
INTRODUCTION

Repeated sequences, like palindromes and
homologies, appear commonly in the litera-
ture on eukaryotic genomes (1–3). These
repeats can manifest in many ways. The most
common case is when one genomic segment
repeats in another part of the same nucleotide
sequence. This repetition causes typical diffi-
culty in recomposing large complete genomic
sequences. Because complete nucleotide
genomic sequences usually require assembling
shotgun sequences by looking for overlapping

K-letter words between sequences, we expect
matching difficulties as a result of cloning bias
and repeats in many genomes, including
humans (2,3). Repeat sequences are not
restricted to pairs of genes placed in com-
pletely different parts of one chromosome, but
include local repetitions too, both direct
repeats and palindromes. Palindromes have
many metabolic functions, including the con-
trol of the linkage number in circular DNAs (1)
and the translational regulation of expression
of the bacteriophage T4 lysozyme gene (4). We
also find motifs repeated throughout the
genome, like the highly-repetitive Alu family,
common in the human genome (1–3). In nature,
simply repeated structures often correspond to
repetitions at different length scales (e.g., the
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vascular system of a leaf is similar to the whole
vascular system of a tree). In the case of
nucleotide sequences, we consider the hypoth-
esis that the organization of small subsequences
could resemble the organization of the com-
plete genome. The authors in the debate over
the best large-scale DNA sequencing strategy
(whole-genome or hierarchical shotgun meth-
ods) basically consider random or periodic
nucleotide sequences using broad criteria (with
or without repeats, etc.) (5–7,9,10). In whole-
genome shotgun sequencing, redundancy
reduces misassembly (2,5–7). In the hierarchical
shotgun method, a large clone library (BAC
library or map) with overlapped random
sequences is created. The sequencing is per-
formed locally over each clone contig. The
whole nucleotide sequence is recovered,
anchoring each BAC sequence in a previously
defined map. In this way, the hierarchical shot-
gun method avoids long-range misassembly
and reduces short-range misassembly (3,8).
Despite enormous efforts to complete the
sequencing of the human genome, large gaps
and many unplaced small islands of sequence
remain (2,3,9,10). Periodic or random simulated
nucleotide sequences have been used to study
the most efficient approach to complete the
human genome sequence (6,7,9,10). However,
recent work suggests that the complete genome
has neither random nor periodic organization,
but something in between. The complete
genome distribution of the protein coding and
metabolic control sequences in higher eukary-
otes exhibits scaling laws (fractality) (11,12).
This scaling might have evolved together with
organism complexity (11), where we under-
stand complexity in terms of phenotype charac-
teristics and environmental adaptation
according to the definition provided by Haken
and Nicolis and Prigogine (13,14). Therefore, a
thermophilum bacterium is simpler than a mam-
mal because a superior eukaryote has a more
elaborate life cycle than an archaebacterium.
Oiwa and Goldman suggested that the coding-
segment distribution of higher eukaryotes has
long-range multifractal correlations, indepen-
dent of the genetic message (coding content)

(11,12). Such order is absent in lower eukary-
otes and bacteria. Many authors have found
strong indications of multifractality in both
genomic and mitochondrial nucleotide
sequences (15–23). However, the identification
of the genomic structures responsible for the
self-similarity became possible only recently
with the refinement of multifractal analysis
techniques (24). Our previous work linked
DNA loops to the self-similarity of the mito-
chondrial genome (mtDNA) (25). Here, we
extend these results. We report scaling laws in
mtDNA resulting from the self-similar distrib-
ution of loops, hairpins, and other double-
stranded DNA (dsDNA) structures e.g., DNA
inverted repeated sequences (palindromes).
These scaling laws imply the repetition of sim-
ilar sequences at the same scale and include
rescaled self-similarities.

Our analysis concentrates on the circular
mitochondrial deoxyribonucleic acid, instead of
huge nuclear genomes. In nuclear genome  each
sequence is larger than 106 basepairs (bp), and
most genes still await experimental confirma-
tion (putative genes). On the other hand,
mtDNA is small for mammals (around 16,000
nucleotides) and has relatively few genes, all of
which are identified. Their biochemical path-
ways are also known, and the literature con-
tains more than 300 complete mtDNA genomes
(26). The precise position of the nucleotide
bases (adenine [A], thymine [T], guanine [G],
and cytosine [C]), the molecular structure of
their protein-coding sequences, the protein
interactions with the DNA sequences that con-
trol gene expression, and so forth are compara-
ble from organism to organism (20–22,27).
mtDNA is usually inherited maternally without
recombination; thus, changes in mitochondrial
DNA reflect mutations that occur in the mito-
chondria of maternal germ cells and accumu-
late continuously, so each mitochondrion
preserves a history of prior mutations. These
characteristics make mtDNA useful for phylo-
genetic analysis. In this article, we consider
plant and fungal mtDNA too. Plant mtDNAs
are large for higher plants, larger than 105 bp.
Whereas the mtDNA of multicellular animals is
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almost completely coding, the mtDNA of plants
presents many noncoding parts, including
introns. mtDNA organization differs in plants
and multicellular animals, and this disparity
appears in our nonlinear analysis.

Despite the difficulties in linking statistical
measures, like correlations, to functional aspects
of nucleotide sequences (28), many methods
have been developed to search for patterns and
organization in mitochondrial and nonmito-
chondrial genomes. In our previous work (11),
we studied the distribution of coding segments.
Here, we are interested in nucleotide sequences.

The most common approach to studying
nucleotide sequences is to search for simple
similarities among subsequences (29,30); for
example, we might take from two species, pro-
teins that perform similar functions and look
for similarities in their DNA sequences. We
might look for any two DNA sequences that
are similar between organisms and try to infer
whether the proteins have a similar function.
We could look for subunits of proteins (mod-
ules) that might be conserved but might be
organized differently in different genes and try
to determine if they have similar functions
(e.g., zinc-finger binding domains, membrane-
crossing domains, β-sheet formers, or tyro-
sine–kinase-binding sites. We can construct
dictionaries with such motifs or words, like the
database LIGAND, the Database of Chemical
Compounds and Reactions in Biological
Pathways, from the Bioinformatics Center,
Institute for Chemical Research, Kyoto
University (31), or we can build a motif dictio-
nary and try to guess the meaning of the words
(32). For example, applying MobyDick, a dic-
tionary-building algorithm, to the nucleotide
sequence of the Tup1-Ssn6 repressor system
localizes both known and putative binding
sites for its regulatory elements (33). MobyDick
is an algorithm that builds k-word dictionaries
according to patterns or motifs in the sequence
of nucleotides. When the average number of
occurrences of some particular motif exceeds a
statistically significant threshold, we add these
k-words to a dictionary. MobyDick weights
each possible concatenation of words in this

dictionary, looking for the prominent ones. If
these combined words have a frequency above
some statistical criterion, MobyDick includes
them in the dictionary. We expect that the
longer words of the dictionary reveal patterns
of nucleotide sequences within genes which
have particular functions. The main advantage
of this method is that we do not need external
reference data to build the dictionary, because
the statistical significance of the longer words
depends only on shorter words. Another pro-
posal to describe DNA sequence content is the
K-string matrix (34,35). Each element of the 2K

vs 2K matrix represents the number of repeti-
tions of one particular sequence with K
nucleotides. When K is large, the elements of
the K-string matrix compose a fractal, indicat-
ing a possible self-similar pattern for genomes.
We also mention Mantegna et al. (36), where n-
tuple Zipf analysis of noncoding subsequences
exhibits a power law, coding sequences have
logarithmic behavior, and noncoding segments
have lower n-gram entropy than coding
regions. However, many authors question the
reliability of using Zipf’s law to distinguish a
hidden language from noise (37).

