrium pattern, however, depends only on the energy
di9erences between the various Es and not on the value of zero energy.
We therefore use the following parameters: T = 10, Jll =−5, Jdd =−25, Jld =−3,

Jlm = 1, Jdm = 20, H0 = 0, �1 = 10, Al = Ad = 260, �2 = 5:5, ll = ld = 65. Although
we use negative energies, the surface tensions are positive with a larger value for the
dark/medium interface: �ld = 12, �lm = 3:5 and �dm = 32:5. We <rst carefully checked
that the chosen surface energies ensured complete sorting, matching simulations with
positive energies [4] or experiments with hydra aggregates [13] (data not shown). For
negative energies a dark cell in a light aggregate should move more quickly than in a
dark aggregate. Fig. 1 shows that the MSD of dark cells is larger in light aggregates as
found in experiments [12]. Fig. 2a summarizes the in=uence of the surface energy J��
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Fig. 1. Mean squared displacement (MSD) of a dark cell in a dark aggregate d (bullets) and in a light
aggregate l (circles) using negative surface energies. The simulation used the following parameters: T =10,
H0 = 0, Jll =−5, Jdd =−25, Jdl =−3, Al = Ad = 64, ll = ld = 35, �1 = 10 and �2 = 5:5. We averaged 16
cells in one simulation for this calculation.

on homogeneous aggregates: the di9usion constant D decreases as J�� decreases (i.e.,
as the cohesiveness increases). Experimentally, we always found a short persistence
time for the motion of cells within aggregates [12].
In simulations, we computed the autocorrelation function of the velocity for both

positive and negative surface energies. The autocorrelation function always exhibits
a negative peak at short times and then reaches zero rapidly as in Fig. 3 (curve
with H0 = 0). At long times, velocities are uncorrelated (C(t) = 0), consistent with
a random walk. Thus, the main di9erence between the simulation and experiment for
hydra aggregates is in short time behavior. The autocorrelation is always positive
experimentally and <ts roughly a decaying exponential, indicating persistence in the
cell motion at short times [12], while, the autocorrelation is negative at short times in
simulations, indicating that when a cell moves and deforms in some direction it has a
large probability to recover its initial position and shape. The cell center of mass thus
oscillates.
These oscillations have a simple explanation. The Metropolis algorithm makes zero

energy changes with probability one. Since spin =ips are reversible, the probability for
a spin to =ip to a new value and then return to its old value at the next =ip is very
high, limited only by the probability that another spin =ip at a di9erent location will
decrease the spin =ip probability (P¡ 0:5). Thus, the most likely event after a zero
or positive energy =ip is to return to the initial condition.
The Metropolis algorithm is appropriate for a conservative system, like a magnet,

but not to cells, where the formation and the destruction of bonds is highly dissi-
pative. We can make our model more realistic by setting a threshold H0 for a spin
=ip higher than zero to re=ect this dissipation [10]. In Fig. 3, we plot the velocity
autocorrelation as a function of the threshold. Increasing the threshold to H0 = 80
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Fig. 2. Di9usion constant as a function of (a) surface energy J�� in homogeneous aggregates, (b) threshold
for spin =ip H0, (c) target perimeter l�, (d) target area A� with l� = 2!

√
a�=!, (e) area constraint �1 and

(f) perimeter constraint �2. For each curve, remaining parameters take the following default values: T = 10,
H0 = 0, J�� =−25, A� = 64, l� = 35, �1 = 10 and �2 = 5:5.

eliminates the autocorrelation negative peak. Hogeweg et al. [10] introduced thresh-
olding to suppress oscillations in the CPM, but did not study its e9ect systematically.
Using negative energies, the oscillations vanish both at large positive and negative val-
ues of the threshold H0 (see inset of Fig. 3), since positive H0 suppresses energetically
favorable =ips and negative H0 suppresses the return =ip. Increasing H0 decreases
the di9usion constant exponentially for both positive and negative surfaces energies
(Fig. 2b) because a larger H0 exponentially suppresses positive energy and neutral
energy boundary motion, and di9usion is an energetically neutral process.
The in=uence of the cell size and cell shape on the di9usion constant is easy to

understand. When increasing the target perimeter l� at a given target area (A� = 64),
D <rst strongly increases (Fig. 2c). The <rst value investigated l� = 29 corresponds
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Fig. 3. Autocorrelation function of the velocity of a dark cell in a dark aggregate as a function of the
non-normalized threshold value H0 for spin =ips. We calculated the velocity using negative surface energies
with Lt=1 MCS. Inset is the plot of minimum values of the autocorrelation function of the velocity, C(1),
as a function of H0. The simulation used the following parameters: T = 10, J�� = −25, A� = 64, l� = 35,
�1 = 10 and �2 = 5:5.

roughly to the perimeter of a circle of area 64 pixels. The cell contour is very tight,
forcing cells to be nearly circular. Smaller values of l� will tend to shrink the cell
and increase its internal pressure, making it increasingly rigid. The value l� = 35 at
the maximum of D corresponds roughly to 20% excess perimeter with respect to a
perfectly circular perimeter. For larger target perimeters, D decreases slightly, as cells
become soft and start to split into small pieces. These small pieces have very large
boundary curvatures and hence adding pixels to their surface has a higher energy cost
in terms of the number of mismatched bonds per pixel than for larger cells. The result
is that the fragment’s center of mass mobility decreases (see Fig. 2d). We use 20%
excess perimeter in what follows.
In particular, we evaluate the in=uence of the target area A� on D. For very small

target areas, the curvature e9ect mentioned above decreases the mobility. For large
target areas, increasing the target area reduces the di9usion constant (Fig. 2d). Each
one pixel =uctuation moves the center of mass by a distance 1=A�, while the number
of surface pixels increases like

√
A�, so for a bigger cell, the cell center of mass

movement decreases as 1=
√
A�.

The di9usion constant strongly depends on the area constraint �1 (Fig. 2e). As
the area constraint increases, D decreases. The e9ect is the same as when the target
perimeter decreases; the cells become more rigid. For very small values of the perimeter
constraint, �2, cells split, causing curvature reduction of D. Large values of �2 increase
cell rigidity and reduce D (Fig. 2f). For values of �2 larger than 10, the MSDs are not
linear but have a t1=2 form, meaning that the cells often trap in particular metastable
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con<gurations because =uctuations cost too much energy. Thus, the plots of D as
a function of parameters, �2, l�, and A� have maxima where the trade o9 between
fragmentation/curvature inhibition and rigidity inhibition is optimal. We predict that
experimenters will <nd that real cells operate in this range. The results of Figs. 2d–f
for negative surface energies also hold for positive energies.

4. Conclusion

Based on our recent quantitative experiments on single cell motion in aggregates
[12,13] we have improved the realism of the CPM. Previous CPM simulations using
positive energies [3,4] captured e9ectively the global features of tissue rearrangement
but failed to describe their dynamics correctly. Modifying the Hamiltonian to use nega-
tive surface energies, constraining the membrane area and introducing a spin =ip energy
threshold improve the correspondence to experiments and preserve desirable qualita-
tive behaviors. Optimization of the other parameters requires careful tuning due to the
competition between cell splitting and cell rigidity.
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