Although these portraits based on small
nucleotide sequences (up to 1000 bp) are popu-
lar, histogram or sequence similarities do not
completely describe the genome from the ther-
modynamic point of view. They do not give us
information on the structure of the whole
genome (canonical ensemble), but only local
information (microcanonical ensemble).
Contingency tables are efficient for searching
for specific motifs and patterns. However, they
do not give statistics on the global genomic
organization, because, by definition, these
tables measure local nucleotide sequences.
Thus, a sequence homogeneous at large scales
(a random sequence, for example) will look
inhomogeneous at small sequence lengths.

The most common large-scale genomic analy-
sis is the cytosine and guanine variation content
ratio f(i) (38–42). This analysis seeks contiguous
regions with little variation in their C + G con-
tent, called isochors. The C + G-rich and C + G-
poor domains compose the mosaic structure of

Self-Similar Mitochondrial DNA 43

Cell Biochemistry and Biophysics Volume 41, 2004



the genome. Many authors try to correlate these
isochors with genes, CpG regions, chromosomal
bands, and so forth (43). The C + G content ratio
variation is the differential form of a one-dimen-
sional walk u(i), where cytosine and guanine
result in an up step, u(i + 1) = u(i) + 1, and ade-
nine and thymine in a down step, u(i + 1) = u(i) -
1. When we notice that f(i) = (1/2) – [u(i + ∆/2) –
u(i – ∆/2)]/(2∆), we have the C + G content ratio
variation at the i-th nucleotide with a window of
width ∆. Another popular prescription for one-
dimensional walks uses the relative frequency
of purines and pyrimidines (16–19). Now, we
have an up step for pyrimidines (C + T), u(i + 1)
= u(i) + 1, and a down step for purines (G + A),
u(i + 1) = u(i) - 1. The purine–pyrimidine walks
define an exponent β, that is [C(k)]2 = <[y(k)]2> –
<y(k)>2 ~ k2β, where C(k) is the correlation func-
tion, y(k) = u(i) – u(i + k), and <…> indicates
mean value. For simple Brownian motion, β is
just 1/2. However, β differs from 1/2 for DNA
sequences, indicating a power-law decay (long-
range correlation) for C(k), Thus, DNA walks
have no preferred scale and are fractal.

Although such DNA walks are useful for
identifying interesting regions (43), the hidden
DNA structure is not one-dimensional (25).
Previous works did not detect the self-similar
structures reported in this article because the
hidden fractal structure is two-dimensional,
not one-dimensional (25). The purine–pyrimi-
dine walk neglects the keto-amine variation.
The C + G content ratio neglects the pyrimi-
dine (C + T) variation. However, when we con-
sider two–dimensional or higher-dimensional
DNA walks, we can easily identify structures,
as we will discuss. 

MATERIALS

GenBank provides mtDNA nucleotide
sequences for many species. GenBank, an
Internet database under the responsibility of
the National Center for Biotechnology
Information, United States of America, stores
biological information submitted by individual
laboratories worldwide and shares databases

with other institutions, including the European
Molecular Biology Laboratory and the DNA
Database of Japan (27). Table 1 lists the 35 com-
plete mtDNA genomes selected for this article.

Many approaches can be used to study
genome content. The literature for large-scale
DNA analysis (sequences larger than 1000 base
pairs) sometimes treats complete genomes
(entire chromosomes or genomes) as continu-
ous nucleotide chains without identification of
genes, and it sometimes examines just the pro-
tein-coding sequences, organized as exons and
introns (15–23,39,41,42). Nucleotide sequence
analysis with protein-coding locus discrimina-
tion looks for patterns distinguishing noncod-
ing nucleotides from protein-coding basepairs.
However, the genome has many other struc-
tures affecting biological function, such as pro-
moters, protein binding sites, and so forth.
Because we are interested in patterns of only cod-
ing sequences, we must select the loci to study.
Although the concept of genes as coding
nucleotide sequences is precise from a
Mendelian (or cytological) point of view, this
concept is less useful when we examine a raw
nucleotide sequence. We need to choose the
appropriate coding and related control
sequences. We take as protein-coding and con-
trol regions of DNA sequences the following
loci (in bold) of GenBank flat files:

a. Amino-acid-coding sequences, CDS,
including stop codons, mRNAs, exons, as
well as mature peptides mat_peptide, and
signal-coding regions, sig_peptide. This
work considers introns as noncoding
regions and does not distinguish them from
the noncoding sequences between genes.

b. Many types of RNA: transfer RNAs, tRNAs;
ribosomal RNAs, rRNAs; diverse tran-
scripts not defined by the cited fields for
RNAs, misc_RNA (from miscellaneous
RNAs), which require individual checking
because of their ambiguous definition. We
also consider RNA introns as noncoding
regions, as for CDS fields. 

c. Sites with specific biochemical functions
such as stem loops in DNA or RNA,
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Table 1
Organism and GenBank Accession Numbers of the mtDNAs Used

Name and GenBank accession number LCD L Box counting Moving box Sandbox 

Balaenoptera physalus, finback whale, NC001321 16,372 16,398 1.14±0.01 1.15±0.01 1.064±0.005
Balaenoptera musculus, blue whale, NC001601 16,377 16,402 1.11±0.01 1.13±0.01 1.076±0.005
Mus musculus, house mouse, NC001569 16,263 16,295 1.13±0.01 1.14±0.01 1.103±0.006
Rattus norvegicus, Norway rat, NC001665 16,273 16,300 1.10±0.02 1.11±0.02 1.093±0.006
Homo sapiens, human, NC001807 15,883 16,569 1.116±0.008 1.120±0.009 1.070±0.004
Bos Taurus, cow, NC001567 16,309 16,338 1.14±0.01 1.15±0.01 1.124±0.006
Phoca vitulina, harbor seal, NC001325 15,409 16,826 1.14±0.02 1.14±0.02 1.112±0.006
Ornithorhynchus anatinus, duckbill platypus, 17,008 17,019 1.20±0.02 1.19±0.02 1.169±0.006

NC000891
Alligator mississippiensis, American alligator, 16,515 16,646 1.12±0.01 1.12±0.01 1.080±0.005

NC001922
Gallus gallus, chicken, NC001323 16,727 16,775 1.107±0.008 1.093±0.009 1.080±0.004
Xenopus laevis, African clawed frog, NC001573 17,500 17,553 1.21±0.01 1.20±0.01 1.193±0.008
Cyprinus carpio, common carp, NC001606 15,581 16,575 1.13±0.01 1.18±0.01 1.214±0.008
Crossostoma lacustre, tasseled-mouth loach, 16,488 16,558 1.188±0.009 1.194±0.009 1.204±0.008

NC001727
Mustelus manazo, gummy shark, NC000890 16,686 16,707 1.17±0.01 1.16±0.02 1.110±0.006
Petromyzon marinus, sea lamprey, NC001626 16,110 16,201 1.12±0.02 1.14±0.02 1.149±0.006
Branchiostoma lanceolatum, amphioxus, 14,992 15,076 1.18±0.01 1.21±0.01 1.133±0.007

NC001912
Balanoglossus carnosus, acorn worm, NC001887 15,335 15,708 1.09±0.02 1.12±0.01 1.058±0.006
Paracentrotus lividus, common urchin, 15,446 15,696 1.28±0.01 1.31±0.01 1.33±0.01

NC001572
Strongylocentrotus purpuratus, purple sea 15,566 15,650 1.29±0.01 1.30±0.02 1.360±0.009

urchin, NC001453
Drosophila yakuba, fly, NC001322 15,838 16,019 1.19±0.01 1.20±0.02 1.149±0.006
Drosophila melanogaster, fruit fly, NC001709 19,334 19,517 1.12±0.02 1.10±0.02 1.149±0.007
Ceratitis capitata, mediterranean fruit fly, 15,774 15,980 1.18±0.01 1.22±0.02 1.20±0.02

NC000857
Apis mellifera, honey bee, NC001566 15,530 16,343 1.21±0.01 1.23±0.02 1.166±0.007
Lumbricus terrestris, common earthworm, 14,537 14,998 1.22±0.02 1.21±0.02 1.224±0.009

NC001673
Caenorhabditis elegans, worm, NC001328 13,648 13,794 1.10±0.02 1.09±0.02 1.024±0.004
Ascaris suum, pig roundworm, NC001327 14,079 14,284 1.047±0.006 1.07±0.01 1.050±0.005
Onchocerca volvulus, river blindness 13,521 13,747 1.033±0.005 1.038±0.009 1.057±0.007

roundworm, NC001861
Saccharomyces cerevisiae, baker’s yeast, 29,648 85,779 1.23±0.01 1.246±0.008 1.284±0.008

NC001224
Hansenula wingei, fungus, HASMT 22,371 27,694 1.269±0.007 1.284±0.009 1.197±0.006
Schizosaccharomyces pombe, fungus, MISPCG 16,015 19,431 1.37±0.02 1.41±0.01 1.33±0.01
Podospora anserine, fungus, MTPACG 70,613 100,314 1.19±0.02 1.218±0.009 1.209±0.004
Arabidopsis thaliana, thale cress, MIATGENA 90,461 366,924 1.537±0.006 1.547±0.006 1.559±0.004

and MIATGENB
Marchantia polymorpha, liverwort, MPOMTCG 71,094 186,609 1.224±0.009 1.26±0.01 1.261±0.006
Chlamydomonas eugametos, green algae, 16,409 22,897 1.208±0.009 1.23±0.02 1.204±0.006

AF008237
Pedinomonas minor, green algae, AF116775 23,677 25,137 1.00±0.01 0.99±0.02 1.103±0.008

Note: Total length L and the sum of protein-coding and control segment LCD of the mtDNA sequences in basepairs (bp).
Fractal dimension Dzero for the two-dimensional walk using box counting, moving box, and sandbox methods.



stem_loop, initial replication points of the
DNA double helix, rep_origin, and D-loops.

d. Repeated sequences, repeat_region.
repeat_unit indicates one repeated unit of
a repeat_region. We must be careful with
repeated sequences as Alu, because we are
considering only repeated sequences with
a potential function related to genes in the
Mendelian sense. 

e. Regions with biological meaning not cov-
ered by another locus definition, misc_fea-
ture, like A + T-rich regions. We checked
misc_feature one-by-one to determine if
they belonged to control or protein-coding
regions, because their descriptions are
ambiguous.

We suppress noncoding segments
(“junkDNA”), because we seek only patterns
associated with genetic transcription (11).
Noncoding DNA could regulate coding
nucleotides by determining the position of cod-
ing sequences and promoters (relative to the
histone wrap and supercoiling), but we restrict
our analysis to nucleotides with some direct
relation to information transmission (e.g.,
amino acid codons, etc.). We are not studying
the spaces between words, but the letters of the
words. Oiwa and Goldman studied and
reviewed the meaning of spaces in ref. 12. 

We could extract these regions of interest
manually, because the number of fields is small,
typically from 20 to 40 for mtDNA, but we use
programs developed previously to simplify
data manipulation (11). Because gene overlap-
ping is common, we consider as protein-coding
and control sequences regions that belong to at
least one field previously described (11). We
could manipulate these overlaps manually too,
because only a few segments have such prob-
lems. However, we use our previously devel-
oped code for convenience (11). 

METHODS

Our starting point defines the DNA walk,
known generally as a Lévy flight. Although the

Lévy flight treats the DNA sequence diffu-
sively, we reject the term “random” in the liter-
ature, because we can identify patterns, as we
discuss below. The embedding space for the
DNA walk is a space of possible sequences (not
the phase space of dynamical systems theory,
because we are not describing movements or
oscillations in time). The walks in this work
have the following symmetries, based on the
biochemical characteristics of the genome (20):

i. Complementarity: Because the information
is duplicated on the two DNA strands, the
content must be equivalent for both strands.

ii. Reflection: We read some genes from their
5′ end to their 3′ end and others from 3′ to
5′, so the reading direction should not
influence our estimates.

iii. Substitution: We identify two nucleotide
groups: T and A are weak-bonding bases
(with two hydrogen bonds), whereas G and
C are strong-bonding bases (with three
hydrogen bonds). The substitution of T for
A or C for G must preserve the walk shape.

iv. Compatibility: The walk must be the
same for different embedding dimensions
d. We assume an object of finite dimen-
sion can represent the data. Further, we
hope this dimension is small, because
current nonlinear methods are reliable
only for objects with dimension below
eight. We will check this assumption by
validating our fractal analysis in succes-
sively higher dimensions. 

When we combine these arguments in two
dimensions, each nucleotide represents a vec-
tor in the space of possible sequences.
Complementarity, reflection, and compatibility
are satisfied by any single-base representation.
However, we expect that {T} = – {A} and {G} =
–{C} from substitution symmetry. So, we have

Axis 1: {T} = (1,0) and {A} = (– 1,0);
Axis 2: {G} = (0,1) and {C} = (0,– 1).

For dimers, complementary requires that
{TT} = –{AA}, {TG} = –{AC}, {TC} = –{AG}, {TA}
= –{AT}, {GT} = –{CA}, {GG} = –{CC}, {GC} =
–{CG}, and {GA} = –{CT}, as well as {TG} = {GT},
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{TC} = {CT}, {TA} = {AT}, {GC} = {CG}, {GA} =
{AG}, and {CA} = {AC} because of reflection
symmetry. So, we can group {GT}, {TG}, {AC},
and {CA} on one axis, as well as {CT}, {TC},
{AG}, and {GA} on the other. Moreover, {GT} =
{TG} = –{AC} = –{CA}, and {CT} = {TC} = –{AG}
= –{GA} by substitution, and they must differ
from zero for compatibility. Then, we have in
four dimensions: 

Axis 1: {TT} = (1,0,0,0) and {AA} = (–1,0,0,0);
Axis 2: {GG} = (0,1,0,0) and {CC} = (0,–1,0,0);
Axis 3: {GT} = {TG} = (0,0,1,0) 

and {AC} = {CA} = (0,0,–1,0);
Axis 4: {CT} = {TC} = (0,0,0,1) 

and {AG} = {GA} = (0,0,0,–1);
No axis: {AT} = {TA} = {GC} = {CG} = (0,0,0,0).

Here, axes 1 and 2 represent dimers with
four and six hydrogen bonds, respectively,
because the basepair A and T has two hydro-
gen bonds and C and G has three hydrogen
bonds. Axes 3 and 4 are dimers with five
hydrogen bonds. Finally, {AT} and {TA} have
four hydrogen bonds and {GC} and {CG} have
six hydrogen bonds. So, in six dimensions, two
choices are possible: We can split the five
hydrogen bonds, axes 3 and 4, in four or we
can construct the new axes from the dimers
{AT}, {TA}, {GC}, and {CG}. Because the choice
is arbitrary, we will use the Berthelsen et al.
prescription for the six-dimensional walk (20): 

Axis 1: {TT} = (1,0,0,0,0,0) and 
{AA} = (–1,0,0,0,0,0);

Axis 2: {GG} = (0,1,0,0,0,0) and 
{CC} = (0,–1,0,0,0,0);

Axis 3: {CA} = (0,0,1,0,0,0) and 
{AC} = (0,0,–1,0,0,0);

Axis 4: {TG} = (0,0,0,1,0,0) and 
{GT} = (0,0,0,–1,0,0);

Axis 5: {GA} = (0,0,0,0,1,0) and 
{AG} = (0,0,0,0,–1,0);

Axis 6: {TC} = (0,0,0,0,0,1) and 
{CT} = (0,0,0,0,0,–1),

No axis: {AT} = {TA} = {GC} = {CG} =(0,0,0,0).

Finally, we construct axes 7 and 8 in eight
dimensions from the dimers {AT}, {TA}, {GC},
and {CG}:

Axis 1: {TT} = (1,0,0,0,0,0,0,0) and 
{AA} = (–1,0,0,0,0,0,0,0);

Axis 2: {GG} = (0,1,0,0,0,0,0,0) and 
{CC} = (0,–1,0,0,0,0,0,0);

Axis 3: {CA} = (0,0,1,0,0,0,0,0) and 
{AC} = (0,0,–1,0,0,0,0,0);

Axis 4: {TG} = (0,0,0,1,0,0,0,0) and 
{GT} = (0,0,0,–1,0,0,0,0);

Axis 5: {GA} = (0,0,0,0,1,0,0,0) and 
{AG} = (0,0,0,0,–1,0,0,0);

Axis 6: {TC} = (0,0,0,0,0,1,0,0) and 
{CT} = (0,0,0,0,0,–1,0,0);

Axis 7: {TA} = (0,0,0,0,0,0,1,0) and 
{AT} = (0,0,0,0,0,0,–1,0);

Axis 8: {GC} = (0,0,0,0,0,0,0,1) and 
{CG} = (0,0,0,0,0,0,0,–1).

To illustrate the DNA walk symmetries, con-
sider the sequence 5′→ACCACCT→3′. Here,
5′→3′ indicates that we are reading the sequence
from the fifth to third carbon of the sugar
deoxyribose of the DNA chain. Figure 1A repre-
sents the complementary sequence by dashed
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Fig. 1. For the sequence 5′→ACCACCT→3′,
we have the following symmetries in the walk:
(A) complementarity, 5′→TGGTGGA→3′; (B)
reflection, 5′→TCCACCA→3′; (C) substitution
of A for T and vice versa, 5′→TCCTCCA→3′;
and (D) and compatibility between two and
three dimensions.



lines. Figure 1B represents the reflected
sequence. If we replace A by T and vice versa,
we have Fig. 1C, where the substituted image is
a mirror reflection of the studied object along
the chosen axis. In all three cases, the symmetry
arguments preserve the shape of the original
object. Finally, Fig.1D shows the compatibility of
ACCACCT from two to three dimensions. We
omit the axis AA:TT because of the absence of
these dimers in ACCACCT. Although the three-
dimensional object (dashed lines) distorts along
the axis AC:CA, the shape is the same as the two-
dimensional representation of the sequence.

Applying these criteria to mitochondrial
DNA, we obtain walks like those in Fig. 2A
(e.g., the two-dimensional walk for the finback
whale complete mitochondrial genome). If we
blow up the walk around the 16S rRNA, we
obtain profiles like those in Fig. 2B. If we again
enlarge the walk at the beginning of the 16S
rRNA sequence, we find structures like those
in Fig. 2C for the valine tRNA. Gates reported
these clusterlike structures in 1986 (44). Not
coincidently, the curly structures along the
walk for complete mtDNA in Fig. 2A resemble
the entanglements in Fig. 2B. In the following,
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Fig. 2. (A) Two-dimensional walk for the mtDNA of the finback whale. We expand the segment
around the 16S rRNA in (B). (C) Shows the two-dimensional walk for the tRNA for valine, marked
in gray in (B).



we measure the scaling laws (fractal dimen-
sions) for these clusterlike structures from their
Lévy flights (DNA walks).

The fractal dimension is an efficient tool for
characterizing objects with scaling laws
(44–47). We define the fractal dimension of an
object Dzero as N ≈ – Dzero, where N is the num-
ber of boxes of side required to cover the
object. Dzero measures how one piece resembles
another or the whole. The fractal dimension
gives the maximum number of degrees of free-
dom (number of equations in a hypothetical
model in a physical sense) via Takens’ theorem
(48), as we will see later. These methods also
allow us to identify the structures responsible
for the self-similarity. To avoid biases typical of
particular calculation methods, we apply three
different algorithms to our data: box counting,
moving boxes, and sandbox. 

The box-counting algorithms estimate the
fractal dimension by covering the walk with a
set of boxes fixed to a grid (49–51). Box count-
ing usually overestimates the number of boxes
required to cover, yielding the capacity dimen-
sion rather than the fractal (or Hausdorff)
dimension (45). Only when the covering is
ideal, with the minimum number of boxes,
does the capacity dimension coincide with the
fractal dimension. However, for simplicity, we
speak of the generalized capacity as a general-
ized fractal dimension because this error is
small in the cases we examine. 

The moving-box algorithm, which improves
on box-counting, also covers the walk with a
set of boxes, but independent of a grid
(24,52,53). For example, in Fig. 3, we have the
same walk as Fig. 2A, but covered by boxes of
size 16 bp using moving-boxes. We show the
number of points in each box along the z-axis.
This three-dimensional picture is a histogram
in which dense regions appear as spikes along
the walk. Instead of a qualitative and subjec-
tive description of this irregular object, we can
quantify it using multifractal analysis: fractal
dimensions and singularity spectra.

We estimate generalized fractal dimensions
using box-counting and moving-boxes using a
simple linear fit to:

(1)

where Dq is the generalized fractal dimension,
N is the number of boxes, pj = mj/n is the prob-
ability density in box j, mj is the number of
points in box j, n is the total number of steps in
the walk, =Lo/Lmax, Lo is the box size in bp,
Lmax is the size of the walk (the largest minus
the smallest values in the walk), and b is a para-
meter, which we will discuss later. Dq in Eq. (1)
is computed using the least squares method
(54). q is a variable that weights the probabili-
ties of the rarefied or heavy parts of the DNA
walk. Negative q selects the sparse pieces of the
Lévy flight. Positive qs, select the densest parts.
q= 0 weights all parts the same, treating only
the shape of the walk. The light and heavy seg-
ments of the Lévy flight need not have the
same scalings. In this case, we have a multi-
scaling object, called a multifractal. 

Returning to Eq. (1), if we fix q = 0,
Dzero=–ln(Neb)/ln . Comparing this expres-
sion with the usual Dzero definition (45), we
have an extra term, eb, in the sum. On the other
hand, we know the number of boxes N in box-
counting methods is usually larger than the
ideal number of boxes N′. Thus, the capacity
dimension Dzero will be the Hausdorff fractal
dimension only if N′ = Neb, where b ≤ 0. b moves
closer to zero as the box covering becomes more
efficient. When the efficiency of the algorithm is
maximal and the studied object is covered with
the smallest number of boxes, b = 0. This vari-
able b, called “the covering efficiency of the
algorithm,” measures how near we are to the
ideal covering (24). Our numerical tests reveal
that the linear fit for Dq works well for –1 ≤ b ≤ 0.

The numerical precision nbits (the number of
bits that we use to represent the walk) and the
number n of steps also influence the choice of
the region used for the fit in Eq. (1). These lim-
its, shown in Fig. 4, are given by: 

nbits ≤ x ≤ 0, –log2 n ≤ y ≤ 0. (2)

The third method (sandbox) takes random
samples from the walk (54) and computes Dq
using a linear fit (55) to:
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(3)

where <pj
q> = (1/N′) ∑

N′
j=1 pj

q-1, N′ is the number
of random samples, pj = mj/n and mj is the
number of steps within a circle of radius in
bp centered around the jth sampled point. For

the sandbox method, Dq is an average slope of
ln vs ln<pj

q>. We also consider the numerical
precision nbits and the number of steps n in
the choice of the region used for the linear fit
in Eq. (2).

Figure 4 shows a typical graph for estimating
Dzero, applying the moving-box (squares) and
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Fig. 3. The finback whale mtDNA two-dimensional walk in Fig. 2A covered by boxes of side
16 bp, using the moving-box algorithm (24). Here, the z-axis represents the number of steps in
each box.



box-counting (+’s) and sandbox (x’s) methods
to the two-dimensional walk for the finback
whale (Fig. 2). Because this walk has 16,372
steps, the lower limit on the y-axis in Fig. 2 is
log2(16,372) ≈ 14.0 and the numerical precision
limit on the x-axis is 11, because the walk along
the C:G axis in Fig. 2 needs 11 bits to represent
all steps. Next, we look for the linear scaling
region of the logarithmic graph, considering
that the covering efficiency factor b must be
between -1 and 0 for all methods. b near zero
means excellent covering of the Lévy flight for
the multifractal analysis, whereas b below -1
indicates that we must be cautious interpreting
our results because of poor covering. The cov-
ering for the finback whale mtDNA is excellent
because b = -0.23 ± 0.07 (box-counting), -0.08 ±
0.06 (moving-box), and -0.22 ± 0.03 (sandbox).
The linear scaling region ranges from –3 to –9 in
log2( ) for finback whale mtDNA. So, the
smallest and biggest box sizes are respectively
1/512 and 1/8 (i.e., we have linear scaling for
two decades in the two-dimensional walk of
the finback whale mtDNA). This range is

unusually large for experimental data, where
we usually accept the fit if it applies over a
range of more than one decade. In addition,
Dzero = 1.14 ± 0.01, 1.15 ± 0.01, 1.064 ± 0.005 for
box-counting, moving-box, and sandbox,
respectively. The difference of 7.5% between the
sandbox and other methods is the result of the
algorithm peculiarities and limitations, mea-
sured by b. These errors for Dzero are very small
for experimental data. We can obtain such pre-
cision only for a true self-similar object.

Finally, when we change q, the quality of the
linear fit decreases, as seen in the Dq and b
curves in Fig. 5A,D. The best fits are near q = 0,
because b is near zero. We can calculate Dqs for
q < 0. However, the error revealed by b shows
that only sandbox results are meaningful.

Although we could obtain all scaling laws for
rarified (negative qs) and dense parts of the
DNA walk (positive qs) using the Dq vs q curve,
we introduce the concept of a singularity α and
the singularity spectrum f(α). Like Dzero, the sin-
gularity is a scaling law, pj ≈ –α·, where pj is the
number of points or probability density within a
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Fig. 4. -log2 N(l) vs log2 (l) plot for the two-dimensional walk of finback whale mtDNA. We use
squares for moving-box and +’s for box-counting and x’s for sandbox. The linear-slope fit gives Dzero.
The intersection of the fit with the y-axis gives the covering efficiency b of the algorithm, and the dot-
dashed lines show the limits of the applicability of the methods owing to the numerical precision nbits
and genome size n and the dotted lines are the chosen regions for the linear fitting at the fractal
dimension estimates.



box of side around a given point. We define
the number of boxes with scaling α as N(α) and
define N(α) ≈ –f(α), f(α)=–ln N(α)/ln . f(α) is
an homogenous function, with important ther-
modynamic consequences (45–47). In the gener-
alized fractal dimension, the relation between pj
and Dq depends on the sum of N boxes in Eq.
(1), so we cannot identify the boxes responsible
for one particular value of Dq. 

We could estimate the singularity spectrum
f(α) using the Legendre transform of the curve
(q – 1)Dq,

(4)

We call this approach microcanonical in the
thermodynamic sense, because we compute Dq
from the local probabilities pj. However, we
obtain better results using a canonical
approach (56,57), instead of the Legendre
transform in Eq. (4). Thus, we compute α and

f(α) directly using either box counting or mov-
ing-box using a linear fit to:

(5)

where µj = pj
q / ∑

N′
j′=1 pj′

q. Using Eq. (5) avoids
the numerical estimation errors of the slope of
the (q - 1)Dq curve in Eq. (4). For the sandbox
algorithm, we have a linear fit to:

(6)

where µj = pj
q/<pj′

q>, <µj ln pj> = (1/N′) ∑N′

j=1 µ
ln pj and <µj ln µj> =(1/N′) ∑

N′

j=1 µj ln µj. The
limits in Eq. (2), used for the linear fit for Dq,
also work here and can be calculated in the
same way.
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Fig. 5. (A) Generalized fractal dimension Dq, (B) fractal dimension Dzero varying the embedding
dimension d, (C) singularity spectrum f(α), and (D) covering efficiency b for finback whale mtDNA
using box-counting (dotted lines and diamonds), moving-box algorithms (solid lines and squares),
and sandbox algorithm (dotted-solid lines and circles).



When we apply box-counting, moving-box,
and sandbox methods to finback whale
mtDNA, we find the singularity spectrum
shown in Fig, 5C. Results using all methods
agree, including the positions of the qs along the
curve f(α(q)). α is a function of q, α(q). So, f(α(q))
also provides information about q. The smallest
α s represent the largest qs (i.e., the densest parts
of the walk). In the case of finback whale
mtDNA, f(α) goes to zero at αmax=0.76 ± 0.03,
0.74 ± 0.03, 0.77 ± 0.06 respectively for box-
counting, moving-box, and sandbox, indicating
that the dense parts of the walk are fractals
resembling a generalized Cantor set (45). On the
other hand, the maximum of the curve is always
at f(α(q = 0)) and tells us about the general shape
of the walk. In particular, Dzero=f(α(q = 0)). In
Fig. 5C, f(α(q = 0)) = 1.14 ± 0.01, 1.15 ± 0.01, and
1.064 ± 0.005 for box-counting, moving-box, and
sandbox, respectively, and they coincide with
the values of Dzero, as expected. Again, the value
for f(α(q = 0)) using sandbox is smaller than for
other algorithms. We interpret these values in
the following way: Because Dzero is near unity,
the walk is lineshaped, with some extra struc-
ture because Dzero is larger than 1. We can ana-
lyze the sparse parts of the walk by studying
negative qs. This information is only available
using the sandbox method, and the values are
(αmin, f(αmin)) = (1.220 ± 0.009, 0.79 ± 0.04). The
f(α) curve does not reach the x-axis for negative
q; therefore, either the most rarefied parts of the
finback whale mtDNA walk do not scale or we
simply lack sufficient statistics for the analysis.
For box counting and moving box, b indicates
that these methods are not reliable for qs much
below zero. Thus, the f(α) curve in Fig. 5C
shows definitively that the content of finback
whale mtDNA is multifractal.

RESULTS AND DISCUSSION

Our previous work showed that the multi-
fractality of mtDNA comes from the self-simi-
lar distribution of inverted repeat nucleotide
sequences (palindromes) (25). These palin-
dromes might fold the single stranded DNA

(ssDNA) in hairpins, loops, and other
unnamed structures. Next, we discuss this con-
clusion in more detail using the results in Table
1 and Fig. 6. We also estimated the generalized
fractal dimensions Dq vs q for all mtDNA in
Table 1, but we omit them, because the f(α)
spectra (Fig. 6) provide complete multiscaling
information. To reduce clutter, Fig. 6 shows
only sandbox-derived f(α) spectra. Box-count-
ing and moving-box results are similar.

We can estimate Dq for any object, fractal or
not. However, we obtain high-quality linear
fits only if the object is a true fractal. For
Brownian noise, Dzero is close to the embedding
dimension d, but for the mtDNA walks, Dzero
saturates around 1.2 as the embedding dimen-
sion increases in Fig. 5b. Finally, for simple
Euclidian objects like a line or plane, Dzero is an
integer, independent of d. If the walk were not
a Euclidian geometric object, fractal, or
Brownian noise, any attempt to estimate Dq or
f(α) would result in large errors or unreliable
values for b.

Because the walk might cross or follow a
previously traced path multiple times, we
might overestimate the number of steps in a
box in our Dq estimates, Eq. (1). Checking the
saturation of Dzero with d is particularly impor-
tant to avoid false neighbors in fractal analysis
(58). A point could accidentally be close to
another point: for example, when we fold a cir-
cle along its diameter to produce a one-dimen-
sional object, we bring diametrically opposite
points into correspondence. On the other hand,
these two points will be far apart if we embed
the same circle in two or more dimensions,
eliminating the false neighbors.

For mtDNA walks, we can estimate Dq and
f(α) with errors much lower than those usually
associated with experimental data (less than
1%). Furthermore, the fits of Dzero, as in Fig. 4,
have a large linear scaling region. Dzero always
lies between 1 and 2. Takens and Mañé’s theo-
rem suggests that we need to embed our DNA
walk in a maximum of three or four dimen-
sions, as d < 2Dzero + 1 (48,59). Finally, the satu-
ration of Dzero around 1.2 in Fig. 5B also
indicates that the hidden structure has at most
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two dimensions. Therefore, d = 2 suffices to
describe the hidden structure.

We can identify this hidden two-dimensional
DNA organization. According to Table 1, the
two-dimensional walk for mtDNA is line-
shaped, because Dzero is near 1, as we see in Fig.
2. The Dzero values around 1.2 (except for thale
cress mtDNA) indicate some extra structure in
addition to the line-shaped walk. We can get
more information about this extra structure by
analyzing the distribution of dense parts of the
walk in Fig. 3. We always find spikes in Fig. 3
for each tRNA and rRNA because these mole-
cules have a huge number of cross-shaped
structures and loops in their spatial structure
(1,27). Looplike structures are two-dimensional

double-stranded domains responsible for sec-
ondary bonds and for the ribosomal spatial
conformation. Double-stranded DNA (dsDNA)
does not change the shape of the walk because
the displacement of one strand cancels that of
the opposite strand. (For example, the comple-
mentary sequence 3′→TGGTGGA→5′ in Fig.1A
cancels the direct sequence 5′→ACCACCT→3′)
but increases the local density, resulting in
spikes. In addition, a naïve random walk for a
dsDNA reveals a clusterlike dispersion along
the Lévy flight with a variance σ given by,
σ = √

——
3nsteps/2 where nsteps is the number of steps

in the walk (11). So each loop creates a cluster-
like section in the DNA walk. Thus, valine
tRNA, a cross-shaped 67-length DNA sequence
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Fig. 6. Singularity spectra f(α) using the sandbox algorithm for mammals (A), insects (B), plants
(C), and fungi (D). q ranges from 0 to 3 for thale cress. The qs lie within intervals of one unit for
other spectra.



with three loops and one dsDNA (1), is con-
fined to a box of side 9 bp ( Fig. 2C).

Ribosomal structures are highly organized,
because they are the key molecules for DNA
transcription and becase the RNA sequence
functions directly, not via translation into pro-
tein. Because tRNA is very small (around 70 bp)
and its Lévy flight is curly (Fig. 2C), we could
not distinguish between different tRNAs by

looking at their DNA walks. However, the
larger ribosomal DNA sequences have distinc-
tive and highly conserved Lévy flights. The sim-
ilarity between the 16S rRNA for finback whale
mtDNA (Fig. 2B), for the bacterium Escherchia
coli ( Fig. 7) and for Mus musculus (Fig. 8) walks
is not coincidental. The 16S rRNA of the bac-
terium E. coli always consists of four domains (I
to IV) with eight universal regions (U1 to U8).
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Fig. 7. Two-dimensional DNA walk for 16S rRNA in the bacterium E. coli, gene rrsH. The four
domains of rRNA are indicated by I, II, III and IV. U1 to U8 are the universal regions in SSU rRNA.
We also indicate the variable segments V6 and V9, as well as semiconserved regions S2 and S4. 5′
indicates the beginning of the walk; 3′ indicates its end.



This structure is equivalent in function to the
16S rRNA mtDNA in mammals (27), despite
some variation: The E. coli variable (V6, V9) and
semivariable (S2, S4) structures are absent in M.
musculus; on the other hand, we easily note the
extra sequences between 5′ and U1 and 3′ and
U8 in the mouse mtDNA. This structural simi-
larity is the reason that the DNA walk for E. coli
bacterial 16S rRNA, gene rrsH, is very similar to
the 90° rotated walk of the 16S rRNA of finback
whale (Fig. 2b) and M. musculus mtDNA (Fig. 8).
This rotation is equivalent to exchanging G with
A, A with C, C with T, and T with G between
Fig. 7 and Fig. 8. We do not know the reason for
the rotation symmetry in the Lévy flight, but
this circular replacement does not affect the
function of the rRNA. Obviously, the 90° rota-
tion of the walk will result in different base pair-
ing. As a result, we will not see similarities using
more crude methods, like counting single base
substitutions. We plan to track such differences
in future phylogenetic analysis.

DNA walk multifractal analysis applies to
other DNA as well (25). We computed Dq and
f(α) for the complete bacterial genome of E. coli,
strain K-12 MG1655, GenBank accession num-
ber U00096, 4,639,221 bp. Dzero is 1.29 ± 0.02 (box
counting) and 1.29 ± 0.03 (moving box) with

b ≈ 0.0. Unfortunately, we could not estimate
Dzero using the sandbox algorithm, because it
demands too much computation time. We are
currently analyzing nonmitochondrial DNA
walks. The small error in Dzero indicates bacter-
ial nucleotide sequence self-similarity.

The rRNAs are not exceptional in having a
looplike organization. Protein-coding DNA
sequences can also resemble two-dimensional
rRNA-like structures, indicating the presence of
a second organization in addition to the amino
acid coding (codons). Table 2 shows the DNA
sequence of the nicotine adenine dinucleotide
dehydrogenase (NADH) subunit 1 protein for
finback whale mtDNA. NADH subunit 1
belongs to the NADH coenzyme Q reductase
complex, responsible for oxidation reactions.
Table 2 shows palindromes at positions 724–733
bp, a hairpin at 166–174 bp, and a loop at
560–583 bp. Our previous article presented a
very simple search for complementary K-letter
words that identified repeats (25). Given a K-
nucleotide sequence, we wish to find the near-
est and largest reflected complementary
sequence within the DNA chain. In an infinite
random DNA chain, we always find it, because
the matching sequence must appear some-
where. However, we are looking for a nonran-
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Fig. 8. Two-dimensional DNA walk for mitochondrial 16S rRNA in M. musculus. The four domain
of the rRNA are indicated by I, II, III, and IV. U1 to U8 are the universal regions in SSU rRNA. The
walks for U6 and U7 overlap. The walk starts at 5′ and ends at 3′.



dom reflected complementary sequence. So, the
probability that the right sequence is close to
the original sequence by chance is very low.
Given a sequence, the probability of the
reflected complementary sequence appearing
is, P(r) = (1 – 1/4K)r 1/4K where r is the num-
ber of nucleotides between the given sequence
and the expected one, 1/4K is the probability of
finding the right sequence, and (1 – 1/4K)r is the
probability of the nonappearance of the
reflected complementary sequence. Table 2
shows the DNA sequence marking complemen-
tary sequences between positions K + 1 and L,
taking sequences with K-nucleotides that start

at position i of the DNA chain. Here, i ranges
from 1 to L – K. We intend to improve our
search for palindromes in the future.

Unfortunately, we cannot estimate fractal
dimensions or singularity spectra for single iso-
lated rRNAs or genes like NADH subunit 1,
because our methods do not give reliable results
for short sequences (around 1000 bp). We need
at least complete mitochondrial genomes (more
than 10,000 nucleotides) for conclusive results.

When we systematically apply fractal analy-
sis to our selected mitochondrial genomes, we
obtain the Dzeros in Table 1, which measure
how curly the Lévy flights are. In Table 1,
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Table 2
DNA Sequence for NADH Dehydrogenase Subunit 1 of Finback Whale mtDNA

and Its Reflected Complement

Note: The first column is the position of the first nucleotide of the respective line in bp. The direct and complementary
reflected sequences are indicated by + and – for 3 bp; * and = for 4 bp; > and < for 5 bp; a and A for 6 bp.



mammals (finback and blue whales, mouse,
rat, human, cow, and seal) have fractal dimen-
sion around 1.15, except for the duckbill platy-
pus (Dzero ≈ 1.20). This difference comes from
an extra control region in positions 15,461 bp to
17,019 bp, near phenylalanine tRNA (phe-
tRNA), absent in other mammals. The total
coding segment length LCD for mammals is
around 16,000 bp, but that for the duckbill
platypus is 1000 bp larger because of this pecu-
liarity. The Lévy flight for the duckbill platypus
is more entangled, with more DNA loops, per-
haps, reflecting metabolic rate differences.
Although the chicken and alligator also have a
D-loop and a control region near phe-tRNA,
they are fractal, with Dzero around 1.15, indicat-
ing that their general organization does not dif-
fer dramatically from mammals. However,
Dzero for Xenopus laevis is around 1.20, because
of the longer D-loop at the beginning of the
DNA sequence, 2134 bp long, near phe-tRNA.
Similar to the platypus, the length of coding
segments LCD for this frog is 1000 bp larger
than for mammals. Fishes (amphioxus, sea
lamprey, gummy shark, Crossotoma lacustre,
and carp) have all Dzero around 1.20, indepen-
dent of the absence (carp, sea lamprey,
amphioxus) or presence of the D-loop (C. lacus-
tre, gummy shark) near phe-tRNA. Finally, the
urchins have fractal dimension around 1.30.
Apparently, the fractal dimensions decreases as
the animals become more complex and have
heavier metabolic demands. Mammals have
more elaborate life cycles with longer child-
hoods than other organisms, and they consume
more calories than reptiles, amphibian or fish,
because the first group are endothermal and
the second group are ectothermal.

Perhaps because flies, honeybees, and earth-
worms share a common Metazoan ancestor,
their Dzero is always around 1.20. In contrast, the
fractal dimension of nematodes (Caenorhabditis
elegans, pig roundworm, river blindness worm)
is near 1, reflecting their differences from arthro-
pods and annelids. 

When we look at more ancient phylogenetic
ramifications, we see fungi Dzeros are always
higher than 1.2; that is, their genome is richer

in looplike structures. Finally, the fractal
dimension for plants ranges from 1.0 to 1.5. In
particular, the fractal dimension of the thale
cress is unusually high, around 1.5.

We do not need to restrict our analysis to the
shape of the Lévy flight. We can study the dis-
tribution of the steps along the walk. If we have
a simple fractal with a uniform step distribu-
tion along the walk, like a simple Cantor set,
f(α) will collapse to a single point, and all qs will
cluster together. In practice, most points of the
singularity spectrum will concentrate around q
= 0, but f(α) will display arms for large negative
and positive qs, |q| >> 1, because of the pres-
ence of noise and other variables. For Arabidopis
thaliana (see Fig. 6c), f(α) collapses around (α,
f(α)) ≈ (1.5, 1.5) for 0 ≤ q ≤ 3. The spike distribu-
tion and heights along the DNA walk, in a Fig.
3-like plot, are uniform. We observe such
monofractality in the liverwort, Chlamyclomonas
eugametos and Pedinomonas minor f(α)s: The neg-
ative q branches (right arms of the curves) are
shorter than for mammals or insects; the posi-
tive q branches (left arms of the curves) do not
reach the x-axis. The distribution and heights of
spikes along the DNA walk are neither com-
pletely uniform nor multiscaling. The spectra
for plants do not coincide with each other as do
those for mammals. (Fig. 6A), because the cho-
sen species are very distant phylogenetically
(two green algae, a liverwort, and a higher
plant). Perhaps evolutionary pressures are
weaker or metabolism is simpler in plants,
because we do not observe this tendency to
monofractality in animals.

On the other hand, Fig. 6a shows that mam-
malian mtDNA sequences are multifractal for
both dense q > 3 (left side of spectra) and aver-
age 0 ≤ q ≤ 3 weights, because the positive qs
span a large range of αs. f(α)s for mammals are
remarkably similar to each other, because the
curves and the qs coincide with each other for 0
≤ q ≤ 3. Thus, the spike and step distributions are
very similar in these five species. Because
(αmin, f (αmin)) ≈ (1.3, 0.7), not all scaling laws
occur for these Lévy flights; that is, the boxes for
nonloop segments contain a minimum number
of steps, and the distribution of the rarefied
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boxes along the walk has a fractal dimension
D–∞ = αmin around 1.3. Below this minimum
scaling f(α), nothing occurs. However, the spec-
tra reach the x-axis for large qs (dense parts of
the DNA walk), indicating that we have all scal-
ing laws; that is, we have looplike structures of
all lengths. The distribution of such loops along
the walk is a fractal with dimension around 0.7,
similar to dotted lines or a Cantor set (45). 

Insects spectra also resemble those of mam-
mals (Fig. 6B), except for Drosophila melanogaster.
The f(α(q)) curves of insects except for D.
melanogaster coincide with each other, and they
also exhibit multifractality. Dzero= f(α(q = 0)) ≈ 1.2
is higher than for mammals, indicating that the
entanglement of loops is more complex. In the
case of the fruit fly, f(α) is very broad, because of
an extra structure in its genome. We can see in
Table 1 that the sequence (L = 19,517 bp) is
longer than for other flies and mammals (L
around 16,000 bp for both). An extra (AT)n
region contains the replication origin and two
deoxythymidylate stretches, 4601 bp long, at the
end of the mtDNA. This (AT)n sequence gives us
a left–right movement, resulting in a spike in n
at this point of the walk. This spike destroys the
multiscaling law for dense parts of the fruit fly
DNA walk, resulting in an f(α) curve where the
left arm does not reach the x-axis in Fig. 6b. We
do not know the function of this (AT)n sequence,
but Drosophila yakuba has a similar structure:
1076 bp long. In the case of D. yakuba, the region
is smaller and does not dramatically change the
singularity spectrum, indicating that f(α) could
be useful for detecting anomalous repeats like
(AT)n domains. 

Fungi are usually intermediate between ani-
mals and plants (see Fig. 6D), as we expect
phylogenetically. Their f(α)s sometimes look
like an animal spectrum, as we see for
Schizosaccharomyces pombe; that for yeast and H.
wingei resembles that of plants. However, the
Podospora anserine spectrum resembles neither
that of animals nor plants. The branch for the
positive qs is truncated, indicating few DNA
looplike structures, and we observe a well-
developed negative-q arm in the spectrum.
Because we have f(α) spectra for only a few

fungi, we cannot yet identify a characteristic
fungal spectrum.

mtDNA walks of plants are simpler (more
homogeneous) than those of mammals because
the f(α)s of plants look like simple monofrac-
tals near q = 0: that is, they have just one scale
if we weight the rarefied and dense parts of the
DNA walk in the same way. We do not know
the reason for this behavior, especially because
most of the genes are the same. Possibly plant
mtDNA organization is simpler than in ani-
mals, because the metabolic rates in plants are
smaller than in animals or because plants are
less sensitive to random mutations in their
mitochondria.

When we mention simplicity or complexity
of the genetic organization in this work, we are
talking about the scaling laws (fractality) of the
distribution of nucleotide repetitions, measured
by f(α)s. Our next challenge is to identify the
other structures responsible for these character-
istic repeat distributions, beyond the DNA loops.

That the mitochondrial genome is a true frac-
tal is evidence of a simple genomic grammar
(rules for DNA coding), because we can build
elaborate sequences by duplication of simple
nucleotide repeats (palindromes). Duplications
are a common mutation mechanism. Although
we observe single-nucleotide replacements in
long DNA sequences, we expect that these
duplications will leave a scar in the genome.
When we study f(α)s, we can characterize the
self-similarity of the distribution of the repeats
resulting from these duplications. 

Self-similarity in nucleotide sequences has
consequences for shotgun sequencing too.
Simulated nucleotide sequences are usually
random or periodic, but not fractal (5,7,9,10).
All shotgun sequencing is based on the
assumption of a random distribution of
nucleotides. Redundant sequencing usually
reduces misassembly as a result of repeats.
However, we observe self-similarities resulting
from the nonperiodic repetitions of palin-
dromes. These repetitions are not uniformly
distributed along the nucleotide sequence, but
compose clusters that appear as spikes along
the DNA walk (Fig. 3). Because all shotgun
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sequencing methods require sequence over-
laps, we expect gaps in highly-repetitive
sequences, as we indeed observe for long
eukaryotic nucleotide sequences. Because
these self-similarities result in gaps and clon-
ally poorly-covered nucleotide sequences, we
must consider them in developing new strate-
gies for better sequence assembly.

CONCLUSION

The distribution of looplike spatial structures
in mitochondrial genomes creates a self-similar
(fractal) pattern. This fractal organization pro-
duces well-defined DNA walks (Lévy flights),
like those of 16S rRNA in E. coli and the finback
whale and M. musculus mitochondrial
genomes. The Lévy flight technique clearly
reveals the similarities and differences between
rRNA sequences, even when the nucleotide
sequences are reordered, mirrored, or have con-
sistent substitutions of nucleotides, and so
forth. Mammals’ mtDNA flights have the same
fractal dimension (around 1.15) and a charac-
teristic singularity spectrum, indicating that
their genomes have distributed looplike struc-
tures in all lengths. However, we do not expect
multiscaling for the smallest unidentified fea-
tures of mtDNA, because f(α) is truncated for
negative qs. Plants tend to have monofractal
f(α). Fungi have intermediate spectra, as
expected from their phylogeny.

Multifractal analysis of DNA walks reveals a
nonlinear organization in the mitochondrial
genome. However, this work did not incorporate
information from other traditional sequence
analysis methods, like the C + G content varia-
tion ratio or purine–pyrimidine walks. We hope
to find additional hidden genomic features by
applying multiple techniques simultaneously. 
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